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Quantization of excitons in CuC1 epitaxial thin films:
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A study of quantized excitons in CuC1 epitaxial thin films is reported. Film thicknesses (L) that are
much smaller than the photon wavelength (A, ) in the medium ( —160 nm), but larger than the exciton
Bohr radius az (-0.7 nm), are considered here. Many structures have been observed in transmission
and absorption spectra over the Z3 exciton region. When L (30 nm, these structures correspond well to
the confined exciton levels with odd quantum number n. The oscillator strength for the nth quantized
exciton is found to be proportional to L/n for odd n and zero for even n. The absence of the states with

even n in the optica1 spectra is interpreted in terms of the parity selection rule in the confined exciton
system where the long-wavelength approximation holds. The measured optical spectra are compared
with the additional-boundary condition-free response theory. Polariton-interference fringes given by the
theory demonstrate a good agreement with the experimental results both for thick and thin films. By
analyzing the absorption line shape, the dependence of nonradiative damping of the quantized exciton
on quantum number n and film thickness L is discussed.

I. INTRODUCTION

Excited by resonant light, an electron and a hole are
created in conduction and valence bands, respectively,
forming an exciton. Because of translational symmetry in
a bulk crystal, only the exciton having the same wave
vector (K) as the photon can be optically created, ' which
is the so-called K selection rule of the exciton in a bulk
crystal. The exciton and photon with the same K are
coupled with each other, forming polaritons. By decreas-
ing the crystal size, the translational crystal symmetry
breaks down in the size-reduced direction, and the exci-
ton is confined in this direction. The problem of quan-
tum confinement of the exciton and propagation of the
polariton in low-dimensional crystals has attracted much
attention both because of the understanding of the funda-
rnental physics of the confined exciton system and the
large application potential to nonlinear optical devices.

Many interesting features in the confined exciton sys-
tem have been expected, which are difFerent from those in
bulk crystal. The qualitative behavior of the exciton in
the confined exciton system is characterized by several
relevant lengths such as Bohr radius a~ of the exciton
and the photon wavelength A, in the medium. For a thin
crystal with thickness I., when I. ~ az, an electron and a
hole are first of all confined separately in the layer direc-
tion, leading to discrete subbands both for the electron
and the hole. Because of the carrier confinements, the ex-
citon formed from these subbands shows two-dimensional
behavior and its binding energy is strongly enhanced.
The optical transitions between the valence and conduc-
tion subbands obey a selection rule of hn =n, —

n& =0

with a constant oscillator strength independent on the
electron and the hole quantum numbers (n„nt, ) and the
well thickness. The polariton propagation is allowed
only in the layer plane. The properties of the exciton in
this confinement regime have been extensively studied in
quantum-well (QW) structures of III-V compounds both
theoretically and experimentally. For an intermediate
size of confinement from the QW regime to the bulk, the
center-of-mass (c.m. ) motion of the exciton is quantized,
while the relative motion is essentially identical to that in
the bulk crystal except for a possible distortion near the
surfaces. The coupling with the light field in this situa-
tion can be described as the multiple internal reQection of
bulk (upper and lower) polaritons, which leads to in-
terference e6'ects in resonance spectra. The multimode
interference of polaritons is equivalent to the exciton c.rn.
quantization. The positions of resonant structures in op-
tical spectra are shifted from the quantized exciton levels,
especially near the bottom of the exciton band. This is
due to the multimode interference of polaritons, or
equivalently, to the radiative shift of each quantized level.
For general thickness, all the quantized levels are optical-
ly active, though the intensity changes alternatively with
quantum numbers. The polariton-interference structures
have been first observed in CdS, CdSe, ' and later in
CuC1, CdTe/ZeTe thin films, ' and recently in GaAs
thin films. " ' These interference structures can be ana-
lyzed by solving the Maxwell equations with an addition-
al boundary condition (ABC), ' ' or by an ABC-free
theory. ' '

When the film thickness is thin enough as compared
with the photon wavelength in the medium but still large
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enough as compared with the exciton Bohr radius,
az « I. «A, , we found that the exciton spectra could be
simply interpreted in terms of the concept of local oscilla-
tors characterized by I E„,f„) in the long-wavelength ap-
proximation (LWA), where E„and f„are the resonant
energy and the oscillator strength, respectively, of the
quantized exciton with quantum number n. ' Optical
transitions from the ground state to such quantized exci-
ton states follow the parity selection rule of the confined
exciton wave functions. A brief description of the oscilla-
tor strength and the parity selection rule of the exciton in
ultrathin CuC1 films was given in 17.

Compared to the III-V and II-VI compounds, CuC1
has a large binding energy (-190meV) and a small Bohr
radius (-0.7 nm) of the exciton. The electron-hole
Coulomb interaction will be strong enough to maintain
the bulklike electron-hole relative motion, down to a
surprisingly small film thickness. The CuC1 film system
thus appears interesting for studying the c.m. quantiza-
tion of the exciton state. However, only a few works on
the exciton c.m. quantization in the CuC1 film system
have been reported. '

In the present paper, transmission and absorption spec-
tra are reported for CuC1 epitaxial films with various
thicknesses. The obtained spectra are compared to the
exciton c.m. quantization and the polariton interference.
It is found that when I. & 30 nm, the confined exciton sys-
tem can be well understood with the parity selection rule
of the exciton wave function and the exciton oscillator in
the LWA. For thicker samples, the spectral structures
become complex, and the parity selection rule breaks
down. The oscillator strength and the nonradiative
damping factor of the quantized exciton are determined
as functions of the film thickness and the quantization
number by analyzing the line shape of the absorption
spectra.

The spectral resolution was about 0.2 meV in this optical
system. The transmitted and reflected light were detect-
ed directly with a GaAs photomultiplier coupled with a
lock-in amplifier. Curves (a) and (b) in Fig. 1 show
reflection and transmission spectra for the 15.7+1.5-nm
sample at 2 K, respectively. Some clear structures are
seen in the spectra, which will be discussed later. The ab-
sorption spectrum, as shown by curve (c) in the figure, is
obtained from the reflection and transmission spectra:
aL = —ln(I/Io )= —1n[T/(I —R)], where a is the ab-
sorption coefficient, Io is the intensity of the incident
light, and Io =Io(1—R) is the intensity of the light
propagated in the medium.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Exciton con6nement and yolariton interference
in a thin Silm

Transmission spectra of CuC1 thin films are shown in
Fig. 2 for samples of I.=30+1,48+1, and 54.5+1 nrn by
curves (a), (b), and (c), respectively. In order to clarify
the structures in the resonance region, a logarithmic scale
is used for the ordinate in the figure. Several transmis-
sion dips are seen over the Z3 1s-exciton region. As seen
from the figure, both relative intensities and energy posi-
tions of these structures strongly depend on the film
thickness. Energy positions of the polariton (lower-

(a)

O

II. EXPERIMENT

CuC1 films used in. the measurements were grown on
MgO(001) substrates using the molecular-beam-epitaxy
technique. The CuC1 overlayer with (111) orientation
consists of four types of domains with specific crystallo-
graphic relationships with respect to the lattice of
MgO. ' An atomic-force-microscope (AFM) topography
showed that the size of the domains was about 1 pm,
which is larger than those grown on other substrates.
Streaked reflection-high-energy-electron-diffraction pat-
terns indicated that the CuC1 thin film is relatively flat. '

The growth rate of CuC1 was monitored by a quartz os-
cillator inside the growth chamber, and the film thickness
was obtained by ex situ ellipsometric measurements using
a 400-nm laser line (double frequency of a Ti:sapphire
laser) as a light source and AFM tomograph. The accu-
racy of the thickness measurement was estimated to be
k(1 —1.5) nm.

Near-normal incident transmission and reflection spec-
tra were measured using a 150-W xenon lamp for the
samples iinmersed in superfiuid He (-2 K). The excita-
tion light was dispersed by a 50-cm single monochroma-
tor, and focused onto the sample (-0.5-mm spot size).

(b)

(c)

O

0
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Photon Energy (eV)

FICx. 1. ReAection (a), transmission (b), and absorption (c)
spectra in CuC1 thin film of L = 15.7+1.5 nm at 2 K.
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FICx. 2. Transmission spectra of CuC1 thin 61ms at 2 K. (a)
L =30+1 nm, (b) L =48+1 nm, and (c) L =54.5+1 nm. The
ordinate is logarithmic. Energy positions of polariton and exci-
ton for the values of X„=n m /L with n = 1,2, 3, . . . , are shown
by open circles and vertical lines, respectively.
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FIG. 3. Transmission spectra of CuC1 thin films at 2 K. {a)
L =15.7+1.5 nm, (b) L =12.4+1.5 nm, and (c) L =9.7+1.5
nm. Polariton and exciton dispersion are also shown by thin
solid lines and dotted lines, respectively. Open circles represent
the positions of K„=n m/L with n = 1,2, 3, . . . .

branch polariton) and exciton for the size-quantized
values of translational wave number K„=n m/L, .
( n = 1,2, 3, . . . , ), are also shown in the same figure by
open circles and vertical lines, respectively. Clearly,
there is no simple correlation between the transmission
structures and the energy positions given by E„ in the
resonant region (near the bottom of the exciton band).
On the high-energy side, the transmission structures al-
most correspond to the exciton energy with K„but the
spacing is the double of m/L. A similar result has been
observed in the CdS and CdSe plates, ' and in CuC1 thin
crystal. These structures have been interpreted as an
efFect of interference between the upper polariton (UP)
and the lower polariton (LP). More details of this mul-
timode (UP and LP) interference have been discussed by
Cho et al. '

Figure 3 shows spectra for thinner samples of
L =9.7+1.5, 12.4+1.5, and 15.7+1.5 nm. The dotted
and thin solid lines shown in the figure are the dispersion
curves for the exciton and polariton in a bulk crystal, re-
spectively, and the open circles are their energy positions
for the size-quantized values of translational wave num-
ber X„. Some discrete transmission dips are clearly seen.
The ratios of their relative intensities seem to be almost
constant for de'erent thickness while their amplitudes
rapidly decrease with quantum number n. The positions
of these dips coincide well with the energy positions of
the quantized exciton except for the states of even n, and
they shift to the higher-energy side as the film thickness
decreases, showing the behavior of the quantum-size

E„=ET+(AK„) /2M, n =1,2, 3, . . . , (2)

where M =m, +mh is the exciton translational mass and
ET is the rest energy of the transverse exciton in a bulk
crystal. The effect of the dead layer, however, was shown
to be negligible in CuC1 by the analysis of the extraordi-
narily fine interference pattern. Thus, Eq. (1) is simply
given as K„=n~/L (n =1,2, 3, . . . , ).

Now we move our attention to the polariton aspects of
the thin-film optics and compare the experimental results
with a calculation based on the ABC-free theory. ' In the
ABC-free theory, the optical linear susceptibility is given
in a nonlocal form as

sin(K„Z )sin(K„Z')
y„(Z,Z', E)= RBp-

ig

(3)

where B is a constant, which can be estimated from the
L Tsplitting of the exc-iton in a bulk crystal, sin(K„Z) is

e6'ects on excitation energies of excitons.
Many theoretical studies of the optical properties of

excitons in thin films have been published. ' ' ' '

O'Andrea and Del Sole' have discussed the exciton wave
functions confined in a thin film by taking into account a
dead layer (or transition layer) near the surface. A "no-
escape" boundary condition for the exciton wave func-
tion leads to the quantization of the c.m. momentum

K„L=nm+2tan '(K„/P), n =1,2, 3, . . .

with the dead layer of thickness 1/P. The exciton energy
is then given as a series of discrete levels:
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the wave function for the exciton c.m. motion with coor-
dinate Z, and I „ is the phenomenologically introduced
nonradiative damping factor. By carrying out the sum-
mation over all of n in Eq. (3), the optical response has
been shown to be equivalent to the interference scheme
due to the UP and LP using Pekar's ABC. In Eq. (3), I „
is the only unknown parameter that ean be determined in
such a way that the calculated line shape agrees well with
the experimental one. Curves (a)—(d) in Fig. 4 show the
calculated results for L, =48+1 nm with various nonradi-
ative damping factors, and curve (e) is the experimental
one. When a constant value of I „=0.02 meV is used, as
shown by curves (a), the calculated spectrum is character-
ized by narrow and sharp structures. Clearly, the con-
stant (energy independent) I „cannot explain the experi-
mental spectra, as in the analysis of the I. =150-nm sam-
ple. Here, we assume an energy-dependent nonradiative
damping factor

15 7~1 5 nm

3.1 9 3.20 3.21 3.22 3.23

Photon Energy (eV)

FIG. 5. Experimental (exp) and calculated (cal) transmission
spectra of L = 15.7+1.5 nm.

where a is a proportionality constant and b E„=E„—ET
is the quantization energy of the exciton. Curves (b), (c),
and (d) correspond to a=0.3, 0.6, and 0.9, respectively.
The spectra are strongly affected by the nonradiative
damping factor. A very good agreement between
theoretical and experimental spectra is obtained when
a=0.9. A detailed discussion on the nonradiative damp-
ing factor for a quantized exciton will be given in Sec.
III D. Figure 5 shows the experimental (exp) spectrum
and the theoretical (cal) one, which is calculated with

a=0.9 for a thinner sample of I.=15.7+1 nxn. As seen
in the figure, the polariton-interference structure com-
pletely coincides with quantized exciton states of odd
quantum number even near the bottom of the exciton en-
ergy band. The same results are obtained for other sam-
ples of I. & 30 nm, which demonstrates the equivalence of
exciton quantization and polariton interference. The po-
lariton interference and the exciton quantization are two
aspects of the same phenomenon.

CuC1 48 x 1 nm

—{c

3.19 3.20 3.21

Photon Energy (eV)
3.22

FIG. 4. Calculated transmission spectra, curves (a) —(d), for
CuCl thin 61m of L =48 nm using various nonradiative damp-
ing. (a) I „=0.02 meV; (b), (c), and (d) using I „described by
Eq. (4) for a =0.3, 0.6, and 0.9, respectively. Curve (e) is the ex-
perimental spectrum for L =48+1 nm.

B. Qptical selection rule of confined excitons in the LWA

In the previous section, it was shown that the alternat-
ing strength of the oscillation structures in transmission
spectra are well described by the Inultimode interference
of the exciton polariton both for thick and for thin (as
shown in Figs. 4 and 5) films. This description, however,
has to rely on a tedious calculation even for a qualitative
interpretation. In this section, we give a direct and sim-
ple description of the optical spectra of a thin film in
which the LWA is valid. It is seen in Fig. 3 that the
transmission dips correspond quite well to the quantized
states with odd quantum number n, while the dip ampli-
tude decreases rapidly with the increase of n. The film
thicknesses shown in Fig. 3 are much smaller than the
resonant photon wavelength (- 160 nm), i.e., LWA
(1.«k) holds in these samples. In this case, the spatial
variation of the light field in the medium is expected to be
negligible. Now we discuss the results shown in Fig. 3 in
terms of the c.m. quantization of the exciton in LWA.
We assume that only a light wave with a refractive index
n =+co is propagating in the medium, where eo is the
background dielectric constant. This light excites
mechanical excitons. The ground state of the crystal is
given by

—II ~(U)

R
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where yR" is the Wannier function of the electron in a
valence orbital centered at R. After excitation by the
external field, an electron is transferred to the conduction
band, leaving a hole in the valence band. An exciton
state is a linear combination of electron-hole pair states
as

'Pi. =XXF.(»OVP) Vz+p II V~'
P R R'XR

where yz'+p is the Wannier function centered at R +P of
an electron in the conduction band, F„(Z) and Pi(P) are
the envelope functions describing the c.m. motion of the
exciton with quantum number n and the electron-hole
relative motion with quantum number A, , respectively, Z
is the coordinate of the exciton c.m. motion along the
growth direction of the film, and p is the relative distance
between the electron and the hole. For bulk crystal,
F„(Z) is a plane wave, and P)„(P) is a hydrogenlike func-
tion. ' If we neglect the small dead-layer efFect on CuC1
surfaces, the envelope functions for the c.m. motion are
simply given by F„(Z)=(2/I. )'/ sin(nmZ/I. ), which has
even parity for the states of odd n and odd parity for
those of even n. The envelope function for the relative
motion is essentially identical to that of bulk crystal in
this confinement regime. For the 1s exciton,
ItI), (p)=(naII ) ' exp( —p/as ). Thus, the matrix ele-
ment of the electric dipole operator (P) for the transition
between the ground state 4 and excited state 4'& „ is
given, in LWA, by

1/2

(q, „~P~e, &
= — +sin(IC„Z)

2

Xg Pi.(P)

Here the summation +It over the positions in Eq. (7a)
was replaced by the integration over the film thickness L,
in Eq. (7b). The matrix element has a nonzero value only
for odd quantum number n. That is, only those exciton
states with odd n contribute to the optical transitions.
That is why no structures are observed corresponding to
even quantum numbers n in the transmission spectra
shown in Fig. 3. Ascribing the observed peaks to odd n's,
we made a comparison of exciton energies in Fig. 6.
Open circles are the experimental data for the excited
states n =1,3, S, . . . , and dotted lines are calculated ac-
cording to Eq. (2) using MT=2. 3mo and ET=3.2022
eV, demonstrating a good agreement.

The same selection rule described above has also been
theoretically expected in the confined phonon system.
Hence, the parity selection rule seems a common proper-
ty of the confined boson. Because the LWA can hardly
be realized in the confined phonon system, it would be
dificult to observe the parity selection rule in the experi-
ment in the confined phonon system.

C. QsciHator strength of the quantized excitons

From the viewpoint of the mechanical exciton, one
could naively regard the quantized exciton in a thin film
as an assembly of local oscillators with their resonant en-
ergy E„and oscillator strength f„. From the exciton
wave function, f„per unit area can be easily calculated in
LWA as

f —2

'fK0 pl p

where —', is from the spin-orbit factor of the Z3 exciton,
mp is the free-electron mass, and Ace is the excitonic tran-
sition energy. Inserting Eq. (7b) into Eq. (8), we obtain

1/2
2
I

X ('V ~'+plP ~m~'&
~ p=o

g sin(K„Z)P~(0)
R

X ( (c)
~
p ~+(c) & (7a)

The size dependence of the Wannier function yR"' is
negligible because of its local property. And we can
reasonably assume that yR

' is the same for every atomic
position. (Strictly speaking, the yz for those atoms on
the crystal surface would be di6'erent from that of inner
atoms. ) Therefore, the dipole-transition element
(yIt' ~P~yIt'& is approximately a constant and can be re-
moved from the summation of Eq. (7a). Hence, Eq. (7a)
is simply given by

' 1/2

+ 3.230

bQ

~~3.220

C)

~~ 3.210
~ W
V

3.200

I I

ran=9 Ig=j
6

I I
I I
I I

I I
I
I I

I I
I I

I I
I

I /

I I /
I I /

I I /

/

,', '
pj 0

-I I
, II /

Q) - ---O--

n=5

-0
o-- o

o-- -o --- -o-

X I sin(IC„Z)dZ

X ( +(c)
~
p

~

+(v)
&

0 20 40 60 80 J 00

(Io-4 nm-2)

FICr. 6. Quantized exciton energy vs L for quantum num-
bers n = 1,3, . . . , 9.
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(9)
20

Here lp, „l2 depends on the dipole matrix element between
the Wannier functions of the conduction and valence
bands, which can be evaluated from the bulk L-T split-
ting. Expression (9) shows that the oscillator strength of
the exciton with resonant energy E„ is proportional to
2/n for odd quantum number n and zero for even quan-
tum number n T.he zero value of f„ for even n is the re-
sult of the parity selection rule of the quantized exciton in
LWA. The size (L) enhancement of f„ is due to the
coherent extension of the exciton wave function over the
whole thickness. But it should be noted that the satura-
tion of radiative width for n =1 ( ~f, ) starts to appear
already at l. -A, /10=16 nm (Ref. 27) (see also Fig. 9).
The behavior of the oscillator strength given by Eq. (9} is
completely diff'erent from that in a QW where the oscilla-
tor strength per unit area depends neither on the quan-
turn number of the electron and hole nor the film thick-
ness.

Now we compare the experimental results with the
theoretical expectation. To obtain the oscillator
strengths for the respective quantized excitons, we show
the absorption spectra in Fig. 7 for the samples of
L =15.7+1.5, 12.4+1.5, and 9.7+1.5 nm, respectively,
by curves (a}, (b), and (c). The absorption bands E„E3,
E5, and E7 are well separated in the figure. They corre-
spond to the exciton levels of n =1, 3, 5, and 7, respec-
tively. The oscillator strengths, f„,per unit area for the
respective exciton states are then obtained from the in-
tegration of these separate absorption bands and are plot-
ted in Fig. 8 as functions of n . Solid circles, squares, and
open circles shown in Fig. 8 are for the samples of
L =15.7+1.5, 12.4+1.5, and 9.7+1.5 nm, respectively.
The dotted lines (a), (b), and (c) are calculated according
to Eq. (9) for the thicknesses in the same order. As seen
from the figure, f„ increases almost linearly with film

thickness, but decreases with n, in accordance with the
theoretical expectation.

(a) ..'

0.05 0.15 (b) .
10

0
~ 1H0
M

{c)

0.0
I/n

0.8 l.2

FIG. 8. Oscillator strength plotted against n . Dotted lines

(a), (b), and (c) are the calculations for L =15.7, 12.4, and 9.7
nm, respectively.

D. Spectral width of the quantized exciton

Each resonant structure contains information about
the radiative and nonradiative damping. If we denote the
corresponding widths as D and I, respectively, the peak
width in the absorption spectrum A =(1—T —R) is
shown to be the sum of D and F. In the L%'A, D is pro-
portional to the oscillator strength of the peak. Thus, the
result of Sec. II C shows that D is proportional to the sys-
tern size L in the LWA. The L dependence of D can be
calculated also beyond the L%'A by using the ABC-free,
or nonlocal response theory, which allows us to derive I"

from the comparison with the present measurement.
In both the local and nonlocal response theories, the

equation to determine the (linear) response of matter to
incident light can be written in the matrix form as

s&Ixj =tc (10)

CUCl
2K

0 — (a)

0
~ ~

0
3.19

I . . . I . . . I

3.20 3.21 3.22 3.23

Photon Energy (eV)

3.24

FIG. 7. Absorption spectra of CuC1 61ms with thicknesses (a)
15.7+1.5 nm, (b) 12.4+1.5 nm, and (c) 9.7+1.5 nm at 2 K. Ab-
sorption bands are separated by dotted curves.

which corresponds to solving Schrodinger and Maxwell
equations self-consistently within the linear-response re-
gime. Here I Xj and [C j are related to the response and
incident field amplitudes, respectively. In the local
theory, this is the set of equations corresponding to all
the Maxwell boundary conditions for a given frequency
co. In the nonlocal theory, it corresponds to the equation
for the expansion coeKcients of the response field. '

The condition for the existence of a finite solution in
the absence of the incident light can be written as
det[S]=0. This equation is satisfied generally by com-
plex frequencies Ico=co„+iy„; n =1,2, 3, . . . , j. The
real and imaginary parts (co„and y„) correspond to the
central position and width, respectively, of the nth reso-
nant structure of the optical spectrum. The application
of this formalism (for nonlocal response) to a two-level
atom in vacuum gives y =(2/3)p (co/c), where p is the
transition dipole moment between the two levels. Since
this is the same result as in the nonrelativistic QED, the
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FIG. 9. Calculated total damping (radiative and nonradia-
tive) of the quantized excitons with quantum number n =1, 3,
and 5 for nonradiative damping 0.05 (solid curves) and 1 meV
(dotted curves), respectively.

complex co's obtained from det[S]=0 are generally ex-
pected to give the radiative correction correctly. The
same procedure for the local theory should also give the
radiative shift and width within the local approximation
of susceptibility, since both schemes solve Schrodinger
and Maxwell equations self-consistently (with or without
local approximation in the treatment of susceptibility}.

Applying this (nonlocal) formalism to the present sys-
tem of a CuC1 slab, we obtain y„(n = 1,3,5) as functions
of L for a vanishing value of F, as shown in Fig. 9. The
use of a finite value of F (as the broadening factor in the
linear susceptibility) gives a uniform upward shift to each
curve by that amount. This result contains not only the
LWA behavior (linear increase with L), but also the satu-
ration efFect beyond LWA. It is also confirmed that these
widths agree well with those of the calculated absorption
(1 —R —T), as they should. Using Fig. 9 and the mea-
sured values of total width D +E, we can determine the n
and L dependences of F as in Fig. 10. It can be clearly
seen that F is proportional to L and n.

There are two difFerent origins for a finite E. The first
(Fi ) is the one due to the elastic and inelastic scatterings
of excitons in a perfect slab. The second (F2 } is the inho-
mogeneity in the slab thickness for the samples used in
this study. Since a slab consists of clusters of about 1 pm
diameter for a sample of given thickness as seen from
AFM observation, ' we should expect the inhomogeneity
in the thickness.

At present we cannot divide E in Fig. 10 into F& and
F2. If a sample of very uniform thickness is available, it
should lead to F=F&. Then, we could derive the n and L
dependence of F2. Or, if we have a good theory for F

~
it

would lead to dividing E into F& and F2. A principal ori-
gin of E& may be the inelastic scattering between the
confined exciton and acoustic phonon. The exciton cou-
pling to the acoustic phonon is expected to be enhanced
in confined exciton systems, due to the decrease of the
spatial extent of the exciton with decreasing crystal
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FIG. 10. (a) Nonradiative damping as a function of film
thickness L for the n =1 and 3 excitons. The dotted curve is
calculated in proportion to L; (b) as a function of the exciton
quantum number n. The circles, squares, and triangles of the
data correspond to the samples with L=9.7+1.5, 12.4+1.5,
and 15.7+1.5 nm, respectively.

IV. CONCLUDING REMARKS

We have measured transmission and reflection spectra
for CuCl films with various thicknesses. Many structures
were seen in the spectra, which were compared with the
calculation based on the ABC-free theory developed by
Cho. ' As a polariton system, the spectral shape can be

size. A detailed calculation indicates that the acoustic-
phonon scattering vs the deformation potential would
lead to the L -dependent nonradiative damping factor
in quantum-well structures. Because of the contribu-
tion of E2, we could not conclude that acoustic phonons
are the main contributions to quantum-confined exciton
line widths, although Fig. 10 showed the same L
dependence of the spectral widths. A naive argument for
F2 may be given as follows. If 5L is the fluctuation of L,
the exciton energy would have the fluctuation
5E=(fi vr 5L/M)(n /L ). This should be the contribu-
tion of F2 in the observed spectrum. The n and L depen-
dence of this mechanism alone does not explain those of
Fig. 10. However, the n and L dependence of F caused
by the inhomogeneity in the slab thickness may not be so
straightforward because the energy fluctuation would
lead to a change in the elastic scattering of the exciton,
which also contributes to F.
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well interpreted in terms of the polariton interference.
This is all right even for very thin films (L ~30 nm) in
which the polariton efFect is expected to be less obvious.
Due to the presence of multiple branches of the polari-
ton, the spectra show a complex behavior for thick sam-
ples in the bottleneck energy region. There is no clear
correspondence between the structures of optical spectra
and the energies of excitons and polaritons for the values
of a quantized wave number because of the existence of
an evanescent wave of UP near the bottom of the exciton
band (Fig. 2). In the high-energy region, the interference
between two propagating waves (UP and LP) leads to the
alternating strength of the oscillation structures. In a
very thin film, however, the polariton-interference struc-
tures coincide well, even near the bottom of the exciton
band, with the exciton energies given by quantized wave
numbers with odd n (see Figs. 3 and 4). In this situation,
an absorption peak corresponds to polariton waves con-
taining large amplitudes of a quantized exciton state, and
the radiative shift is much smaller than the level spacing
of excitons. But as I increases, the radiative shift and
width increase, while the exciton level spacing decreases,
so that the absorption peaks are overlapping and become
difBcult to be mutually distinguished. When the LWA
(L «A, ) holds, the confinement of the exciton c.m.
motion gives another simple and clear interpretation for
the observed optical spectra besides the concept of the
polariton interference. From the viewpoint of the exciton
confinement, the quantized exciton could be regarded as
a mechanical oscillator with its resonant energy E„and
oscillator strength f„. Thus, the alternating intensity of
the oscillation structures were explained by the parity
selection rule of such a quantized exciton, and their rela-
tive intensity was described by f„. The confined exciton
system behaves just like an assembly of local oscillators
characterized by IE„,f„J. The damping factors of these
oscillators were found to be proportional to n IL .

It is worth stressing that the polariton interference in a
thin film and the local oscillator of the quantized exciton
are two aspects of the same phenomenon. The descrip-
tion of the polariton interference is valid for any film
thickness, from a semi-infinite slab to a very thin film so
long as the exciton c.m. quantization is a valid approxi-
mation. This description, however, is mathematically
somewhat tedious, not giving directly the energy position
and the relative intensity for optical spectral structures.
On the other hand, the description of exciton c.m.
confinement by I E„,f„I gives a very clear physical mean-

ing for the spectral structures. However, it is valid only
in the condition of LWA (L ((A,) and ceases to yield a
quantitative representation of the optical response for
thicker films. The condition of the LWA seems very
strict because that deviation from the LWA has been seen
in the samples of L ~ 30 nm (Fig. 2), although the film
thickness is still much smaller than the resonant wave-
length in the medium (-160 nm). For a small value of
nonradiative damping, the spatial variation of the inter-
nal field shows the breakdown of the LWA even for
I.=28 nm. If the value of the nonradiative damping
factor is very large, it also afFects the condition of the
LWA. Thus, without knowing this condition, one had
better use the nonlocal description. ' ' '
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