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Smoothed density of states of electrons and smoothed frequency spectrum of phonons
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For the finite systems of a sphere, a disk, a linear line, and a tube, the smoothed electron density of
states {DOS) is derived directly from the distribution of eigenvalues of a one-particle model. The
smoothed DOS is defined by setting one of the quantum numbers to a continuous variable. For a spheri-

cal particle, the DOS is expressed as the sum of three terms; a volume term, a surface term, and a cir-
cumference term. We clarify the changes in the DOS between a mesoscopic system and a macroscopic
system. We apply the same method to phonons of a mesoscopic system and derive the smoothed fre-

quency spectrum.

I. INTRGDUCTIGN

In recent years mesoscopic systems have been the focus
of attention in many fields, not only in physical science
but also in electronics. It has been shown that the finite
size affects many kinds of physical and chemical proper-
ties. ' Electrons have discrete energy levels and the
discreteness is decisive for the stable structure of micro-
clusters. Degeneracy of energy levels plays an important
role in accommodating electrons from the lowest level to
the Fermi energy. As a typical example it has been ob-
served that the ionization potential of microclusters is os-
cillatory as a function of the number of atoms. ' The
numbers of atoms that close discrete energy shells are
called magic numbers in a similar manner to the stable
nuclei.

The electron density of states (DQS) reflects the struc-
ture of electron energy levels and the degeneracy. In this
paper we derive the smoothed DOS directly from the dis-
tribution of eigenenergies and compare our DOS with
that obtained by Balisn and Bloch. " We elucidate the
trend that the DQS of a three-dimensional (3D) system
becomes proportional to &E with the increase in cluster
size.

The phonons of a mesoscopic system are characterized
by discrete vibrational frequencies, which are responsible
for the thermodynamic properties; the specific heat
and the mean square displacements of vibrating
atoms. " ' These quantities are larger than those of the
bulk system because of the surface mode contribution. A
fundamental quantity that specifies the thermodynamic
properties of materials is the phonon frequency spectrum
(FS). ' ' We derive the smoothed FS directly from the
distribution of eigenfrequencies and clarify the trend that
the FS in the low-frequency range becomes proportional
to co with increase in system size.

II. SMGGTHED DGS FGR KI.KCTRGNS

Since Weyl's work, ' the effect of boundary conditions
on eigenvalues and on the DOS has been investigated.
For a spherical particle„Balian and Bloch derived the

D (E)= Vk+S ——5
2f2

+ ( —,'+cos 5—5 cot5)+2L,

where E is the energy, V is the volume, S is the area, and
I. is the circumference. The parameter 5 is defined by

K5=arctan
k

1/2
2mE

(5)

In the limit ~= 00 the boundary condition corresponds to
a fixed boundary condition and ~=0 to a free boundary
condition. Dr(E) has the volume term VE, the surface
term a constant, and the circumference term l/~E.
Moreover, Balisn and Bloch revealed an oscillatory
feature of the DOS that is called a supershell. ' ' The
smoothed DOS becomes the basis when we consider shell
effects on the fragmentation process of a charged alksli-
metal cluster. '

In many cases we calculate eigenvalues with various

smoothed DOS. They treated the boundary-value prob-
lem for the following partial differential equation:

bP+k /=0,
with the surface boundary condition that

V„4 =ttp,

where x is a constant and the subscript n represents the
derivative in the direction normal to the surface. They
obtained the smoothed DOS in the limit of large wave
number by using the Green's function and Lorentzian
smooth method:
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DP„'(E) becomes rough because of the finiteness of the
system. With an increase in the system size, the segment
becomes small, and D P„'(E) becomes smooth and closer
to the DOS of the bulk system,

3/2

(14)

Two parameters a and P must, therefore, satisfy the fol-
lowing equation:
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V„Q=O, (16)

the distribution of eigenvalues di6'ers from that for a
square well with an infinite wall. Figure 5 shows the dis-
tribution of eigenvalues as a function of angular momen-
tum. By writing the eigenvalues approximately as

g„,=al +pn +y, (17)

we have the following smoothed DOS in the same way as
above:

In the present case a=1.22, P=3.14, and y=0. The
coefficient of the second term of Eq. (13) is calculated as
(a —p)/3= —0.64 and the coefficient of the third term is
calculated as a(a —2p)/6= —1.03. Those by Balian and
Bloch are —0.79 and 0.67, respectively. Figure 3 shows
the DOS and Fig. 4 shows the DOS in the low-energy
range. Though the coefficient of the second term calcu-
lated by Balian and Bloch is less than ours, their DOS is
higher than ours. This indicates that the third term in
Eq. (13) is not negligible in the low-energy range. Thus
our DOS is better than that by Balian and Bloch since
their DOS is slightly higher than the middle points of the
indented histogram (Fig. 4) because of the positive
coefficient of the third term.

For a free-boundary condition at the surface that

3 2m
4n.a p fi

3/2

' 1/2
SX VV E +— (a —P—2y)
3 2m

L
6 2m

(a —2y )(a—2p —2y )
1

QE

(18)

D &„'c(E) is expanded in terms of R ' in the same way as
D s„'(E). The factor y modifies the coefficients of the sur-
face and circumference terms in Eq. (13). The bulk term
is the same as that of D P„'(E) since it must be indepen-
dent of the boundary conditions, that is, D z„',(E) is pro-
portional to &E for an infinite radius of a sphere.

Figure 6 shows the DOS. The coefficient of the surface
term is positive since a=1.22, P=3.14, and y= —1.79.
The reason is that a free boundary condition results in

Reduced energy

FIG. 4. Electron DOS for low eigenvalues of a sphere calcu-
lated with a fixed boundary condition. The segment of reduced
energy is set to be 20. The dashed curve shows the smoothed
DOS calculated by Eq. (3) (Ref. 4).
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FIG. 6. Electron DOS for low eigenvalues of a sphere calcu-
lated with a free boundary condition. The segment of reduced
energy is set to be 20. The dashed curve shows the smoothed
DOS calculated by Eq. (3) (Ref. 4).

where S is the area of the spherical disk and I. is the cir-
cumference. Discreteness of the eigenvalues is retained
in the summation over I, which is different from the 3D
case in Sec. II, with summation over n. The DOS of the
2D bulk system is

(23)

finite wave functions at the surface, while a fixed bound-
ary condition makes the wave functions null at the sur-
face. If electrons are confined in an infinite wall, the
wave functions are compressed into the inner region,
which reduces the surface states' contribution. Thus a
free boundary condition yields surface states which make
a positive contribution to D f„',(E). The coefficients of
D f„',(E) are calculated so that ( a —p —2y ) /3 =0.55 (the
second term) and

(a —2y)(a —2P —2y)/6= —1.18

(the third term), while those by Balian and Bloch are
0.79 and 2.67, respectively. We should note that the
Dr(E) obtained by Balian and Bloch is infinite at E=O
in contrast to the exact distribution of eigenvalues, which
has an energy gap between E=O and the lowest eigenen-
ergy. We should notice that their theory is based on a
large-k expansion.

III. 2D AND 1D SYSTEMS

which is independent of E. Since our smoothed DOS
must reproduce the DOS of the 2D bulk system in the
case of an infinite radius, the parameters a and P intro-
duced in Eq. (20) must satisfy ap=4. The term propor-
tional to 1/&E in Eq. (22) represents the contribution
from the circumference.

Figure 7 shows the DOS determined by a fixed bound-
ary condition on electrons. The supershell structure ap-
pears around a constant line and the oscillation becomes
striking as the energy segment of the histogram de-
creases. Our DOS is less than the average value (=50 in
the present case), especially in the low-energy range,
which is consistent with the exact DOS. This indicates
that the second term of Eq. (22) is not negligible in the
low-energy range.

As an example of 1D systems, we consider a finite line
of length I.. With fixed boundary conditions at the two
ends, we obtain the eigenenergies of electrons from the
zeros of sing: g„=nm. Since the system has only one

D ' '(E)5E =4 g 5n+25n, (19)

where the factor 4 on the right comes from the contribu-
tion from the spin degree of freedom and the degeneracy
associated with magnetic quantum numbers m =+l. We
should note that the state with I=O has only a spin de-
gree of freedom. The second term in Eq. (19) represents
this correction. With the approximate expression

il„,=al +pn +y (20)

We consider the smoothed DOS of two-dimensional
and one-dimensional systems in the same way. As an ex-
ample of 2D systems, we focus on a spherical disk. With
a fixed boundary condition, we derive the eigenvalues
from the zeros of the Bessel function of the first kind.
J&(g). In the same way as in Eq. (7), the eigenvalues are
specified by angular momentum I and branch number n.
We define the smoothed DOS as the summation of 6n
over I:
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where n is an integer and j is a natural number. The
number n corresponds to the angular momentum around
the center axis of a tube. We define the smoothed DOS
by

of the finite system. Clearly, our DOS is in the middle of
the indented region of the histogram in a wide range.

Next we consider a tube of radius R and length H. We
impose a periodic boundary condition on the angular
component of the wave function and fixed boundary con-
ditions at the two ends of the axial component. We find
the following energy levels:

FIG. 8. Electron DOS for eigenvalues of a line with a fixed
boundary condition. The segment of reduced energy is set to be
10000.

max

D'""'(E)5E=4 g 5j
n=1

1/2
2mH

2/2

quantum number n, we define the smoothed DOS by

D 's'„'(E)5E =25n . (24)

X + . . .5E,
„=~ VE (A /—2mR )n

(27)

1/2
1

(25)

In the same way as for the 2D and 3D cases, we find the
smoothed DOS:

where

+max
2mR

' 2 1/2

(28)

This is exactly the DOS of the 1D bulk system because
g„ is specified by only one parameter n. Figure 8 shows
the DOS of the 1D bulk system and the smoothed DOS

I

D '"b'(E) is expressed as the summation of D'„'„'(E) with
energy shifts fi n /(2mR ). The parameter n,„ is intro-
duced to eliminate states with j=O. We transform the
summation in Eq. (27) into the integral

1/2

D tube(E)
2/2

2mS
ar csin

f max

1

g2

2mR 2E

2@2

2mH2E

1
dn+E —(fi /2mR )n

1/2 ' 1/2
M2

2mRHE
(29)

' 1/2

D'" '(E)= l —2
2m

1
mR 1 1

H L v'E
(30)

where L =2mR. To make clear the feature of this sys-
tem, we expand Eq. (30) to

' 1/2

D urbe(E) mS
2

H 2m l
&E

' 1/2
1

(3l)
L 2m

This equation is symmetric with respect to interchange of
R and H/n. By expanding D '" '(E) at large E we have
the asymptotic expression

The first term shows the DOS of the 2D bulk system.
The second term shows the DOS of a 1D system of length
H and the third term shows the DOS of a 1D system of
length L. The coefficient 2 of the second term comes
from the contributions from two ends of a tube and the
negative sign represents elimination of states with n=O.
On the other hand, the negative sign of the third term
represents elimination of states with j=O. This situation
is ascribable to the efFect of the boundary conditions; the
quantum number j for fixed boundary conditions at the
two ends and the quantum number n from the periodic
boundary condition around a tube. Even if we consider
the variation 5n instead of 5j, we arrive at the same result
from the following definition:
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IV. SMOOTHED FS FOR PHONONS

a'
p D=(A, +p)V(V D)+@V D,

at2
(34)

On the basis of an elastic vibration model, we derive
the vibrational modes of a finite sphere. The elastic dis-
placement vector 0 satisfies the equation

I I I I
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FIG. 9. Electron DOS for eigenvalues of a tube. The param-
eter (~R/H) =10. The segment of reduced energy is set to be
10.
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It is, therefore, essential to make one of the quantum
numbers a continuous variable in order to derive the
smoothed DOS. Figure 9 shows the DOS for the case
(mR /H) =10. If the ratio R /H is extremely small, that
is, an extremely long tube, the DOS approaches the su-
perposed D'„'„'(E) with the energy shifts shown in the
denominator of Eq. (27). Figure 10 shows the DOS for

where p is the mass density and A, and p are Lame's elas-
tic constants. We solve this equation by introducing a
scalar potential and a vector potential that satisfy
Helmholz's equations. ' We consider a stress-free bound-
ary condition at the surface and finiteness conditions on
both elastic displacements and stresses at the center.
These boundary conditions yield two kinds of eigen-
modes: the spheroidal mode and the torsional mode.
The spheroidal mode is a coupled one composed of longi-
tudinal and transverse displacements. The torsional
mode is expressed by one kind of transverse displace-
ment. For the spheroidal mode, we obtain reduced eigen-
frequencies from the following eigenvalue equation:

A+i(n)
2 ~ rl +(1—1)(l +2) q —(1+1)

jg(g)

X . —
—,'rl + [rl —21(1—1)(l +2)]rl

A (k) ' ii(n)
+(1—1)(21+1)71=0, (35)

where g=coR/ci and rl=d. /c, The para. meters ci and

c, are the sound velocities of the longitudinal and trans-
verse modes, respectively. For the torsional mode, we
find reduced eigenfrequencies from

=0 (36)

Though the eigenvalues g of the spheroidal mode depend
on one material parameter c&/c„ those of the torsional
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FIG. 10. Electron DOS for eigenvalues of a tube. The pa-
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FIG. 13. Phonon FS for a spherical cluster of aluminum.
The segment of reduced frequency is set to be 1.

mode have no material dependence. Figures 11 and 12
show the distribution of eigenvalues for the case of alumi-
num. In Fig. 11 we see two kinds of bunches of lines that
come from longitudinal and transverse modes, respective-
ly. Moreover, we see energy repulsion between adjacent
points of the longitudinal branches and transverse
branches. This is the interaction between longitudinal
and transverse modes because of the stress-free boundary
condition at the surface. For the details we refer to
Tamura, Higeta, and Ichinokawa. '

In the same way as in the case of electrons, we de6ne
the smoothed FS by

F(co)5'= g g (2l+ 1)5l,
o n

(37)

and we consider the approximate expression for the re-
duced eigenfrequency g„&

g„,=a l+P n+y (38)

where cr represents the polarization. The phonon fre-
quency is written as

o C~
CT~mr=

R 'Dna ~ (39)

where c is the sound velocity and R is the radius. For
simplicity, we split the spheroidal modes into two groups:
longitudinal modes with a large inclination and trans-
verse modes with a small inclination. The longitudinal
branches have a =2.56, P=6.59, and y =0 and the trans-
verse branches have a=1.22, P=3.14, and y= —3.14.
The diIlerence between these values comes from the ratio
cI /c, : 2.10 for aluminum. The lowest branch of torsional
modes has a=1.3 and p=y=0 and the upper branches
have a = 1.22, P=3.14, and y = —3.14. Spheroidal
modes with l=O and l= 1 of the lowest branch should be
eliminated. Moreover, torsional modes with l=O and
l=1 of the lowest branch should be eliminated. Figure
13 shows the calculated FS for an aluminum cluster. The
smoothed FS is in the rniddle of the indented edges of the
exact histogram in the low-frequency range.

Next we discuss how the frequency spectrum of a mi-
crosystem changes into that of a macrosystern. If the ra-

g„,=al+Pn+y, (41)

we obtain the smoothed FS of the 6nite system as follows:

g (21 + 1 )5l = 2 rl+ ——y pn 5g-a
CX

2
1

a2p

—p rl+ ——y 5g.
2

(42)

We should note that the leading term has a quadratic
dependence on g and the term to be summed in Eq. (42)
is a linear function of q. This is the reason for the co

dependence of the bulk FS in contrast to the case of the
electron DOS. Figure 14 shows a schematic diagram of
the FS which represents the change from a rnicrosystem
to a macrosystem. Further discussion will be reported
elsewhere.

V. SMOOTHED FS FOR PHONONS OF A LIQUID DROP

We consider the oscillation modes of a droplet of an ir-
rotational liquid. If the droplet is large, it has two kinds
of oscillation modes: shape oscillations induced by the
surface tension and compressional oscillations induced by
the compressibility. The eigenfrequency of shape oscilla-
tions is '

' 1/2

1 (l —1)(l +2)
pR

(43)

where l is the angular momentum, y, is the surface ten-
sion, p is the mass density, and R is the radius. The
dependence on l is diferent from that of the phonons of a

dius of a mesoscopic system tends to infinity, F(co) has to
be the bulk one:

Fbulk(~) ~2V
(40)2' C cr

By writing the reduced frequency of a spherical system as
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FICx. 17. 30 diagram for reduced energies g„l as functions of
branch number n and angular momentum I. Corner points of
meshes show reduced eigenenergies.

non frequencies as a function of the good quantum num-
ber I, while the bulk system has single-valued electron en-
ergies and phonon frequencies as a function of the wave
number k. For the 30 bulk system, an electron energy is
specified by three quantum numbers (n„,n~, n, ) which
form a single-valued energy surface. For electrons of a
finite system, we can construct a single-valued energy dia-
gram as a function of n and l. We have a sheet of a
curved surface in the same way as in the bulk system.
Figure 17 shows a three-dimensional diagram for the en-
ergy surface. We should note, therefore, that Figs. 1 and
5 represent the projected eigenvalues on the gl plane.
The third quantum number of magnetic moment m of a
spherical system gives only (21 + 1) overlaps at a point of
the relevant energy level. With increase in the system
size, the meshes in Fig. 17 become small and the energy
surface becomes a smooth surface. These situations are
applicable to the frequency surface of phonons.

VII. CQNCI. USIONS

g„,=al+pn . (50)

1 aF, (ri) = g+-
a p 2

—p rl+—

where a=1.22 and p=3.14 because the relation between
a and p is the same as that of Eq. (15). Figure 16 shows
the FS and the peak in the low-frequency range
represents the FS of the shape oscillation modes. The
smoothed FS gives a good estimation of the exact FS of a
droplet. This indicates that our method is applicable to a
system that has a diferent dispersion relation from the
linear combination of 1 and n described in Eq. (38).

VI. ENERGY SURFACE AND FREQUENCY SURFACE

In a similar way to Eq. (42) we find the smoothed FS of
the compressional modes by

For several kinds of mesoscopic systems we derived the
smoothed DOS of electrons and the smoothed FS of pho-
nons. Our method is based on considering the distribu-
tion of eigenvalues, while the method by Balian and
Bloch is based on the Green's function and Lorentzian
smoothing. In our calculation one of the quantum num-
bers that specify the symmetry property of the system is
made to be a continuous variable. It is shown that the
present method is easily applicable to various systems
and the DOS and the FS of finite systems are expressed in
expanded form as inverse functions of cluster size. The
general trend is explained that the DOS of a spherical
particle becomes proportional to +Z and the FS be-
comes proportional to co with the increase in system size.
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