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Temperature dependence of phase breaking in ballistic quantum dots
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Ballistic conductance fluctuations are measured in a zero-dimensional (OD) GaAs quantum dot and
are used to measure the phase coherence lifetime ~ (T) based on a semiclassical "extra lead" model of
phase breaking. Above 300 mK, the measured r decreases as a power law, r (T)=a(T [K]) ~, with
$-1.2 and a —3.5X10 " s, and appears to saturate below this temperature. Variance of fluctuations
increases from zero with dot conductance for few conducting channels in the leads, then saturates once
several channels are open. Above 150 mK, variance decreases with temperature as a power law with an
exponent between —1.2 and —1.6 depending on (g ).

Mesoscopic effects such as universal conductance fluc-
tuations (UCF), weak localization, and persistent currents
arise from the phase coherence of conduction electrons at
low temperatures. The central physical quantity that sets
the size and temperature scale for mesoscopic physics is
the phase-breaking time ~, that is, the time scale over
which the electrons lose phase coherence due to inelastic
scattering. At low temperatures, ~ may become quite
long, allowing electrons to travel several micrometers be-
fore phase coherence is lost. In this paper, we will ad-
dress experimentally the problem of phase breaking in a
confined zero-dimensional (OD) system, a GaAs quantum
dot.

To date, the majority of work on mesoscopic phenome-
na have concerned disordered 1D and 2D conductors in
which electrons move diffusively through the sample,
scattering many times on the time scale of ~ . In these
situations, well-established methods for extracted phase-
breaking rates from transport measurements exist, for in-
stance, using the magnetic-6eld dependence of weak lo-
calization. ' Moreover, the physical mechanisms of
phase relaxation in low-temperature diffusive transport
are also well understood theoretically, and are generally
found to be in good agreement with a large body of ex-
periment in both 2D (Refs. 4—7) and 1D (Refs. 8 and 9)
systems.

In micrometer-size quantum dots made from high-
mobility two-dimensional electron gas (2DEG) material,
the elastic (transport) mean free path may exceed the de-
vice size by several times in all directions, so that elastic
scattering occurs predominantly as specular reflection at
the walls rather than as diffusion. In this case, standard
techniques for extracting ~ from transport measure-
ments fail. Also, because phase breaking depends on
sample dimensionality, one expects a crossover to OD
behavior in small dots. Depending on the context, this
crossover to the fully quantized OD regime is expected as

thermal and lifetime broadening become comparable to
either the Thouless energy E, or the single-particle level
spacing A. Recently, the OD aspects of phase breaking
have been considered theoretically by Sivan, Imry, and
Aronov' for the case of diffusive electron motion within
the dot. We will discuss their results in the context of
our experiments below.

From a semiclassical point of view, the power spec-
trum of magnetoconductance fluctuations can be used to
probe the area distribution of electrons traversing the
dot. " ' The area distribution is influenced by three
physical properties of the system: (i) The size and shape
of the dot. We will assume chaotic motion of electrons in
the dot, in which case only the dot area A is important;
(ii) the escape rate from the dot via the leads. This rate is
determined by the size of the leads, which can be deter-
mined from the average conductance through the dot;
and (iii) the phase-breaking rate. Like escape, phase
breaking suppresses the contribution of large area trajec-
tories to interference and within the semiclassical model,
appears as an "extra lead" for coherent electrons. To-
gether, these three ingredients allow r&( T) to be extracted
from conduction fluctuation measurements in a quantum
dot.

We discuss data from a total of four quantum dots
(Fig. 1 insets), three larger dots (one square and two with
protrusions forming Sinai billiards, referred to as Sinai 1

and 2) fabricated from the same GaAs/Al Ga, „Ashet-
erostructure with mobility 1 X 10 cm /V s, and one
smaller square dot, fabricated on a lower mobility
( l. g X 10 cm /V s) GaAs/Al„Ga, As heterostructure.
All had sheet densities of n =3.5 X 10" cm . The
2DEG interface was 800 A below the surface for the
high-mobility wafer and 420 A for the other sample. All
dots were formed by four independent (Ti/Au) gates and
have individually tunable point contact leads in adjacent
corners directed at 45 to reduce the probability of
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FIG. 1. Characteristic inverse area squared a vs average
conductance (g ) through the dot at base temperature
( Tf 'dg 20 mK), from fits of power spectra to Eq. (1). Dashed
lines are fits to semiclassical dependence, Eq. (2). Insets are
electron micrographs of devices, showing gates (light regions)
on the GaAs surface.

straight-through trajectories. Assuming a depletion
width of —100 nm between the edge of a gate and the
2DEG, we find the following dot areas A (and corre-
sponding energy-level spacings 6=2M /m ' A ): 2.5 pm
(2.8 peV) for the large square, 2.3 pm (3.1 peV) for the
Sinai dots, and 1.3 pm (5.3 peV) for the small square.
Overall, the three large dots showed very similar fluctua-
tion statistics, and were as different from one another as a
given dot was from itself upon thermal cycling. The one
small dot exhibited conductance fluctuations on a larger
magnetic-field scale, as expected (the exact scaling will be
discussed below).

Before discussing the data, we briefly review the semi-
classical theory of ballistic conductance fluctuations. " A
particle in an open chaotic scattering region will remain
for a time t with probability P(t) a:e ",which defines a
classical escape rate y, I.

' During that time, the (signed)
area traced out by the particle will accumulate
diffusively, leading to an approximately exponential dis-
tribution of areas P(A) ~e I I, "' ' where a acts as
a characteristic inverse area. In a magnetic field, these
areas give rise to a distribution of Aharonov-Bohm
fluxes, which modify quantum interference, leading to
aperiodic conductance fluctuations. For this P(A), one
finds a I.orentzian-squared autocorrelation function of
conductance fluctuations, " the Fourier transform of
which gives the power spectrum,

S (f) =S (0)

[1+2@a/of�]e

a =k [(g )+T /2], (2)

where k is a positive geometry-dependent scale factor in-
versely proportional to the Fermi velocity, and (within
the extra-lead model) independent of temperature. ' We
emphasize that our model assumes that a is only affected
by temperature through phase breaking, and not, for in-
stance, by thermal smearing of the Fermi surface. This is
supported by recent calculations of conductance fluctua-
tion statistics, which include temperature. '

With this model in mind, we now discuss the measure-
ment. Low-field (B & 0. 1 T) magnetoconductance g (B)
was measured in a current-bias configuration using four-
wire ac lock-in techniques at 11 Hz, with the voltage
drop across the dot kept between 1 and 5 pV. Crates
defining the dot shape (Fig. 1 inset) were set to ——1 V,
then the two point-contact conductances were equalized
by setting the conductance of each with the other fully
open, before finally closing both. A best-fit cubic polyno-
mial was subtracted from g (B) to remove a slowly vary-
ing background conductance, and the power spectrum S~
and variance var(g) were computed from the remaining
conductance fiuctuations fig (B) (Fig. 3 upper inset). The
region

~
B

~
& 3 mT was not used to avoid weak localiza-

tion contributions.
Characteristic inverse areas a were found by fitting Eq.

(1) to the power spectrum of 5g(B) [Fig. 2(b) inset]. Fig-
ure 1 shows a versus average conductance (g ) at base

where f is the frequency in cycles/T and po is the fiux
quantum (-4.14 mTpm ). The difFusive accumulation
of area implies a ~ y, where we now use a more general
escape rate y defined in terms of the total transmission
through all leads, X,T, =2m(A'y/b, ), with T, the
transmission of the cth lead. For integer number X of
fully conducting modes in the cth lead, we may set
T, =N, but this definition of y also holds for partially
transmitting modes. The correspondence between y and
y, i is made by setting W equal to the number of half Fer-
n.i wavelengths across the width of the lead. '

For well-mixed trajectories, the average conductance
through the dot is given by the resistors-in-series form,
(g ) =2(T, '+ Tb ') ', where T, and Tb are the
transmissions of the two leads (the factor of 2 accounts
for spin degeneracy). For equal lead transmissions,
T, =Tb, this gives X,T, =2(g). Even for unequal lead
transmissions, T, /Tb =PA 1, the approximation
X,T, -2(g ) remains quite good. For instance, the frac-
tional error (X,T, —2(g ) )/X, T, =1—4P(1+P) for
P=2 is only 11%.

Phase breaking is modeled as an extra lead of the dot
which draws no net current but allows electrons to escape
from participating in interference effects. ' ' The
transmission of the phase-breaking lead, T, is defined in
terms of the rate y (=1/~ ) as T =(2M/h)y . T
adds to the transmission via real leads, 2,T„to give a to-
tal escape rate of phase coherent electrons,
X, T, + T+=2vrfi(y+y~)/b, . The characteristic inverse
area a in Eq. (1) is sensitive to coherent electrons and so
will scale with this total rate: a ~ (y+y ). In terms of
the average conductance, this scaling can be written
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FIG. 2. Characteristic inverse area squared a vs tempera-

ture T for the Sinai dots. Two values of (g ) are shown for each
dot. (a) Sinai 1 at (g ) =1 and (g) =6.6; {b) Sinai 2 at
(g) =0.8 and (g) =1.8. Inset left: k at several temperatures
for a square dot (dot area was —10%%uo larger in this run because
of the smaller gate voltage used), shows no trend in T. Inset
right: Typical fluctuation power spectra showing the change in
the slope between 250 mK and 1 K.

temperature for all four dots. For the large square [Fig.
1( )] a fit to Eq. (2) gives k =(4.4+0.7)X10 3 pm
and T =6.1+1.8. Using the value of b for this dot gives
a phase breaking rate of y = (4. 1+1.2) X 109 s
(fiy ~/kii =32 mK). For Sinai 1, the fit yields
k =(2.6+0.6)X10 ILim and T is 11+4, giving a
phase-breaking rate y =(8.3+2.8) X 10 s ' (fiy /kz
=63 mK). (The linearity of a versus (g) was less ap-
parent in this run for unknown reasons. ) The fit for Sinai
2 [Fig. 1(c)] yields k =(7.4+1.9)X 10 pm and T of
8.6+3.2, giving a phase-breaking rate of
y =(6.5+2.5)X10 s ' (fiy /kii=49 mK). For the
small square [Fig. 1(d)], a is larger than for the large
dots, consistent with the classical scaling with dot area,
k o= A . ' * This scaling implies cx o- A at fixed
(g) for T+«(g), and a ~ A for T &&(g). The
fit in Fig. 1(d) yields k = (3.6+0.9)X 10 and
T =4.6+1.6, in good agreement with classical scaling.
The phase-breaking rate for the small dot is
y =(6.0+2.0) X10 s ' (A'y /kii =45 mK) comparable
to the values found in the larger dots. The rather large
uncertainties in T come both from uncertainties in the
value of a depending on the frequency range used to 6t
Eq. (1) and from the estimated error in the fits of a2
versus (g ). Uncertainty in dot area further contributes
to the estimated uncertainty in y~.

Because the phase-breaking rate increases with temper-
ature, one expects from Eq. (2) that a will also increase
with temperature, which is shown in Fig. 2 for the Sinai
dots. Using the values of k fram above, the measured
temperature dependence of a allows T (T), and thus
v~(T), to be extracted from Eq. (2). The resulting ~+(T)
for Sinai 1 and 2 are shown in Fig. 3. For each dot, the
values of r&( T) are found from an average of T ( T) ex-
tracted at the two conductances shown in Fig. 2. The as-
sumption that the scale factor k does not itself explicitly
depend on T—this follows from the extra lead model of
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for (g ) =0.8 and 1.8, and p —1.2 for (g ) =8. Upper inset, typ-
ical conductance fluctuations 5g(B) at 250 mK and 1 K (offset
downward).

0.1

phase breaking —is supported by the measurement
shown in Fig. 2(a), though, again, the uncertainties are
rather large. That no clear trend in k appears as temper-
ature increases is about the strongest statement one can
make given the present data.

Above 300 mK, v~( T) is found to be well described by
a power law i.+(T)=a(T [K)) ~ with /=1. 2+0.5 and
a-3.5X10 " s as shown in Fig. 3 for the two Sinai
dots. The measured ~+(T) is consistent in magnitude
with a recent calculation by Sivan, Imry, and Aronov
(SIA) of the phase-breaking rate in a difFusive OD quan-
tum dot, v '(T)=(326/ir):-(kT/E, ), where E, is the
Thouless energy and:- is a constant of order unity. ' For
our ballistic dots made from 2DEG material, :-=—', and
E, -A'vz/V 2 —1 K, giving the line shown in Fig. 3. We
also note that our measured r„(T)agrees with previous
measurements of phase breaking in a disordered 2D
GaAs sample. Below 300 mK, r&(T) appears to saturate
between 0.1 —0.2 ns. %'e believe this saturation is not a
result of heating within the dot, but rather may reAect a
breakdown of our semiclassical model where ~ a6'ects
the characteristic field scale of fluctuations. This is sug-
gested by the observation that var(g) does not show a
corresponding saturation, and continues to increase down
to —150 mK (Fig. 3 lower inset). We note that the satu-
ration (maximum) value of ~ occurs at a time compara-
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FIG. 4. Variance of fluctuations var(g) vs (g ) at base tem-
perature (Tf 'dg 20 mK) for (a) the three large dots and (b) the
small square dot. Note that var{g) appears to saturate at lower
(g ) for the small dot.

ble to the Heisenberg time rH-R/6-0. 2 ns for these
dots, indicated by an arrow on Fig. 3; and one does not
expect the semiclassical picture to hold when lifetimes be-
come long compared ~H. For the entire data range
shown, the inequality r ( T) & fi/k~ T is easily satisfied.

Finally, we examine var(g) as a function of T and (g ).
For all dots, we find a roughly linear increase in var(g)
with (g) for small (g), as shown in Fig. 4. For the
large dots this trend rolls off at var(g)-0. 04 [in units of

(e /h) ] for (g ) -6, while for the small dot the roll off
occurs at var(g)-0. 014 for (g ) —3. In all cases, var(g)
is less than the universal value of 4. ' This discrepan-
cy, as well as the strong dependence on (g ), is presum-
ably associated with both phase breaking and thermal
smearing. Within our phase-breaking picture, the satura-
tion in var(g) at larger (g) occurs once the number of
real escape channels ( —2(g ) ) dominates the number of
phase-breaking channels.

The temperature dependence of var(g) appears well de-
scribed by a power law above 150 mK, with the power of
T showing a dependence on (g ) (Fig. 3 inset). For small-
er conductances, (g ) =0.8 and 1.8, we find
var(g) a- T '; when the leads are more open, (g ) =8,
var(g) ~ T ' . The latter dependence agrees with previ-
ous measurements of UCF in disordered 1D wires.
This crossover in power law will be investigated further
in future work.
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