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Dissipation function of the first-order phase transformation in solids
via internal-friction measurements
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Reconstruction and displacement of crystal structure and motion of the phase interface induces dissi-

pation of energy, and latent heat appears during a first-order phase transition (FOPT) in solids. In this
series of investigations, we first express the energy dissipation as a function of four physical parameters.
Since there are more unknowns than the number of equations, we introduce four more equations
describing the dynamics of the system on which internal friction (IF, the dissipation of vibration energy)
measurements are conducted. Via IF measurements during FOPT, we can then calculate the relevant
four parameters and hence the dissipation function. We have completed the first step in establishing a
phenomenological theory to describe FOPT in solids.

I. INTRDDUCTIQN

It is well known that the behavior of interfaces (phase
interface and domain wall) under an applied field is, in
the broad sense, a generalized first-order phase transfor-
mation (FOPT) and is an important aspect for both basic
physics and practical applications. A lot of physical
properties of materials, such as coercivity, susceptibility,
and hysteresis of ferromagnetic material or ferroelectric
material, hysteresis of phase transformations (PT's),
shape memory efFect, superelasticity of thermoelastic
martensitic transformations (MT's), etc., are closely asso-
ciated with the moving characteristics of the interface.

During the FQPT, two phases coexist initially. In the
process of a FOPT, migration of the phase interfaces
occurs and the process is completed within a limited re-
gion when the phase interface disappears. ' A phenome-
nological theory of phase interface dynamics should be
fruitful for understanding the common crucial features of
the FOPT. In going through a typical FOPT in solids,
there is a complete lattice reconstruction because the
symmetry relationship between new and parent phases
may not exist in general for a FQPT in solids; conse-
quently, the order parameter is not defined generally in
such a transition. On the other hand, in a second-order
phase transition, the order parameter is well defined. As
a consequence, mean-field theory cannot be applied in
general to the FQPT. It is interesting to note that even
up to very recently, though there are attempts to apply
the Landau phase transition theory (including classical
Ginzburg-Landau theory) to certain phase transitions
(see, e.g., Refs. 3 —10), it is generally recognized that such
a theory cannot function as a general theory for the
FQPT in solids. Moreover, the crucial characteristics of

the FOPT are (i) the dissipation of energy, usually in the
form of acoustic emission, occurring in the lattice recon-
struction process; (ii) the existence of a latent heat during
the transformation; (iii) the coexistence of new and parent
phases, which leads to various hystereses. All these cru-
cial features signify that the FOPT is an irreversible ther-
modynamical process which is very dificult to deal with
experimentally and mathematically. For this reason, we
believe much efFort has been expended to investigating
the characteristics related to nucleation and growth dy-
namics, rather than to analyzing the energy dissipation in
the FQPT. In view of the mentioned difhculties, we at-
tempt first in this investigation to derive an explicit phe-
nomenological expression for the energy dissipation via
an internal friction measurement, which includes a num-
ber of unknown parameters, during the FOPT. Through
internal friction measurements, we were able to obtain
specific values for the relevant parameters and, hence, the
dissipation energy. This investigation indicates that
analysis of the "dissipation function" would provide a
very useful methodology in the study of the FOPT in a
relatively general way under the phenomenological re-
gime.

The measurement of internal friction (IF), Q ', during
the FOPT is a powerful experimental method for the in-
vestigation of the relevant dissipation behaviors. An
internal friction peak associated with the FOPT at low-
frequency range has been observed in a number of FOPT
systems, such as FeMn, " ' TiNi, ' ' AuCd, ' '

20 2 1 +Q 22 Co 3 and QaTiQ 24 This IF peak j
characterized by the following: (i) the peak height in-
creases with an increasing value of T /co (where
T=~BT/c)t~ and co is the frequency of the measuring
stress), but the relation is not linear; (ii) the IF is indepen-
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dent of the measuring strain amplitude A„which is of
the order of 10; (iii) a fairly high value of Q

' can be
observed only if TWO. In fact, it is well established that
the IF curve shows a peak when T is varied. However, if
Q

' is measured suddenly at constant temperature
(T=O), the Q

' value will drop to the background value
Qo

' at a relatively fast rate.
Various theories have been proposed for interpreting

the IF peak in the process of the FOPT. Wang et al.
presented a theoretical model to explain the change in
Q

' arising from the change of the elastic constant dur-
ing the martensite transition. " Ma and Ke indicated that
IF is associated with the motion of an extended disloca-
tion at the coherent interface. ' Postnikov et al. con-
sidered that IF originates from the fluctuation of cer-
tain relevant quantities in the process of a FOPT and de-
rived an expression of IF as function of T, co, and A, .

Delorme et al. derived an explicit expression for Q
in terms of T and a function involving the volume frac-
tion V~ of M and T. Djonghe et al. extended the ex-
pression of Delorme et al. to arrive at an expression for
Q

' involving the stress also. We would emphasize that
all the stated expressions for Q

' during a FOPT are as-
sociated with the volume eff'ect during a FOPT and can
be written in the simple form Q

' =C( T ) T/co.
Gremaud et al. extended the work of Delorme et al.
and proposed a new model for the IF of the FOPT, which
explains the nonlinear relationship between IF and T/co
(Ref. 28) (see also Ref. 23). Such a result of the (T/co)
dependence was close to early experimental
findings, " ' ' but significant discrepancies have been
found during the past decade and the explicit phenome-
nological equation which is consistent with recent and
more accurate experimental results is expressible as
Q

—1 C(T)to
—21(T'/cv)n wjth 0(n 1 ( 1 13, 16, 17,22, 24

this paper, we address this problem and present an equa-
tion of motion of the phase interface during a FOPT un-
der an applied alternating stress for an IF measurement
simultaneously. In the end, we are able to derive the dis-
sipation function (i.e., resistance curve) and obtain an ex-
plicit expression for Q . It is emphasized that the ob-
served high value of Q

' during a FOPT is associated
only with the motion (dynamics) of a phase interface
rather than with the volume efFect (such as the
volumetric fluctuations) in the process of the FOPT.

We would remark here again that IF is defined as a dis-
sipation (or absorption) of vibration energy supplied by
the IF measuring system, while the energy dissipation
during a FOPT is a dissipation of heat or mechanical en-
ergy supplied by the driving system. The contribution of
the present paper is to derive the energy dissipation of
the FOPT from the experimental data of the absorption
of vibration energy (IF).

II. EQUATION OF MOTION OF PHASE INTERFACE

A. Various forces acting on a unit moving phase interface

It has been well established that the FOPT in solids
can be viewed as a moving process of the phase interface
(PI) between the parent phase (P) and the new phase

(N). Such a concept is applicable even to the nu-
cleation stage. The new phase grows and the FOPT de-
velops when the direction of motion of the PI points to-
ward the parent phase and the transformation is complet-
ed when the parent phase is exhausted. In addition to the
PT driving force, i.e., EGd, which acts on the PI, a resis-
tive force b, G1, (arising from the origins specified below)
is also at work, impeding the motion of the PI, and the
FOPT occurs only if AGd & AG~.

1. Effective phase transformation driving force
acting on the phase interface

Now consider a unit PI in the process of a FOPT; the
driving force per unit area, AGd, is equivalent to the
change in Gibbs free energy per unit volume between the
I' and %phases and it is well established,

AGd = AOTt', (2)

where Ao, T=const and time t'=0 when T= To.
The resistance per unit area, AGz, acting on the mov-

ing PI arises mainly from three origins: (i) the lattice dis-
tortion arising from the difFerence of the molar volume
between the N and P phases; (ii) the intrinsic deformation
of the new phase, such as the shear strain during the mar-
tensitic transformation; and (iii) acoustic waves emitted
from the reconstruction of the lattice during the FOPT.
Note that each of the three aspects is dependent on the
rate of the FOPT and that of hT or (Tt'), meaning that
EGd is a function of b. T or (Tt') (when t'=0, T=TO)
and the e6'ective driving force AG' is defined as

or

AG~ =AGd —EG', (3b)

which is a function of (Tt'). It is clear from (3b) that
both AGd and AG' are supplied by the applied PT driv-
ing system and the energy dissipated, EGz, represents
part of the energy supplied by the PT driving system.

In the FOPT, past experimental results indicate that,
the volume fraction of the new phase I' is monotonically
increasing in T as shown in Fig 1 (see also, e.g., Refs. 1,2).
The past data also show that there exists a maximum
value of dF /d T at T & T„where T= T, at t =0. If X~ is
the total area of the moving PI and U is the average veloc-
ity of the PI; obviously dI' /dt =X~ v. Since
dF/dt =(dF/dT)T, dF/dt has the same form as dF/dT.
We know that all the three quantities Xzu, Nz, and U

must vanish at the starting temperature T, and final tem-

AGd =b.HKT/To,

where the dimension of EGd is 1 cal/cm or 1 dyn/cm,
AK is the change of enthalpy of the system in the process
of the FOPT, and To is an equilibrium temperature of the
N and P phases, expressible as To =(T, + T,')/2, with T,
and T,

' the starting temperature of the new and parent
phases of the FOPT and b T=

~

T To ~. T—he force b, Gd
can therefore be written as
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cannot have a singular point or minimum in the range
(T„Tf). Thus without loss of generality, X„has the
form shown in Fig. 1(b) and the velocity U also has a max-
imum value at T accordingly. Thus the effective driving
force b, G' must also have a maximum at T= T, . In reali-
ty, the maximum may not occur at the midpoint of the
range (T„Tf) and each curve of Xz or v may not be
symmetrical. For convenience in qualitative analysis, we
consider the simple situation where AG' has a similar
shape with a maximum, as shown in Fig. 2, where each
curve (a, b, c) corresponds to one value of T. We also
show the (T Ts)"—Trela-tion (0& n & 1) in the top part
of Fig. 2 for convenience in the discussion. When T & T,
and T Tf, AG'=0 or AG+ & EGd, and no PI can move
under such a condition. For various possible AG'-T
curves as shown in Fig. 2, it is reasonable to write

FIG. 1. Volume fraction F,dF/dT, total area X& of the
moving PI vs temperature T.

perature Tf of the FOPT. When the transformation
occurs, many new phase nuclei appear, each of which in-
creases in size, and so the area of the PI will be increasing
around each nucleus. The total area around the N phase
(i.e., around all the K nuclei) must be increased until
some of the nuclei begin to tough their neighboring N
phase particles. As soon as that process occurs, the total
Nz starts to decrease and quickly shrinks to zero. Hence
the transformation is completed as T approaches Tf.

We would remark here that experimental results of
thermoelastic martensite transformations in single crys-
tals show that X~ may remain close to a constant value
during most of the temperature range (T„Tf) Ithe FT-
curve has about the same shape as that shown in Fig.
1(a)]. For other FOPT's in polycrystalline materials, we
anticipate that the total PI area of the average new phase

8, G', DG~

b, G'=b, G&
—KGB = A, (T)b, T"=A, (T)(Tt)", (3c)

where T=T, at t =0; in Fig. 2, a, b, c pertain to
T„T~,T3, respectively. So far, A, (T) is still an un-
known function having a maximum near T=T, stated
before. But AG' does not have the same maximum as
A, (T). The validity and limitations of Eq. (3c) have to
be determined by experimental measurements.

2. Harmonic force arising from forced oscillation
during the II measurement

As mentioned in the Introduction, it is difficult to mea-
sure the dissipation of energy in the process of the FOPT
directly. We try to calculate the dissipative energy in the
process of a FOPT by internal friction (IF) measurement
data, which represents the absorption of vibration energy
supplied by IF measuring system in the low-frequency
range. In order to measure IF, a time alternating stress
o. =o „sin(cot+0 ) must be applied; here, o. ~ is the vibra-
tion amplitude of the applied stress and 8- is the initial
phase. As the sample is subject to the applied stress
o z sin(cot+8), as a result of the difFerence in the molar
volumes of the N and P phases as a result of the distor-
tion of the new phase, there should be an effective force
acting on the PI:

S Tp b G, =a(to, O)cr ~ sin(cot+8), (4)

6 Gp= 8, G~ -AG'
./ g C

/

/

To Ts Tv Tf

T or QT (K)

FIG. 2. AGd vs T (dotted straight line), AG' vs T with three
different T as marked by a (corresponding to T& },b (correspond-
ing to T2), and c (corresponding to T3}, where T3) T2& T, .
For convenience in analysis, the curve ( T—T, )" vs T is also
plotted. The function EG+ is obtained from the curves stacked
on the top part.

where a(co, 0) describes the coupling strength between the
oscillating stress and static PI when the PI is not in
motion (V=O). The experimental measurements of IF
for the materials FeMn and NiTi (Ref. 36) indicate that
in a FOPT, which occurs across a range of temperature
in general, IF is dependent of the frequency even under
the isothermal condition such that T=O; therefore, o. de-
pends on co. Consequently, when the frequency of the ap-
plied stress is varied, the response of the PI would change
accordingly and a should be a function of cu rather than a
constant, since the response characteristic of the PI to
the inAuence of stress depends on the con6gurations of
the PI. We shall discuss further the characteristics of the
4G, -~ dependence later in this section.
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3. Force arising from the interaction of the PI motion
and the applied oscillating force

So far, we have considered the situation where the PI is
not in translational motion. Our experimental investiga-
tion indicates very clearly that a peak in the Q '-T curve
appears only if the following conditions are satisfied
simultaneously. ' Consider a system undergoing a
FOPT under significant variation of temperature. Sup-
pose we vary the temperature in steps and measure IF
under isothermal conditions after the temperature has
been stabilized. Experimental results reported in Refs.
13, 24, and 36 show that Q

' Tpea-ks do occur. Howev-
er, the Q

' peaks are significantly diminished with
respect to those cases pertaining to TWO. For example,
the Q

' peak (T=O) for FeMn is only one order of mag-
nitude lower and that for the material BaTiO3 is about
30%%uo of the value for the TAO case. Such a feature
occurs because in these two materials there exists a phase
transition for the situation TAO, in addition to the phase
transition under the restriction T=O. However, there is
still no loss of generality presented in our argument be-
cause the Q

' Tpeak obse-rved under the condition TWO
is much more prominent than that observed when T=O.
Hence the conditions for the appearance of internal fric-
tion peak(s) in a FOPT during temporal variation can be
summarized as (i) b TWO when the sample is in the tem-
perature range of the FOPT, (ii) o „%0when the IF mea-
surement is carried out, and (iii) TWO. These "combined
conditions" imply that if the PI is not moving (even
though the sample is in the temperature range of the
FOPT and a significant static PI is present), the dynamic
IF is zero. Suppose U is the average velocity of the PI.
The above deduction means that the condition TWO
would induce PI motion and the coupling factor a would
be different for u =0 and v&0 (i.e., T=O and TAO).

While expression (4) describes the force (due to oscillat-
ing motion) in the static condition (T=O and v=O), the
coupling strength a(co, O) must be modified to depend on
the average velocity U of the PI in the dynamic situation
( TWO). Thus the harmonic force arising from forced os-
cillation during the IF measurement under the dynamic
situation should be rewritten in the form

In general, as(EG') may be a power series of b,G'. Un-
der the weak-coupling condition, we assume here that
as(KG') is only a linear function of b, G':

a (hG')=C'EG'. (7)

In view of (4)—(7),

B. Equation of motion of the phase interface and solution

Consider the unit area of a PI moving along the x axis.
Based on the derivation of Sec. IIA, the equation of
motion of the PI in the dynamic situation is

px+yx+kx =AG'+AG, +AG, "

or

AG ~"=O'EG'AG, ,

where C' is an interaction coefFicient and is independent
of the measuring frequency, because the frequency effect
has already been contained in ao(co, 0) and
b, G, =a(co, O—)cr „sin(cot+ 8). We may view the above ex-
pression with the following simple physical picture.
When the FOPT system is subjected to an external stress,
the time varying stress and the condition TWO have two
physical effects on the PI: (i) a force of magnitude EG,
acts on the PI arising from the change in volume (or dis-
tortion); (ii) the PI motion would cause a change in the
configuration of the PI, which in turn would modify the
magnitude (and direction) of the effective driving force
AG'. We may therefore introduce an interaction force
AG; to describe the PI motion and the dynamic IF associ-
ated with the moving PI. This force hG; comes into be-
ing only if both VWO (or EG')0) and b, G, AO are
satisfied. For a general description, AG; may be ex-
pressed as a product of two functions U, (bG') and
U2(b, G, ). As we are studying the weak-coupling case,
only linear terms of U, and U2 are taken, giving rise to
b,G;=AG, ""=C'b,G'bG, , namely, Eq. (8). Obviously,
the force b, G,. is due to (weak) nonlinear effects. The stat-
ed methodology of treating the coupling problem de-
scribed by two parameters is well established (see, e.g.,
Ref. 37).

bG, r"=a(ro, u)cr ~sin(cot+8),

gG =gGO+gGd»

It is observed experimentally that when either a(co, u ) =0
or crz =0, AG, "=0, the dynamic IF is zero; therefore,
the simplest form AG, ""must be expressible as a product
form of a(co, u ) and cr ~ sin(cot+8), and not as an addi-
tive form. Since the average velocity V of the PI is deter-
mined by the effective driving force AG', we can write
a(co, v) as a(co, b, G'). Consider the situation where the
coupling between the PI motion and harmonic driving
force is weak (which can be ensured approximately by the
experimental conditions where the strain amplitude is
—10 and T ~ 0. 1 K sec '), we may then approximate-
ly express a(co, b, G') into the simple product form

a(co, u ) =a(co, b,G') =ao(co, O)a (b,G') .

x+2')x+coox =CA, (Tt)"+Ca(co)o ~sin(cot+8)

+CC'a(co) A, (Tt )"o „sin(cot+8)

(9b)

where p =C ' is the average mass density of the PI, y is
the effective damping coefficient, k is the dynamic restor-
ing coefFicient arising from the interaction between the
PI's, and coo= k /p is the square of the resonant frequency
as the PI's undergo oscillatory motion, while 2g=Cy.
During the process of a FOPT, the situation of V =0 and
VWO is coexistence; therefore, we need both hG, and
b, G,""in Eq. (9).

Carrying out a Laplace transform on Eq. (9), note that
if the coe%cients g, coo are constant, the analytical solu-
tion to (9) is



J. X. ZHANG, P. C. W. PUNG, AND W. G. ZENG 52

x =exp( q—t)/co& f e "'f(t') sin[co&(t —t')]dt', (10)
0

where m&=~0 —g . If g and coo are weak functions of
time, we can readily obtain a very accurate numerical
solution to x for known f ( t '

) using standard numerical
methods of integration. As the average spatial distribu-
tion of the PI can be considered as constant before and
after each IF measurement, g and coo would indeed be
very weak functions of time and the solution (10) is rather
accurate.

We would remark here that there are different orienta-
tions of the PI's during the FOPT of solids and the
shapes and directions of motion of these PI's are also
quite different in general. To analyze the PI motion, we
may, however, employ the method of analysis in treating
the dynamics of domain walls in ferromagnetic materi-
als. ' In other words, a planar phase interphase with
total area N„(which equals the total area of the PI's in
motion) moving along one direction is taken as a model
to represent the motion of the PI's during a FOPT. Such
a model is valid because the total energy dissipated dur-
ing a FOPT is a strong function of the total (area) PI and
the average speed to these moving PI's; but not a strong
function of the number of PI's involved or the interac-
tions among the PI's. The validity of such a model has
already been thoroughly discussed in Ref. 39. The limita-
tions of this model will be considered in Sec. V.

III. INTERNAL FRICTION ARISING
FROM PI MOTION DURING THE FOPT PROCESS

Q '=b W/2m. W=N„ f EG,x dt/(m. o /p)

Q
—i +Q —1+Q —i (12)

where p is the modulus associated with the particular
mode of oscillation, while 8'is the maximum kinetic en-
ergy during vibration. The total IF of the sample can be
considered to be contributed by x, which in turn is deter-
mined by various driving forces in an additive manner, in
view of the superposition principle. Any nonlinear effect
is assumed to be included in all the forces discussed
above. Under the weak-coupling condition and the low-
frequency forced oscillation situation, surely coo&)co,
and coo~&&g~, implying that the e "' term in (10) can be
neglected. ' The expression of the total internal friction
can be considered to be contributed by the following
three parts.

A. Contribution to IF from the eft'ective driving force B,G'

We have already obtained the explicit expression for
the effective driving force per unit area 46' acting on the

The dissipation of vibration energy due to PI motion
per cycle of oscillation per unit volume of the specimen is

b, W=N„ f b, G,x dt, (11)

where p is the period oscillation, X~ is the total area of
moving a PI in a unit volume, and AG, is the effective al-
ternating stress applied to the PI during IF measure-
ments. By definition, the internal friction is then

PI. Identifying b, G' as f(t') in (10), we can calculate x
and substitute the result into (12), arriving at the internal
friction contributed from EG':

Qo
' =(CNqBO A, ap/cr ~coo)(T/to)", (13)

where Bo= 1 is a numerical coefficient and X~ is the total
area of the PI when the temperature is T.

B. Contribution to IF from the harmonic stress A, G,

In view of the fact that the internal friction varies
slightly with the temperature T even when T=O during
the IF measurement, the IF generated by the harmonic
stress alone must be a weak function of T. From (4) and
(11)such a contribution to the total IF is exactly

Q, '=2CN~(T)qa (to)top/coo . (14)

Because Q,
' is independent of T, Q,

' is therefore asso-
ciated with the oscillation of the static PI.

C. Contribution
to IF from the dynamic interaction force hG, "

Based on relations (5) and (11), it is easy to write down
the contribution to IF originating from AG, ",

Gz„„'=(CC'N~B Aia p/coo)(T/co)", (15)

where B is a numerical number of order of unity. Com-
paring (13) and (15), as p-10' (cgs units) for most solid
materials of interest, o z —10 p, C —10 ' —10
a —10 ' —10, and Q&„„'/Qo ' —-C ao z —10 . We
shall provide more information on the estimated values of
C' and n later.

We see that Q ~„„' && Q o
' and we can neglect Q o

' in
the overall estimation of IF. We can then readily show
from (14) and (15) that to a very good degree of approxi-
mation, the total IF can be expressed as

Q = A(T)a (to)(T/co)"+B(T)a (to)to,

with

(16)

A ( T ) =CC'N „(T ) A, ( T )B IJ„/( nero ),
B(T)=2CrIN&(T)p/coo . (18)

Using the same procedure in deducing (11) from (10), the
modulus defect AM/M originating from the interface
mobility under the action of oscillating stress in the pro-
cess of a FOPT is found to be

where c' and c" are the elastic and nonelastic strains of
the interface, respectively, under the exerting osci11ating
stress, I.= J~z~ x dt is the amplitude value of the inter-
face displacement, f, (n )( —1) is a numerical coefficient

( b M /M )p,
=E"/8'

=«0/(a/p)
=[f,(n )N~ CC'A, Eutt/(vrcoo)](T/co)"a(co),

(19)
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Qd„' /(~M/M )pi =f(n )a(ro)/so (20)

where f(n ) ( 5 1) is also a numerical coefficient and the
value of the transition strain co can be determined from
experimental data.

IV. METHODOLOGY OF CALCULATING THE
DISSIPATION FUNCTION FROM THE

EXPERIMENTAL RESULTS OF IF MKASUREMKNTS

dependent on the parameter n, and co is the strain of the
PT ( —10 ). Comparing Eqs. (15) and (19), we have

( QM)
M total

—1

(6M/MQ,
(high f)

d+D

t
(6M/M/1

(Low f)
Qd+Il

We need to relate the resistance force EG& to the ex-
perimental data of IF measurements. From Eq. (3),

b GII =b Gd —A, ( T)( Tt )" .

The driving force AGd can be obtained from diff'erential
scanning calorimetry (DSC) measurement as indicated by
Eq. (1). If the numerical exponent n is determined by IF
experiments as specified by Eqs. (15) or (16), only A 1(T)
is needed for the determination of EGz. Such a calcula-
tion can be achieved by the following procedures.

T (Ks ')

FIG. 3. Ratio (AM/M)„„1/(Q ')„„,against T for high and
low frequency of osci11ation.

a(co) —a co (22b)

where I, is a parameter specified by the particular phase
transition concerned and a' a proportionality constant.
It has been found experimentally in Refs. 17, 24, and 32
that

A. Determination of the coupling coef6cient a
for a range of frequency cu

0&1(1 (22c)

(bM/M)„„1 (bM/M), +(bM/M)pi

g
—1 +g —1

(bM/M ), (hM/M)p,+
g

—1 g
—1

(22a)

where Q,
' is neglected since it is only 1% of Qd„„'. (If

Q,
' is comparable to Qd„„', this procedure can be done

by computer. ) We note that according to relations (16)
and (19), both ( b,M /M )p, and Q z„„' are functions of T",
so that their quotient is independent of T. It has been es-
tablished experimentally that (b,M/M), is also indepen-
dent of T, as expected from the basic theory of phonons
in solids. Now as Qd„„ increases with T like T based on
Eq. (15) and 0 (n ( 1, it is obvious that Qd„„' approaches
an asymptotic value when T is large enough. In other
words, when T takes on large enough values, R in (22a)
also has an asymptotic value when the frequency co is
fixed. In view of (20) and (22a), R is relatively large
when cu is large. The qualitative behavior of
(bM/M)„„1/(Q ')„„1with respect to a change of T,
taking co as a parameter (high, low), is described in Fig. 3.
Based on graphs shown in Fig. 3, the dependence of the
coupling coefficient a on Io in Eq. (4) for the asymptotic
part (R depends on T linearly) can be expressed simply as

Because the softening of the phonon mode occurs al-
most always during the process of the FOPT, the mea-
sured value of hM/M therefore describes the modulus
defect originating from the moving interface and the
softening of the phonon mode. More specifically, if we
define (AM/M), to be the modulus defect arising from
the softening of the phonon mode, the ratio
R =(b,M/M )„„I/(Q ')„„1can be expressed as

for different phase transformations; the value of I falls in
the range of 0.1 —0.8.

Now we can substitute (22b) into (16), giving

Q '=a' A(T)co '(T/o2)" +a' B(T)co'

Q
—1 g ( T )

T' n/ro n +2!+B ( T )ro
1 —21

leading to

Q 1/~1 2l —g ( T)T n/~1+n+B ( T)

(23a)

(23b)

where a' has been absorbed in A(T) and B(T). The
value of the left-hand side of Eq. (23b) is now known,
while n, A ( T ), and B ( T) on the right-hand side are still
unknown.

B. Calculation of A(E) and B(F)

Owing to the fact that the total area of interface Nz in
the process of a FOPT is dependent on the volume frac-
tion I' of the product phase and the peak temperature
(Tz ) of the IF during a FOPT shifts to a higher tempera-
ture when T increases, the values of Xz at the same T but
different T are not the same. Therefore the values of A
and 8 must be associated with the same I' value, but not
the same T. Suppose we apply the same oscillation fre-
quency to the same specimen, but repeat the Q

' mea-
surements for two difFerent values of T (i.e., T„T2), the
IF curves would look like that shown in Fig. 4, where
T, (T2. Both the Q

' IF peak heights and peak tem-
perature T increase with increasing T in the Q T-
curves. Et is well established experimentally that the
shapes of the Q

' Tcurves are very sim-ilar for diff'erent
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Ts TaTa
p 1

I

tion of the new phase at different T and m, we can then
collect the various Q

' values corresponding to different
T and co combinations, but corresponding to the same
new phase fraction F. Using (23b), we can now plot
Q '/(co' ') against T"/(co'+") for a range of n, which
is taken as the parameter for each curve. We choose the n
value such that the state relation is closest to a straight
line. This n value is the right numerical parameter to be
used in Eq. (23b). The slope is obviously A(F) and the
intercept is simply 8(F)

C. Deduction of the dissipation function

Now we proceed to the final stage of finding the dissi-
pation function AGd(F) or EGd(T). From (3), (17), and
(18), we have

Ts Tb Ta
p 2

'f or ET (K)
Ai(F)=(2m'/C'8 bio)A(F)/B(F)=k'A(F)/8(F),

FICx. 4. Internal friction Q
' as a function of temperature T

for two values of T(T2 & T&). k' =2m.rIIC'8 coii,

(24a)

(24b)

T. The area to the left of the dotted straight vertical line
(passing through the maximum Q ') occupies about
42 —47% (the absolute value depends on the materials of
the sample) of the total area under the Q

' curve in each
case of Fig. 4. We have also found out experimentally
that at Tp, the fraction of the new phase is the same (i.e.,
a specific value within the range 42 —47% for this speci-
men) for various T and co. Such a fixed value of F has
been substantiated by electrical resistance measurements.
Based on the stated experimental findings, we can intro-
duce a new ratio r =Q 'IQ ' to measure indirectly the
fraction of the new phase, where Q~

' is the peak value of
IF.

In Fig. 4(a), consider the instant at which Q has the
value Q,

' and the temperature is T;. The volume frac-
tion of the sample corresponding to a certain value of
T=T

~
and at a certain temperature T, has a certain

value F„say. Then, in Fig. 4(a), we can find the value of
Qb

' and the corresponding Tb such that
r=(Q& ' —Q, ')/Q~b'=(Q, ' —Q, ')/Q„, '. At such
values of Qb

' and T&, though T and co may be different,
the fraction of the new phase is the same, being I, also.
Note again that the value of r defined above does not
equal the value of the fraction volume directly.

Having found a way to measure Q
' for the same frac-

I

and from (21), bGti(F)=EGd(F) A, (F)(—Tt)", meaning
that the dissipation function is acquired when k is deter-
mined.

We would remark that the damping coefficient g de-
pends only on the difference of crystal structure of the
two phases involved and should not be a strong function
of temperature. Note also that coii=k/p and k is the dy-
namic restoring coefficient arising from the interaction
between the PI's and also from the difference of the crys-
tal structure of the two phases involved. Both are weak
functions of temperature. Now the time interval of each
internal friction measurement takes only less than 10 sec.
The maximum temperature change is only less or about
0.1 K. The parameter C' in (7) remains practically con-
stant during each IF measurement. Thus k', in (24b),
~ g/(C'cori) should not be a strong function of tempera-
ture.

As indicated by the experimental evidence, the func-
tion A ( T ) has a maximum and a shape similar to the
Q

' Tcurve, while 8(T) -is roughly constant for a range
of materials. We have found that the dissipation function
b,Gz(T) has a variety of shapes, but they all possess a
minimum in each curve (Fig. 2). At the minimum, we
can set db, (Gii(T))ldT=O at temperature T„and obtain
the desired expression for the parameter k' in (24b):

k'=(bHITo)I(A(T, )(T, —T, )"Id[lnA(T)]ldT+n/(T„— T, )) /8) . (25)

With all parameters found, we can deduce the dissipation
function KGB ( T) from relation (3).

V. DISCUSSION

(1) The crucial difference between the present phenom-
enological theory and that of other theories published so

I

far (including the joint works of J.X.Z. ) is the introduc-
tion of the effective force bG, =a(e~, O)o „sin(cot+0)
acting on the PI in the general equation of motion (9a).
We first note that if the coupling factor a(ci, O) becomes a
(normalized) constant of unity (meaning I=0), our Eq.
(23a) gives Qd„„~(T/ai) for the dynamic term, which is
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identical to previous results reported (see Refs. 14, 15, 23,
and 28 —31); in particular in Ref. 29, the concept of
eff'ective force was not considered). The recent experi-
mental work with a VO2 sample indicates that in general
the Qd„„' Tr-elation is different from the Qd„„'-co ' rela-
tion. We are thus led by such a result to reexamine the
physical concept involved in the equation of motion (9a).
In fact, we would remark that the time alternating stress
o =o z sin(cot+8) applied during internal friction mea-
surements acts on the specimen as a whole, but not on
the PI directly. The force acting on the PI arises from
the difference in the structure of the parent and new crys-
tal phases or the difference in the distortion of the two
phases. The vibration of the PI can have a direction
different from that of the oscillating stress applied during
experimentation. Vibrations of PI s lead to internal fric-
tion as observed. Since the PI's motions are induced by
external applied stress, we must use a coupling factor
a(co, O) to describe such an induction.

Before translational occurs, the effective force acting
on a static PI is therefore bG, =a(co, O)o „sin(cot+8)
[i.e., Eq. (4)]. Experimental evidence' ' ' indicates that
the internal friction IF is a function of the frequency of
vibration applied. Such a result is expected in our theory.
Vibration of the PI would induce a rearrangement of the
lattice at both sides of the boundary and the rearrange-
rnent pertains to a specific relaxation time; the conse-
quence is that the coupling factor must in general be a
function of frequency [a(co,O)] even for the static case.
When translational motion of the PI occurs with velocity
V, the response of the lattice on both sides of the PI
boundary would be different and the coupling factor
should be described by the function a(co, V) and the dy-
namic effective driving force of the PI is then
bG, ""=a(co,V)0 „sin(cot+8). When TWO, VAO; thus,
the relation Qd„„-T should be intuitively different from
the relation Qd„„'-~ ', as described by Eq. (23). (Only if
l =0 are the relations Qd„„' Tand Qd„„'-co-' are the same. )

On the other hand, AG, " is expressible in a product
form b, G, ""=O'EG'EG, . Only when both b, G'%0 and
b, G, AO, b,G, ""%0, and we call b, G, "" the interaction
driving force in accordance with common terminology in
physics.

We now search for more experimental evidence in pub-
lished work to check the consequence of our theoretical

deduction: The relations Qd„„' T, Qd„„'-co ' are-different.
In fact, in 1989, Bidaux, Schaller, and Benoit reported
such relations for the metal cobalt. In Fig. 4 of Ref. 23,
when f=0.5 Hz, with T= 1 K/min and T=4 K/min,
the corresponding ratio of the internal friction peaks is

Q,'„(T=4 K/min)/Q, „(T=1K/min) =2. 15. In Fig.
6 of Ref. 23, consider the case when T=2 K/min (a value
halfway between 1 and 4 K/min). When the frequency
f=1 and 0.25 Hz (a value halfway between 0.5 Hz, pa-
rameter of Fig. 4), the corresponding ratio of the internal
friction peaks is, however, Q,'„(f=0.25 Hz)/Q
(f= 1.00 Hz) =2.55. Clearly, Qd„„' is a stronger function
of the inverse frequency than T. Our corresponding
theoretical consequence is in line with the experimental
finding reported in Ref. 23 earlier.

where V is the average speed of the planar PI. Because
dF/dt =N~ V, it is clear that

8'= f bG~(T) dt
S

T= f bG~(T) dt
S

= f bG~(F)dI' . (26)

Physically, AG& is the rate of energy dissipation. It is
thus of prime importance to devise a method for calculat-
ing AG+ as a function of temperature or new phase frac-
tion, because the total energy dissipated per unit volume
can be obtained by integrating over AG&. In this investi-
gation, we therefore introduce a method for finding AG~.

(3) The explicit representation of b, Gii has been found
to be

b, Gii =EGd —k' ( Tt )" ., A(T) ~

B T (27)

While AGd can be deduced from DSC measurements,
there are still four parameters, i.e., O', A(T), B(T), and
n, to be determined. In other words, we still need four
other equations to close the system and obtain solutions
to AGz in a self-consistent manner. The special feature
of our methodology is to carry out internal friction mea-
surements of the system during the FOPT. Mathemati-
cally, we have added four equations (16), (19), (22), and
(24) to the equation system (3b), (3c), which now include
T and co, that can be controlled during experimentation.
We would remark that although many parameters appear
in our deductions, such as Bp B g cop Ep C n,
~ (co), 3 (T),B(T),p, k', . . . , yet the final explicit repre-
sentations of b.Gz [i.e., Eq. (27)] involve only the four pa-
rameters just mentioned. In particular, we emphasize
that the coupling coefficients a'(co), I involved in IF mea-
surements are canceled during the mathematical manipu-
lation. Such a result is expected because the crucial pa-

Moreover, the difference between the Q '( T ) and
Q '(co ') dependences could also have been deduced
from the theoretical calculation of Gremaud, Bidaux,
and Benoit by taking into account that a in Eq. (3) of
Ref. 23 is not a constant, but is actually T dependent.
Note also that Qd„„ in Ref. 23 is a function of the param-
eter A (a in Ref. 23), which is ~ bH '. A more recent
result shows AH increases with increasing T, with the
result that 3 decreases with increasing T. Consequently,
the Qd„„-T relation is significantly diff'erent from the
Qd„„'-m ' relation.

(2) We have adopted a simple model to describe the
FOPT in solids: A planar phase interphase with total area
Nz moving along a certain direction is taken to represent
the motion of the PI's during the FOPT. During the
motion of the planar surface, there must be an effective
frictional force AGz being exerted on the representative
PI, and the work done against the friction is thus

W= f bG~(T)N~ Vdt,



276 J. X. ZHANG, P. C. W. FUNG, AND W. G. ZENG

rameters in the FOPT should not be dependent on the
characteristics of the internal friction measurement.

(4) There are limitations of the simple planar one-
dimensional (lD) model taken in this investigation. In
reality, the curvature of the moving "averaged" PI may
change during the transformation. A variation of curva-
ture of the PI in general would alter the characteristics of
the dynamics of the PI. In a realistic system, a large
number of PI's exist; they migrate and grow along
different directions. As a result, the "tracks" of the new
phase materials may intercept. The two limitations,
when relaxed, would imply that the exponent indices n

and I are functions of the new phase fraction rather than
constants. In other words, there is a certain degree of
inaccuracy in deducing n and I using our simple planar
1D model.

(5) We have neglected the effects of long-range
diffusions of atoms during the FOPT. The theory is ap-
plicable as it stands, only to polymorphic (reconstructure

type), martensite (displactive type), and other
nondiffusion types of transformations such as order-
disorder transitions and commensurate-incommensurate
transitions. However, if we include a term describing the
diffusion driving force and a term pertaining to the in-
teraction between diffusion and vibrations applied during
IF measurements, our theory can be extended to analyze
diffusion transformations also.
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