PHYSICAL REVIEW B

VOLUME 52, NUMBER 4

15 JULY 1995-11

Dynamic interaction of bulk acoustic waves with a two-dimensional electron gas
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The results of a theoretical and experimental study of the interaction of longitudinal coherent bulk
acoustic waves at 9.3 GHz with two-dimensional electron gas (2DEG) at a GaAs/Al,Ga,_, As hetero-
junction in a strong magnetic field are given. The theory of the linear 2DEG response to an incident
bulk acoustic wave is developed, based on a system of quantum kinetic equations. The importance of
disorder in the 2DEG and the coupling of the acoustic waves to the localized states is demonstrated. A
comparison of the theoretical results with experiment is given.

I. INTRODUCTION

The use of monochromatic (coherent or incoherent)
phonons can provide direct spectroscopy of the linear
response of a two-dimensional electron gas (2DEG) over
a substantial range of wave-vector and frequency (k,w)
values. Such spectroscopic measurements give informa-
tion which is often otherwise inaccessible. Recently it
has been shown that the absorption of high-frequency
surface-acoustic waves (SAW’s) reveals a noticeable con-
tribution from the localized 2D electrons to the 2DEG
linear response in strong magnetic fields.! At microwave
frequencies (>1 GHz), this manifests itself in an addi-
tional mechanism of SAW dissipation differing markedly
from what is commonly accepted as a result of the acous-
toelectric interaction.?

If the 2DEG is expected to exhibit special behavior at
frequencies lower than about 1 GHz, for instance, which
is presumably the case for Wigner crystallization, then
the use of SAW’s gives very impressive results, showing
explicitly the sharp transition to the low-temperature
range T <T,, where the diagonal component of the
2DEG conductivity tensor o, (k,w) becomes frequency
dependentf*’4 However, if one expects to observe devia-
tions in the linear electronic response from the quasistatic
values which are either due to nonlocal effects, singulari-
ties in 2DEG screening or the role played by the electron-
ic transitions across the low energy gaps under fractional
quantum Hall effect conditions, then it is more straight-
forward to use either incoherent phonons, (i.e., heat
pulses) or coherent bulk acoustic waves (BAW’s) as a
probe to perturb the 2DEG system. Coherent bulk
acoustic waves seem to be an extremely convenient exper-
imental tool to do this, inasmuch as the frequency range
around 10 GHz is easily accessible; the phonon energy is
about 0.5 K, which is reasonably close to the characteris-
tic energies of the 2DEG system. It is much more
difficult to excite SAW’s in such a high-frequency range.
In spite of the fact that BAW-2DEG interaction takes
place within a very thin 2DEG layer while the wave
passes through it and, a priori, one might expect to ob-
serve very small effects, experimental results on BAW-
2DEG interaction at an Al,Ga,_, As/GaAs heterojunc-
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tion in high magnetic fields’ ® have in fact shown an
unexpectedly strong interaction, which turned out to be
very sensitive to the 2DEG state.

The dynamic character of BAW-2DEG interaction was
stressed in Refs. 9 and 10, where it was shown explicitly
how both real and imaginary parts of the 2DEG response
may affect the detected signal. It is, therefore, essential
to treat BAW-2DEG interaction under the general
framework of acoustic wave propagation in multilayered
dissipative structures. We use the approach, based on the
transfer-matrix formalism, which we generalize to ac-
count for the piezoelectric properties of the layers.!!12
Exact expressions for the detected power at the bolome-
ter were derived and analyzed to show the possibility of a
remarkable enhancement of the bolometer sensitivity.

In this paper we start from expressions relating the
acoustic fluxes to the properties of the 2DEG, which we
describe via the introduction of a complex generalized
stress in the plane of the 2DEG. The latter arises from
the 2DEG linear response to the perturbing potential of
the acoustic wave. Throughout the work, we are con-
cerned with the 2DEG response in a high magnetic field.
The simplest case is the piezoelectric coupling to the 2D
electrons in extended states in the quantum Hall regime,
which, for low BAW frequencies, may be found by a phe-
nomenological treatment exactly as for the SAW-2DEG
interaction. This is done in Sec. I. A comparison with
well-known results for SAW-2DEG interaction makes
the differences clear. These differences arise from the
dynamical character of BAW-2DEG interaction.

However, our main purpose is to derive and discuss in
detail another contribution to the 2DEG linear response.
This arises from the electron redistribution caused by the
wave, which breaks the thermal equilibrium between
states belonging to different Landau levels, or between lo-
calized states in a disordered system. To our knowledge
this problem has not been discussed so far. Clearly this
part of the 2DEG response causes relaxation-type ab-
sorption of both BAW’s and SAW’s by the 2DEG."8
The nontrivial problems here are (1) why is the coupling
constant for relaxation absorption of the SAW’s by the
2DEG in localized states on an atomic scale; (2) can
piezoelectric coupling become effective in relaxation ab-
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sorption; and (3) why can the dependence of the absorp-
tion coefficient on the magnetic field be accounted for by
the magnetic-field dependence of the thermodynamic
density of 2DEG states with the assumption that both
the coupling constant and relaxation times are magnetic
field independent? It appears that the answer to these
questions cannot be given under the framework of the
phenomenological approach used in Ref. 1.

Therefore, we derive the relevant 2DEG linear-
response functions by solving the quantum kinetic equa-
tion. This is done in Sec. II for the case of deformation-
potential coupling and piezoelectric coupling of the
acoustic wave to the electronic states for both idealized
and disordered structures. In Sec. III we discuss the ex-
perimental results and give numerical estimates, while
final remarks are made in Sec. IV.

The experiments were made in transmission; the exper-
imental arrangement is shown in Fig. 1. It shows that we
must consider the phonon absorption and scattering in a
multilayered dissipative structure. A simplified scheme
J
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FIG. 1. The arrangement of sample and quartz ultrasonic
transducer for BAW-2DEG interaction experiments.

of interaction relevant to the transmission geometry will
be used for the calculations, and is shown in Fig. 2.

A general expression for the relative change in the
bolometer signal AS/S due to the 2DEG dynamic
response was derived in Ref. 12. It has the form

AS 2 2DEG
a4 | 72DEG
S T Im(T; ="+ 1 T,,777)
poay
2DEG __ _K_2DEG * 2DEG __ _K_2DEG *
AlIm sz S Tzz 12722 + A2Im sz S Tzz Fura
+ 1 z z
L A, lry 24 A, |7y [2— A Im(ryr)
poay 11722 21721 34Mi7 77
1 2DEG __ _K_ 2DEG * *
7A4;3Re | | Ty 5T (ryyr3; "12"21)]
z

A1lr22|2+ A2|r21l2~A3Im(r22r§l)

Here p is the density of the crystal, w /2 is the BAW fre-
quency, and a% is the amplitude of the incident wave.
T2PEG are the components of the stress tensor due to the
2DEG perturbed by the incident wave. We have taken
the z axis to be normal to the plane of the 2DEG, while
the x axis is in a principal direction in the 2DEG plane.
A, , 3 are coefficients expressed in terms of the material
parameters for different layers of the structure and
Pmn(m,n=1,2) are related to the elements of the transfer
matrices. Exact formulas for 4, and r,, are given in
Ref. 12. Note that, in Eq. (1), the geometry of the mul-
tilayered structure and, therefore, all information about
the reflection, transmission, change of polarization, wave
interference, and dissipation which occurs, other than
that due to the interaction with the 2DEG, is hidden in
A; and r,,. The effect of the 2DEG has thus been
separated and expressed in terms of both the real and
imaginary parts of the generalized 2DEG stress com-
ponents, which reflect both absorption in the 2DEG layer
and the changed reflectivity of the perturbed 2DEG.

The piezoelectric interaction of the BAW
with 2D electrons in extended states

We start by writing down the set of equations ap-
propriate to the piezoelectric media:

(1

- :
av,- _ aT,-k + aEm
t  Axy B ax,
div D=0, ¥}
47Ti avm

D;ZEE,‘—"C‘O—ﬁi,mg; ,

where v;(x,t) is the particle velocity; E; and D, are the
electric field and electric displacement vectors, respec-
tively; S3,, ; is the piezoelectric modulus tensor; and € is
the dielectric constant. The piezoelectricity results in
slight changes of the eigenmodes in the stack of
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FIG. 2. The model structure used for the calculations.
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Al,Ga;_,As/GaAs layers due to the electric fields ac-
companying the traveling acoustic waves, followed by
corresponding changes in both reflection and transmis-
sion coefficients due to the boundary conditions for the
components of the electric field and electric displacement
which must be satisfied at the interfaces. This latter
effect is small. Its order of magnitude is given by the
value of the electromechanical coupling constant
n=(4mP3,/en) <<1 (where p is a Lamé coefficient), and
in what follows we completely neglect such a contribu-
tion. However we keep a few terms linear in 7 <<1
which arise as a result of the 2DEG density modulation
by an incident wave due to the piezoelectric coupling.
The discrimination between different contributions linear
in 7 is therefore whether they are related to the piezoelec-
tric properties of Al ,Ga;_,As/GaAs layers or to the
2DEG response.

To calculate the additional stress at the z=0 interface,
induced by the perturbed 2DEG, we use an iterative pro-
cedure

Op_

2DEG, piezo — R
Tik P Bm,ikEm Bm,ik ox ’
m

(3)

where E=—Vg, and ¢ is the electric potential. It fol-
lows immediately from (3) that only the yz and xz com-
ponents of an additional 2DEG-induced stress are
nonzero.

To find the electric potential ¢ to be used in Eq. (3) we
rewrite Poisson’s equation with the use of the expression
for the electric displacement vector D; [e.g., (2)]:

2 5'2
K z
KS

al —al +2 1— as

K

_ 8mByk
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where V2« is the BAW in-plane momentum with respect
to the 2DEG plane. Solutions of this equation must satis-
fy the following boundary conditions:

E.(—0)=E,(+0),
D,(+0)—D,(—0)=4men
@(h)=0,

where n; is the modulated part of the 2DEG density; the
last equation is the boundary condition for the electric
potential ¢ at a metal surface. For low BAW frequen-
cies, the 2DEG charge density en, can be related to the
potential  @(0) by the continuity equation
edn, /3t +divj=0 using the 2DEG current due to mobile
carriers in the form

s 2

. ~ On, - 9O,

Jx:UxxEx+nyEy_erx3;_ery F
. — Ong — Ong
Jy:—O'xyEx+0’xxEy—eDnyy‘+ery—a'x— 5

where o,;; and ﬁij are the 2DEG conductivity and

ij

- diffusion constant tensors, respectively. To calculate

T2PEG:Piezo ¢ 3 linear approximation in 7 <<1, we can
take the distribution of the elastic fields in a zeroth-order
approximation.!? Thus we find finally that

(4)

UXX l
AL U S—
Yoo 1+ie/ap

In this equation, al and a% are the amplitudes of the

longitudinal and shear waves propagating in the back-
wards direction, taken in the zeroth-order approximation
1—0, and 0(=(V'6e¥;/87) and wp, =3(V}/D,, ), where
op is the diffusion frequency and V; is the phase velocity
of the incident wave, and «5 and «¥ are the modulus of
the wave vector for a shear acoustic wave at frequency o
and its projection onto the z axis. Combining (4) with (3)
yields T2PEG.piezo— ;B 0(0) with @(0) from (4), and
the known amplitudes of the elastic waves in the z <0
half-space.

e ~V2%hsinh(V2kh )

It is also worth showing the effect of acoustic power
dissipation in the 2DEG layer due to joule heating. The
joule heat power released (per unit area) is w=j-E (the
bar as before means the average over the acoustic wave

period). We arrive at
Wioule zaxxkzlq)(o)'z
O 5x /00
K 1+(0,, /00 [1/1+ (/0 )*le ~2 *hsinh®(V2kh )|

oC
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Using ¢(0) from (4), we conclude that the order of mag-
nitude of the relative change in the intensity of an in-
cident wave due to power dissipation within the 2DEG
layer is given by the electromechanical coupling constant
7, which can be shown to be close to its value in
Al,Ga,_ As: n=5.1X107313

II. 2DEG LINEAR RESPONSE
IN A STRONG MAGNETIC FIELD

A. Deformation-potential interaction between the BAW
and the 2DEG

We start from a consideration of BAW-2DEG interac-
tion via the deformation potential, but the generalization
to include the piezoelectric interaction is given below.
The deformation-potential coupling between the BAW
and 2D electrons arises from the modulation of the 2D
electron energies by the incident acoustic wave:
Ej(x,8)=Ej +{A|A "L )u p5(x,1), where (A| is one
of the 2DEG states, A g is the deformation-potential ten-
sor, and u ,g(x,?) is the strain tensor. The modulation in
the 2DEG occupation numbers &p, produces an addi-
tional stress T,%DEG in the 2DEG plane, z=0. The prob-
lem thus reduces to finding the nonequilibrium contribu-
tion to the 2DEG occupation numbers, &p; .

Consider an idealized structure without random poten-
tials in which the 2D states form an ideal Landau ladder
(LL). Let the Fermi level lie between the Nth and
(N+1)th LL. We discuss the specific deformation poten-
tial interaction of the BAW with electrons in the two LL
closest to the Fermi level. The number of states at each
LL is 1/713, where I, is the magnetic length. The num-
ber of absorbing electrons is therefore
n,—N(/m1%)<(n,/N), where n, is the equilibrium
2DEG density. If there is no electron redistribution due
to intra-LL scattering then the only source of dissipation
is the modulation of the occupation numbers in the Nth

|

Iy y(Kysk,)=e

§o=x,lp, £1=k.lp and X:—llzipy

is the coordinate of the electron orbit center, while
NCy_, are binomial coefficients. The acoustic wave
modulates the energy separation between the LL, the sep-
aration for the two states at |N,p), IN+1,p) being
given by

EN+1(X,I)—EN(x,t)
=fiw. + Aygu gﬁe X
X[y 1,5 +1(Kxs K, )= Iy Ky K,)] . (6)

It is now evident that for strong magnetic fields (£ <<1)
the effect of the modulation of the energy separation be-
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and (N +1)th LL induced by the incident acoustic wave
followed by the relaxation of the perturbed 2DEG distri-
bution. From a formal point of view this type of interac-
tion looks like an interaction between the acoustic wave
and two-level centers, provided the interaction of the
acoustic wave with the rest of Landau ladder is small. In
principle, we still can treat this case with the use of a
phenomenological approach as in Ref. 1, where the
necessary rearrangement in notation which refers to the
relevant 2DEG states should be done. We will, however,
give a full derivation of the result and show an exactly
solvable extreme case, without carrying out such a rear-
rangement. This also throws additional light on the
problem BAW-2DEG deformation-potential interaction
and enables us to clarify the concept of BAW interaction
with the 2DEG in localized states.

Let |[N,p) and |[N+1,p’) be the electronic states at
Nth and (N +1)th LL, respectively, and p and p’ the cor-
responding quasimomentum components in the y direc-
tion; the x coordinate defines the electron orbit center.
We start our discussion with a consideration of the effect
the BAW produces on the energy separation between
LL’s. First we consider the two 2D electron states
IN,p,) and |[N+1,p,) with the same orbit center
(p,=p).

Taking A,g as a constant and calculating the matrix
elements (N,p,|Apu o i“"IN,py > and
(N+1,p,|Apudge™|N+1,p,) using wave functions for
the ideal 2DEG as in Ref. 14 we arrive at

ik X
SEy p=Iyn(Ky,K,)e * Aaﬁu?zﬁ
and
ix X 0
SEn i1, =In+1,v+1(KxsK)e ™ Agplip -

In these expressions, 8Ey ,=Ey , —fio (N +3), where
o, is the cyclotron frequency, u,g is the amplitude of
Uyps and

—(1/4XE+EN—(1/2ikel, SN[ — (1720 + D) /mVey, _,

’

[

comes very small: ( |EN+1,§EN,p —fiw,|)/
(|ALudpl) =K1 <<1 because the energies of the elec-
trons belonging to the different LL’s are shifted by almost
the same amount. At low magnetic fields (klz >>1) the
scale of the LL energy modulation turns out to be ex-
ponentially small. We conclude that the effect of the
modulation of the energy separation between the two
2DEG states |N,p) and |[N+1,p) is appreciable at
klg =1 even with the same bare deformation potential.
For other magnetic-field strength values it becomes
insignificant.

So far we have discussed the 2DEG states with elec-
tron orbit centers at the same point. In strong magnetic
fields, however, these states may not contribute to BAW-
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2DEG interaction simply because the phase volume for
such an interaction is small. The acoustic wave breaks
the thermodynamic equilibrium in the 2DEG system by
modulating the 2DEG energies in space and time. If we
neglect electron-electron interactions then the acoustic
wave breaks the balance between the states with orbit
centers at different points in space. In thermodynamic

J

MM (q,s)[p(1—p3)n g

In this expression (gs) are the phonon wave vector and
branch index, respectively; n,, is the Planck distribution
function

qs

1
0
Pr= S EL—Ep)/kpT] +1,

and Er is the chemical potential. Due to the absorption
or emission of a cyclotron phonon the electron orbit
center moves from X=I2p to X'=I3p’, so that
AX=X'—X=gq, I3. For cyclotron phonons we have
lg,| <(w,/v,), and thus a one-phonon interaction couples
those 2D electrons with AX within the range
|AX|<xy,=(#%/m*v,). However, the dominant contribu-
tion (and hence the most effective coupling) comes from
the exchange of phonons within a narrow conical shell
with respect to the normal. That obviously restricts the
value qu! for the effective phonons and reduces the sepa-
ration AX for the effective 2D pairs to ~2V2N +1/,.
For low enough magnetic fields, x;=2V2N +1l,
> (#i/m*vg). The last inequality holds true below about
0.6 T. The characteristic scale in space for the acoustic
wave is given by the wavelength A, ~1/k. Therefore, if
kxy==1, the modulation of the 2DEG energies by the
acoustic wave drives the 2DEG system far from equilibri-
um, even if the modulation is due to the same bare defor-
mation potential. For instance, if at low magnetic fields
when x5 <x;, and kxy=~m(xy=A/2), the acoustic wave
provides a positive shift in the energy of one of the states
and a negative shift to the other. Note that for our case
of BAW at 10 GHz propagating in the (111) direction
k=0.63X10° cm™! and kxy==2.5; thus, for the model
under consideration, we are very close to the optimum
for BAW-2DEG interaction.

Now we turn to a quantitative treatment of the BAW-
2DEG interaction. Let # =%+ ,+ ., be the full
Hamiltonian of the system.

Ho=3 Ercler+3 fiwg(alag +1) %)
A gs

is the Hamiltonian for the noninteracting 2D electrons
and phonons, and c;, ¢, and agy, g4, are the 2D electron
and phonon creation and annihilation operators, respec-
tively.

ﬁe(}’:zCI»CN()\-’AHBH‘IB(I'I)U\,') (8)
AN

is the Hamiltonian describing the 2DEG interaction with
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equilibrium detailed balance can be applied; for an arbi-
trary interacting pair of states |[A)=|N,p) and
|[A')=|N+1,p’) the rate of transition from |A) to |A’)
equals that of from |A’) to |A ), for simplicity we consider
the dominant interaction mechanism to be due to one-
phonon absorption or emission processes. If M }‘""(q,s) is
the matrix element for such an interaction, we must have

—p3(1=p3 ) (ng, +1)18(Fiwy, — i, ) =0

the coherent part of the phonon field (i.e., 2DEG-BAW
interaction) taken as a classical field, slowly varying in
space and time.

ﬁe,ph=z MM (qs )c}cxi(a +al
AR

Tas) 9
is the Hamiltonian describing the 2D electron-phonon in-
teraction.

By definition, the stress #;;(x,?) produced by the 2DEG
perturbed by acoustic wave takes the following form:

=3 Trpe ey 8/8u;;(x, 1) (Al A gt (7, 1) |1

AA
=A--Tr(ﬁ610w W3 (x Yo%)
=A; 3 (ehe, ) (x— X)p,(x—X")
np,p,
Xe—i(py~py’)y|¢0(z)|2 , (10)

where p is the density matrix, {clc, )=Tr(peclecy),
8/8u;;(x,t) denotes the functional derivative, Y(x) is the
wave function for the state [A), and ¢,(x —X) is the
harmonic-oscillator wave function. In writing the last
equality in (10) we have assumed that |A') =|n,p;); i.e.,
since #iw; <<fiw,, there is no resonant coupling between
the acoustic wave and LL.

Since we are looking at the 2DEG response in the form

ik, x+x,py) ,

t(x,t)<e 7" we put p,=p,—k, and calculate
(c n.p, C, n.p, _Ky We introduce an operator

’P,, n.2,Cn p,, then the statistically averaged quanti-
ty { > (e,, p > obeys the quantum kinetic
equation onls”
a<Pprpy> =—-1-f0 e

ot # Y-

X [H gy (1), [ H o, P

ep? Nppy]]>Q
an

This is the quantum kinetic equation with the collision
operator taken up to the second order in the interaction,
€— +0. The field term in the kinetic equation is absent
i as much as the commutator

in
[ﬁo’ﬁN,py,p;]=(EN,pJ:—EN’Py )ﬁpr » =0 because of LL

degeneracy with respect to p,. The operators in (11) are
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taken in the interaction representation, and the subscript
Q in (11) means that the statistical average in the in-
tegrand is to be taken with the quasiequilibrium density
matrix py. o~
Performing the commutator [ﬂep,PN » p,] and using a
FyEy

simple decoupling scheme for the statistically averaged
operators, we arrive, after time integration, at the follow-
ing coupled system of kinetic equations for the two func-
tions &f N.p,.p, K and §f N+1,p,.p,~x describing the none-

quilibrium parts of the 2DEG distribution:

(—io+vy)dgy —vy+1(K)O8N +1
=vyeN — VN 18N 11 > (12)

(—io+vy )88y +1— VN (KGN =Vy 118N +1 — VN (KgY -

The

defined by
5 —bgye s d
fN,py,py—fc,,_ Ene an

functions &gy and &gy, are

) _
fN+l,py,py Ky,

ikp, 1 . .
=8gy+1e 2, and are, since we are looking for the
2DEG response, proportional to e <> ),
The relaxation rates vy(«), vy 4 (k), vy, and vy are

]1/}0(2)]2 1
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given by the following expressions:

TAXegq)?
VN(K)ZE‘——_“UNH,N(Q ,q,)|?
s PVog i

0 —ile@)3
XS(ﬁqu —ﬁmc)(nqs +fN+1 Je N
7A*(egq)’

'VN+1(K)=2
o pV oy

Uy 41,8559,
(13)

0y, ~ilka)i}
X8(fiwg, —fiw N ng+1—fyle )

vy =vy(k=0),
VN +1=Vn+1(k=0),

where ey, are the polarization vectors for interacting
phonons, and « is the projection of the BAW wave vec-
tor onto the 2DEG plane. ghiven
=fo(Eny +1)Aag apl v, nov+1,5+1(K:K) are the func-
tions describing the deviation of local equilibrium in the
strained system from thermal equilibrium.

Substituting the solution of the kinetic equations (12)

into equations (10) yields

1;; = AjjAoplhap 3

mlf  —o’—io(vytvy )T [Vavy 41—V (©vy 1K)

X{—io[Iy nfo ENVNIN N —VN (K y 4y 41 ] H v s, v 41 0 En+ DIy + Iy 1,041~V +1 (K g v 1]

+[Il%l,Nf(')(EN)+II%I+1,N+1f6(EN+1)][VNVN+1_VN(K)VN+1(K)]} . (14)

Iyy and Iy n4; in (14) stand for Iy y(k,x) and
Iy 11, n+1(k,k). Both effects of the spatial modulation of
the 2DEG density [v(k)7v] and the local variation of
the gap separation (6) are equally important in producing
the nonzero stress ¢;. If we take vyy+1)(K)—=>Vynv+1)
and Iy y—Iy 1 41, then £;; —0, as it should.

In the preceding analysis we have noted that the relax-
ation interaction of the BAW and 2DEG occurs even
with the same bare potential perturbing the 2DEG states.
The piezoelectricity which provides the interaction ener-
gy e@ for all the states can be taken into account using
the same approach. The interaction Hamiltonian
changes to become

‘7?9‘}’:% CICA’<}\-!(Aaﬁugﬁ+e¢0)eikx|}\’,) ,

where ¢° is the amplitude of the potential. Taking a
linear relationship between e@(x,t) and the strain
u.g(x,t) in the form e@(x,2)=yx,5(k)u,gz(x,t), where
Xap(k) is the complex linear-response function, we come
to the conclusion that, to account for the piezoelectricity,
we must substitute A;; in (14) by A;;+x; and A,z by
Ayt Xap

We disregard the angular dependence in (13) resulting
from (t:qsq)2 and introduce the average value of the defor-
mation potential A by A?=A%(e,q)*1/g. Then

VN(K)='VN’V0(§0) and 'VN+1(K)='VN+1V0(§()) >

where

‘Vo(go)
B fo Ydx |y 41 x (V% ,0)|[2o(V2EV% ) /V ag—x
foaodx|IN+1,N(\/;,O)IZ/\/a0—x '

Jo(z) is the Bessel function and ay=(w,lp /v,)*>>1.

At low magnetic fields the overlap integral In+1,5 goes
rapidly to zero if Vx exceeds 2V2N+1. If
ay<4(2N +1) (this is equivalent to xy <x,), then the ar-
gument of the Bessel function, V2£,1/ @, is much bigger
than 1 and, under these conditions, vy(&,) differs
significantly from 1, going rapidly to zero at low magnet-
ic fields. If ay>>4(2N+1), then we may set the upper
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limit in the integrals to c and in the limit of strong fields
take the series expansion for the Bessel function. Thus

J dx x|y, y(Vx 017

vol&o)—1—E3 =1—af}.
0'50 0 f dx|IN+1N(\/x ,0)|2 5o
Returning to (14), we can rewrite it in the form
|
vnInNSo(Ey)—
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Y2 ,
ti=AjAsguap—5[fo(Ex) T fo(Ey+1)]
wlg
—iov)(N,N+1)—v3N,N+1)
(15)

where

’
VN+1IN+1,N+1fo(EN+1)

ViIN,N+1)=Iyny—Iy41,n+1)

SFolEn)tfo(En 1)

YWSo(Ex)+vy 1 fo(Ey 1)

+(1_V0)1N,NIN+1,N+1

and
VAN, N+1)=vyvy, (1—12)

X II%I,Nf(I)(EN)+II%/+1,N+lf(’)(EN+l)
SFolEn)+folEns1)

The general structure of Eqgs. (14) and (15) is the same,
but the frequency dependence in (14) and (15) is more
complicated than that found in the phenomenological ap-
proach used in Ref. 1.

B. BAW —disordered 2DEG interactions

Now we generalize the results already obtained for the
idealized model of the 2DEG in order to include the
effects that disorder produces on the BAW-2DEG in-
teraction. We consider a model in which the 2DEG
states are influenced by a smooth random potential V(r)
with a characteristic scale Ry>>/p, and rms amplitude
V,=(VXr))!/2, where the bar denotes the statistical
average. Thus the random potential is treated as a classi-
cal field which influences the 2D electron motion. The
collisionless 2D electron drift is therefore determined by
the crossed random electrical and external magnetic
fields. The disorder also causes significant changes in the
transition probabilities. We can derive the quantum

J

ap!
N,pypy IB " 1
— + =5 2, (Np,|(k-Vv Xn)|Np, )ﬁNp o

py

Here we have linearized the kinetic equation to keep the
terms linear in the BAW amplitude. 11'p o is the un-

*EyEy
known function describing the 2DEG linear response,
E, the alternating electric field induced by the BAW,

and

1
0—
P e Ey+V(x)—Ep1/kyT+1

As well as a basic assumption about the smoothness of

13 , -
7(pr |(Vp%eE,, Xn)|Np, ) =I{ﬁN,pyp;'} .

FolEN)+fo(Ey+y)

r

kinetic equation to describe the linear response of the
disordered 2DEG to the perturbation induced by the
BAW. Keeping in mind the previous results for the ideal
system, we consider the piezoelectric mechanism as the
major source of the interaction.

. We_take the Hamiltonian of the system to be
F= 7{0+ﬂ +ﬂ +7{e ph» adding to (7)-(9) the Ham-
iltonian %, =V, EMC 1Car (klv |A') to describe the 2DEG
interaction with the classical field; v(r)=V(r)/V, is the
dimensionless random potential.

The quantum kinetic equation to the second order in
interaction with phonons reads

oP

N A AN
—p”—p’—+——<[7{0+7{ +H 1

ot v e prpy

=1{ﬁN'pypy,} . (16
The left-hand side of (16) describes the collisionless evolu-
tion of the 2DEG distribution, while 1 {ﬁN } stands for

the collision integral. The disorder determmes the
dynamical motion of the 2D electrons and also affects the
collisions by modifying their rates and making possible
transitions which are absent in an ideal system.

Performing the commutator on the left-hand side of
(16) we arrive at the following equation:

(17)

[

the random potential, another has been made, that there
is no substantial intermixing of the states defined by the
different Landau levels in the vicinity of the Fermi level.
If the latter is not true, then it would be necessary to con-
sider the coupled system of kinetic equations, the cou-
pling being due to the 2DEG phonon interactions. It is
easy to show that the quantum kinetic equation (17), that
we have derived, is equivalent to the result obtained by
Iordansky!® (see also Ref. 17).

Since we are looking for solutions of (17) varying in

space and time as e *79)  we take 1 ,
N.pyp,
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: 2
ikp, 1 .
=g . 7% and obtain
N.pyp,

2

. % IB
—io+I+ 7 V. (k-Vv Xn) gN,pypy’

el
= —;-(Np; |(Vp°-Eyy Xn)|Np, )
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where g}v’Pypy,=(p°)’(e<p°—Eg)IN,N(§O,§1) describes the

deviation of the local equilibrium in the strained system
from thermal equilibrium, 7 is some characteristic 2D
electron-phonon relaxation time, and E},Z is the amplitude
of the corrections to the Fermi energy linear in the BAW
amplitude. We keep the operator symbol I in the left-
hand side of (18) to emphasize that, as in Eq. (12), the col-
lision operator couples the two 2DEG states separated in

The formal solution of (18) has the following form:

(19)

. 2
Xe IKPYIB"*'%glin ol as) P
Fyly
|
, —ikp 1z ’ 1
eD(pr|(VU'Ealtxn)|pr >e yB(pO)EF+—T_gIIV’pyP;
EN.p,p, —io+iD(k-VvXn)+1

Here we have introduced D =(! ,2, /A)V,, the 2DEG
diffusion coefficient. The solution of (18) enables us to
obtain the generalized stress in the 2DEG plane. In what
follows we present some qualitative considerations of the
BAW -disordered 2DEG interaction based on the formal
solution (19).

There are two contributions to the 2DEG linear
response, described by the two terms in the numerator.
The first term, which is proportional to the electric field
in the BAW, clearly describes that part of the 2D elec-
tron response that produces joule heating. Under condi-
tions of low BAW frequency, max{w,kD /Ry} <<1/7
(where R, is the scale of the random potential), it gives
precisely the same results as the phenomenological ap-
proach.? The second term gives precisely the same re-
sults as the phenomenological approach.>? The second
term has essentially the same structure as that in the
right-hand side (12). It contains the contribution to the
BAW-2DEG interaction coming from the modulation by
the BAW of the 2DEG occupation numbers for the 2D
electrons in localized states. Now consider the denomi-
nator in (19). The second-to-first-term ratio is of the or-
der of magnitude of (D /v,Ry)=(I3V,/#v,R,). There
are two different limits of strong disorder
(13V,/#v,Ry)>>1, and weak disorder (I3V,/#v,R,)
<< 1. Since the latter is easily reduced to the model we
have already considered, of a perfect 2DEG with correc-
tions which are to be found by expanding the denomina-
tor in a Taylor series and subsequently averaging the re-
sult over the statistical distribution of the random poten-
tial, here we treat only the case of strong disorder.

The inequality (I3V,/#iv,Ry)>>1 has a very simple
physical meaning: the drift velocity of the 2D electron in
a crossed random electric field and an external magnetic
field is much larger than the velocity of sound. If the 2D
electron is in one of the localized states performing the
motion in a confined area with linear scale R, <L, (Lyis
the localization length), then it is affected by the averaged
quasistatic strain in this area, produced by the acoustic
wave. If R, > A, the 2D electron path goes through re-
gions of both posiive and negative strain with the net re-
sult that the electron energy modulation is very small. If,
however, R, =~A,, then electrons confined to move in

I

neighboring areas are influenced by essentially different
strains due to the acoustic wave.

The first two terms in the denominator of Eq. (19) take
into account the effects of temporal and spatial disper-
sions in the linear electronic response. At low acoustic
wave frequencies they become unimportant. As © in-
creases, the spatial dispersion comes into play first, exact-
ly as for the case of the acoustic wave interaction with
free electrons. However, this is true only for the case of
strong disorder. The condition, defining the frequency
range at which the nonlocal 2DEG response starts, is
thus (kD /Ry)7,p,>1 where 7, is the characteristic
electron-phonon relaxation time. If this criterion is
fulfilled, then the dominant contribution to the interac-
tion comes from 2D electrons, within the energy range of
the thermal broadening of the Fermi distribution, which
drift along trajectories defined by the balance between the
two big terms w and Dk-Vv Xn:w=Dk-Vv Xn, averaged
over the random potential field; in these expressions v is
the dimensionless random potential defined above. This
condition replaces the well-known result ®=k-V for the
case of free carriers, where V is the electron velocity.
The latter is the matching condition to synchronize the
electron motion with the perturbing potential of the trav-
eling wave. In the disordered system such a synchroniza-
tion cannot take place along each section of the electron
trajectory, so the dominant trajectories are to be found by
satisfying the matching conditions on average so that the
electron stays on a given trajectory (open or confined) be-
tween scattering events. Figure 3 illustrates this state-
ment.

Open trajectories 1 and 2 and a confined trajectory 3
are shown. An electron drifts rapidly along trajectory 1
and makes the interaction with the acoustic wave
ineffective, while trajectory 2 contributes greatly to the
2DEQG linear response. The smaller section of curve 3 be-
tween the two crosses also contributes to the interaction.

Now we come to a qualitative consideration of the re-
laxation absorption arising from the modulation of the
population numbers for electrons performing confined
motion. At T'=0, the 2D electrons drift along trajec-
tories given by that section of the random potential
defined by the plane Ep=const. At nonzero tempera-



52 DYNAMIC INTERACTION OF BULK ACOUSTIC WAVES WITH . ..
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FIG. 3. A schematic example indicating the effectiveness of
BAW-2DEG interaction. « shows the projection of the BAW
wave vector onto the plane of the 2DEG. Open trajectories 1
and 2 and a confined trajectory 3 are shown.

tures the electrons can be activated to neighboring trajec-
tories to be confined in an area on the scale R, <L (T).
The acoustic wave breaks the thermal equilibrium be-
tween electrons undergoing confined motion in neighbor-
ing areas, and induces a strongly nonequilibrium elec-
tronic distribution for states with R,~A,, provided
Ay <L,. This gives rise to reasonably strong-coupling
constants for such an interaction mechanism which is
given in terms of the bare piezoelectric potential due to
the phase difference between the strains affecting corre-
sponding electronic states. For the dominant electronic
states with R, ~ A, this coupling constant is thus rela-
tively insensitive to the magnetic field. The number of
those states which are effective in the interaction mecha-
nism under consideration is, of course, proportional to
the 2DEG thermodynamic density of states with the pro-
portionality factor for the uncorrelated random potential
field also being magnetic field independent. Since the es-
tablishment of thermal equilibrium in the 2DEG system
is due to the emission and absorption of thermal phonons
with relatively small displacements of the electronic orbit
centers needed to couple the neighboring 2D electron tra-
jectories, the relaxation times entering in the result of the
phenomenological treatment! are also magnetic field in-
dependent.

III. EXPERIMENTS

A GaAs/Al,Ga,_, As heterojunction, number NU157,
was prepared using molecular-beam-epitaxy (MBE) on a
5-mm-thick wafer of GaAs with its top surface parallel to
the (001) planes of the crystal. The sequence of layers is
shown in Fig. 4. A sample was cut from the wafer and a
[111]-oriented flat was cut and polished on the side of it.
An x-cut cylindrical quartz rod 10 mm long and 3 mm in
diameter was bonded to the [111] flat using epoxy resin
adhesive. When the quartz rod was inserted in a mi-
crowave resonant cavity it was possible to generate pulses
of longitudinal ultrasound at about 9.3 GHz which pro-
pagated along the [111] direction of the GaAs. The ul-
trasonic waves were detected after passing through the
GaAs by a CdS bolometer on an evaporated aluminum
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FIG. 4. Layer structure used on the GaAs sample.

film on the top surface of the wafer.!® The arrangement
was shown in Fig. 1. Ultrasonic pulses were generated
using a pulse length of 500 ns and microwave peak power
incident on the resonant cavity of up to 100-W, which
probably gave a peak power up to 10 mW in the GaAs,
corresponding to an ultrasonic intensity of 1.4 kW m™2.
The sample was immersed in liquid helium and could be
kept at temperatures between 2 and 4.2 K. A magnetic
field up to 2 T could be applied. The detected pulses
from the CdS bolometer were averaged by a boxcar cir-
cuit after amplification, then digitized and stored by a mi-
crocomputer.

Electrical measurements were made, at 4.2 K, on
another sample cut from the same wafer. Shubnikov—de
Haas oscillations were observed and gave an electron
sheet density of 4.8X10'® cm™2, while Hall measure-
ments gave a Hall mobility of 20 m?V~1s™ !,

The detected signal as a function of magnetic field ap-
plied normal to the 2DEG is shown in Fig. 5. The sam-
ple was at 2.2 K. The zero of the detected signal axis is
offset from the graph such that full scale on that axis
represents 0.35 of the detected signal at zero magnetic
field. Figure 6 shows a similar result taken at 4.2 K.

Three features are apparent: a set of quantum oscilla-
tions at fields above about 1 T, a fairly sharp minimum in

Detected signal height

I
0] 0.5 1.0 1.5 2.0

Magnetic field ( T)

FIG. 5. Experimental results at 2 K using an ultrasonic fre-
quency of 9.3 GHz, and showing quantum oscillations. The
filling factors are given above the peaks.
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FIG. 6. Experimental results under conditions similar to Fig.
5 but at 4.2 K.

signal at 0.31 T, and an overall decrease in signal as the
magnetic field increases. The quantum oscillations,
which have a peak-to-peak amplitude of about 5% of the
signal height in zero field, are due to piezoelectric cou-
pling to the 2DEG and reflect Shubnikov—de Haas oscil-
lations in the conductivity of the 2DEG. Thus we find a
value for the electron sheet density of 3.8X10!° m™2
which is slightly smaller than we obtained by electrical
measurements at 4.2 K on another sample from the same
wafer. The minimum at 0.31 T has an amplitude of about
6% and occurs when the product of the magnetic length
15 and the component of the ultrasonic wave vector in
the plane of the 2DEG, g, is 0.4. The overall decrease in
signal by 2 T, is about 28% of the signal height in zero
magnetic field.

We interpret the whole set of experimental results by
assuming piezoelectric coupling to be the dominant in-
teraction mechanism. We pay no attention to the small
increase in the detected signal at low magnetic fields
B <0.2 T. This feature is definitely not due to BAW-
2DEG interaction, and appears as a result either of the
experimental uncertainty in fixing the zero of magnetic
field or of acoustic wave dissipation in the bulk due to the
interaction with a small density of 3D carriers.

(1) We first discuss the peak in BAW attenuation at
0.31 T. Taking the cyclotron radius R, rather than the
magnetic length, we obtain the followmg result:
\/ZKR =2.8at 0.31 T. In this expression, V2« is the in-
plane component of the BAW wave vector. The cyclo-
tron energy at 0.31 T is #iw,~5.1 K and hence in the
temperature range of our experiment electronic transi-
tions between different Landau levels are effective since
cyclotron phonons correspond to the maximum of the
Planck distribution. Clearly the disorder cannot play a
crucial role in BAW-2DEG interaction under such condi-
tions, and we may use the results of Sec. IIB2 to com-
pare the experimental data and theoretical predictions.
Estimating the characteristic lengths x, and x,, we have
x,>xq if B<0.49 T. This gives the upper limit for the
location of the maximum in the attenuation of the detect-
ed signal since at higher magnetic fields the modulation-
type interaction between the acoustic wave and the
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2DEG occupying states in the Landau levels neighboring
the Fermi level becomes very small, due both to the con-
siderable reduction in the coupling strength according to
k’R2, and also to the growth in the characteristic relaxa-
tion time and the exponential decrease in the specific heat
of the absorbing states when the energy of cyclotron pho-
nons exceeds typical thermal energies. The lower limit
may be set at about B =0.2 T. This follows from the ex-
ponential factor e in I ~,n and hence in expression (15)
for the generalized stress. The physical meaning of that
is obvious. At lower magnetic fields the linear size of the
cyclotron orbit grows larger than the acoustic wave-
length, and hence an electron moving in an orbit is
influenced by the alternating sign of the strain, so the in-
tegrated effect goes rapidly to zero. It is worthwhile
comparing the picture of the interaction under considera-
tion with that for the acoustic geometric resonance. It is
important to do this because the maximum in the at-
tenuation of the detected signal appears very close to
what one might have expected from one of the necessary
conditions for the acoustic geometric resonance
R_. =AM, /2 (note that, at B=0.31 T, R, is only approxi-
mately equal to A, /2 and differs very slightly from A, /2).
However, what we observe on Fig. 6 is not the result of
the geometric resonance. In order for the acoustic
geometric resonance to take place, it is sufficient that the
diameter in real space of the cyclotron orbit should be
equal to multiples of the distance in real space between
the wavefronts of the incident wave in the 2DEG plane.
It is also necessary that the acoustic-wave-induced elec-
tric field should accelerate the electron near the turning
points of its orbit. This is obviously not the case here, as
the in-plane component of the alternating electric field is
directed along the [110] axis perpendicular to the wave-
fronts. It is interesting to note that geometric arguments
also play quite an important role in the interaction mech-
anism under consideration. This is illustrated in Fig. 7,
where a schematic representation of the strain in space in
the 2DEG plane is shown. + and — in the figure corre-
spond to planes with positive and negative strain in the
acoustic wage. The distance between the wavefronts in
the 2DEG plane is 27/V 2k, where V2« is the in-plane
component of the BAW wave vector.

If V'2kR, =, then the 2D electron effectively stays at
the wavefronts longer, where it is influenced by the same
sign strain to produce a net shift in the electron energy

+ -+ — 4+

FIG. 7. Anillustration of the matching conditions.
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(positive for the orbit depicted by a solid line and nega-
tive for the interacting orbit shown by a dashed line).
However, the orbit diameters for different Landau levels
differ and hence the optimum condition for the most
effective coupling does not necessarily coincide with
V'2kR.=m. The interactions with the rest of Landau lev-
el ladder, for which we have not so far accounted, can
produce the peak structure. In the real structure, the dis-
order removes all specific details by broadening the Lan-
dau levels, leaving a single structureless peak.

(2) Here we show that the overall decrease in detected
signal as the magnetic field increases (after subtracting
the superimposed quantum oscillations) can be explained
in essentially the same manner as was done for SAW-
2DEG interaction in our previous study.! We may note
that the smooth part of the observed curve looks very
similar to that obtained for SAW-2DEG interaction.
Again, at rather low magnetic fields, B <1 T, we observe
a more rapid decrease in the signal height than we do for
B >1T. Now we use the results of the phenomenological
description,! of the interaction of the BAW with the
2DEG in localized states. We take the results of the
more careful consideration, given above, as a proof that
there is a significant enhancement in the interaction
strength that is due to piezoelectric coupling rather than
deformation-potential coupling. Both the coupling con-
stants and the relaxation times in Ref. 1 are independent
of the magnetic field; the magnetic-field dependence of
the smooth part of the observed curve is controlled by
the magnetic-field dependence of the number of the ab-
sorbing states and hence by the thermodynamic density
of states D,. The range B <1 T corresponds to the low-
field limit I"y(B)<kgzT, where I' y(B) is the half-width
of the Landau level. The crossover from low to high
magnetic fields is shown by the change in the slope of the
smooth part of the detected signal at B*, which can be
obtained from the condition T'y(B*)=kpT. Following
the same arguments as in Ref. 1 we conclude that at
B <B* the smooth part of the generalized stress in the
2D plane should vary linearly with B, and then for
B>B* should follow a square-root dependence V'B.
This agrees fairly well with the experimental results of
Fig. 6, with the crossover corresponding to a lower mag-
netic field than for the case of SAW. This is, of course,
quite consistent with the model. The results on Fig. 6
were obtained at T=2.2 K, while the SAW results in
Ref. 1 quoted above were obtained at T=4.2 K. Taking
T'y(B)~V B, we arrive at B*= A (k T)? with the pro-
portionality factor 4 independent of both B and T, but
different for different wafers. Comparing the experimen-
tal results at 2.2 and 4.2 K (Figs. 5 and 6), we conclude
that the crossover at 4.2 K should be shifted by a factor
of about 4 toward higher magnetic fields as compared
with its position at 2.2 K. This is beyond the maximum
magnetic field available in our experiment, so it is now
clear why the overall decrease in the detected signal does
not flatten off in our field range, in contrast to the result
at the lower temperature.

(3) The quantum oscillations seen in Fig. 6 have maxi-
ma corresponding to the plateaux in the Hall data. They
are quite noticeable at filling factors of 6, 5, and 4. A
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double-peak structure is not resolved at 2 K. This is not
surprising, and we expect it to be much less pronounced
than for the case of SAW-2DEG interaction even though
the experiments were made at lower temperatures. In
SAW experiments the transmitted intensity is governed
by the SAW dissipation. The latter shows the specific
behavior because the absorption coefficient has double-
peak maxima close to integer fillings. In our BAW exper-
iments both real and imaginary parts of the generalized
stress in the 2DEG plane contribute to the detected sig-
nal. Moreover, the main contribution to the detected sig-
nal, as was shown in Sec. I, may come from interference
between different components of the classical fields. If
this is the case, then the change in the detected signal is
mainly controlled by the effect the 2DEG produces on
the reflection and transmission of the incident wave. The
real part of the linear 2DEG response which causes the
change in reflection and transmission of the incident
wave for a BAW interacting with 2D electrons in extend-
ed states shows a sequence of single maxima located at in-
teger filling factors. Thus a double-peak shape in the
quantum oscillations in BAW experiments, if it could be
resolved at low temperatures, would give a straightfor-
ward evaluation of the relative importance of the changes
in reflectivity and dissipation.

Numerical estimates

In order to estimate the order of magnitude of the
changes in the detected signal versus magnetic field, we
first note that, according to our results, the coupling con-
stant for relaxation absorption by the localized states of
the 2DEG states is on an atomic scale. Moreover,
piezoelectric coupling may be as efficient in this case as it
is in the conventional acoustoelectric interaction with the
extended states of the 2DEG. Therefore we only estimate
the scale of the quantum oscillations. The order of mag-
nitude of the smooth variation in attenuation due to the
relaxation absorption is at least as large.

To account for piezoelectricity, we take A;;+y;; in-
stead of A;; in (14). We next introduce the tensor 4 ;5 by
the expression @(r,t)=3, 4 guc5(r,t), where the super-
script v denotes L, L _, and S_ waves respectively.
Then with the use of (4) we arrive at

. 0 +1 1
A{,;,;t=l6li(1—e—‘/5""+“‘h) +1 0 1
" 1 1 0
and
2 —
s_ _iR | k —V2xh—ixSh
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where
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Taking either D, ~ (I3 /#)V, (Sec. IL B), or alternatively
D, ~(R2/7) (Ref. 19) with (1/7)=~(AE /%), where AE is
the Landau-level half-width, we arrive at o, <10°s™! at
B <2 T. In the frequency range under consideration,
when f,=~10 GHz, it is important to notice that the
effect of screening is weakened, because w >>wp, for the
whole range of magnetic fields and provides strong
2DEG-BAW interaction. At this stage, however, we can-
not incorporate that effect into the theory more accurate-
ly and simply stress that the effects of the BAW-2DEG
interaction are quite sensitive to the particular screening
mechanism.?%?!

Note that the estimate given above, for the diffusion
coefficient and diffusion frequency, is crude. We can give
another, using the formula for the acoustoelectric in-
teraction,

Uxx

K %0
R
09 @p

and the experimental results in Ref. 2. If it is accepted
that w/wp, is a slowly varying function of the magnetic
field, then the maximum in the attenuation is given by

3 1
"2 1+ 1+ (e/ep)?]?

Taking for wp the frequency at which I',, starts to devi-
ate from a linear law, I', =m«x/4, we arrive at
0p=2X10°s~"!. When ow>wop, T,,—(9kop/20)
=(nop/2vs)~9 dBcm ! over the whole range of appli-
cability of the phenomenological approach. This value is
in reasonable agreement with the results of Ref. 2. Note
that the slight inequivalence of the maxima in doubled
peaks may result from the weak dependence of the wp on
the magnetic field, which is slightly different on both
sides of integer filling factors.

To give a rough estimate of the effect the 2DEG pro-
duces on the detected signal, we take the first term in the
general expression (1), thus omitting the possible
magnification factor, due to interference effects given by
the second term. We estimate the quantity
(AS/S)~(2/pwa )| T™ES|, with |T?PEC| instead of
Im7T?PES| since if we omit the magnification factor the
reflectivity given by the real part of the generalized stress
T?PES also contributes an amount (2/pwa , )ReT?PEC to
the detected signal. In doing so, and estimating 4 ;5 we
arrive at

e~V 2%hsinh(V 2¢h )

_L}i piezo> 167 ezDT
S € K K
g

) - _
—xx D ~Vakhsinh(V/2Kh )
0'0 [0)

1+

for > wp. The second term in the denominator of the
last formula is about 10%, and D;~5X10% erg”!cm™2,
giving (AS /S )P¥*°~3.5%, with about the same value for
the amplitude of the quantum oscillations. Such a rough
estimate, which gives the correct order of magnitude of

the observed effects, seems to be quite satisfactory.

IV. CONCLUSIONS

(1) The effect of dynamical 2DEG-BAW interaction
has been studied theoretically within the framework of
the exactly solvable model of BAW-2DEG relaxation in-
teraction in an idealized structure without disorder. It
was shown that in a proper range of sufficiently low mag-
netic fields, with a cyclotron energy comparable to the
thermal energy, the dominant contribution comes from
the interaction between the BAW and electrons occupy-
ing the highest filled and the lowest empty Landau levels.
The interaction of the acoustic wave and the 2DEG
breaks the thermal equilibrium between electronic states
separated in space by the cyclotron radius in the 2DEG
plane. Due to the phase difference, the acoustic wave
strain produces a strong modulation of the cyclotron gap
for the interacting states even for the same bare perturb-
ing potential. This gives rise to a piezoelectric coupling
which is much stronger, at low BAW frequencies, than
that of the deformation potential, and also causes a max-
imum interaction which manifests itself in a single struc-
tureless peak in the detected signal, located at a low
enough magnetic field to fulfill the condition for max-
imum coupling strength kR, ~1.

(2) The quantum kinetic equation has been derived and
solved for the case of a perfect structure, and a quantita-
tive treatment of the relaxation-type BAW-2DEG in-
teraction was given. The quantum kinetic equation has
also been derived for the case of a smooth random poten-
tial with scale Ry>>Ip. A qualitative analysis of the
solutions of that equation, for the case of strong disorder
and comparatively high frequencies of the acoustic wave,
also reveals two main contributions to the linear 2DEG
response. The first comes from the acoustoelectric in-
teraction between the acoustic wave and the 2D electrons
moving along sections of their trajectories for which the
average projection of the 2D electron drift velocity onto
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the acoustic propagation direction is equal to the sound
velocity. This is the analog of matching conditions for
the case of acoustic wave interaction with free carriers.
The characteristic parameter which defines the range of
low and high acoustic wave frequencies was shown to be
(kD /Ry)7eph At (kD /R)7T, p;, <<1 the solution of the
quantum kinetic equation reproduces the results of the
phenomenological theory of acoustoelectric interactions.
At (kD /Rg)T,pn>>1 the effects of spatial dispersion
start to play an important role, giving rise to a nonlocal
linear 2DEG response.

The second contribution is a relaxation-type absorp-
tion, with the same origin as that which was discussed for
the idealized case, i.e., modulation of the population
numbers of the 2D electrons performing a fast drift
motion along confined trajectories (localized states) and
being affected by the average quasistatic strain of the
acoustic wave in the area of confinement. By absorbing
or emitting thermal phonons the 2D electrons may be-
come excited into neighboring localized states, which are
affected by a different average quasistatic strain, due to
the spatial phase difference. This gives rise to, first, a
strong piezoelectric coupling, relatively independent of
the magnetic field, for the dominant interacting states
provided L,>Ag. Second, the characteristic relaxation
times are independent of the magnetic field, because only
thermal phonons are involved in the process of restoring
the thermal equilibrium. Third, the magnetic-field
dependence of the dissipation is determined by the num-
ber of absorbing states, which is proportional to the ther-
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modynamic 2DEG density of states, with a proportionali-
ty factor for the uncorrelated random potential which is
almost magnetic field independent. Fourth, the quantum
oscillations, seen in the experimental results in the mag-
netic field range from 1 to 2 T, superimposed on the re-
sult of the relaxation absorption, have the same origin as
the classical acoustoelectric interaction. However, the
contribution to the detected signal comes from both the
changed reflectivity and the dissipation produced by the
perturbed 2DEG, and is essentially influenced by the in-
terference of waves in the bolometer. The main contribu-
tion is that determined by dynamical BAW-2DEG in-
teraction, the effect the 2DEG produces by changing the
stiffness being at least as important as the dissipation. It
may become dominant if interference enhances the
bolometer sensitivity. Since the change in elastic stiffness
produced by the 2DEG is determined by a single peak,
located at integer filling factors, the double-peak struc-
ture (if resolved) should be much less pronounced than
that of SAW-2DEG interactions.
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