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Generalized gradient approximations (GGA) for the exchange-correlation energy have been sug-
gested to improve upon the local-density approximation (LDA) in density-functional theory. It has
been demonstrated by various authors that the gradient correction suggested by Becke for the ex-
change functional and Perdew for the correlation energy, as well as the recent GGA by Perdew and
Wang (1991),yield improved cohesive energies for solids, correcting for the overbinding in. LDA. In
this paper we focus on a structural phase transition of Si, which under pressure transforms from the
diamond structure to the P-tin structure. The coexistence pressure calculated within the LDA is 80
kbar, smaller than the experimental values (103 —125 kbar). Both gradient-corrected schemes yield
a coexistence pressure which is larger than the LDA value (146 kbar for the Becke-Perdew and 122
kbar for the Perdew-Wang exchange-correlation functional). Ge undergoes a similar transition at
around 105 kbar. The LDA result for the coexistence pressure is 73 kbar, it amounts to 118 kbar
when calculated within the Becke-Perdew GGA, and 98 kbar within the Perdew-Wang GGA.

I. INTRODUCTION

Density-functional theory (DFT) provides an ex-
act description of the ground state of an interact-
ing electron system, with the complications of the
quantum-mechanical many-particle system combined
into an exchange-correlation (XC) functional of which
the explicit form is not known. The local-density
approximations (LDA) to this functional has proven to
be amazingly successful in yielding quantitatively reli-
able predictions for ground state properties. However,
there are some well-known diKculties where inhomogene-
ity corrections become important: The cohesive energy is
generally overestimated by LDA, and in many cases equi-
librium lattice constants come out too small. In this
paper we focus on another apparent "failure of the LDA, "
the underestimation of the coexistence pressure for a
structural phase transition in silicon ' and germanium.

On compression, silicon undergoes a series of phase
transitions that have found widespread interest both
experimentally and theoretically. ' On com-
pression, Si transforms &om the diamond structure to
the P-tin structure (see Fig. 1). This transition is accom-
panied by a change &om a semiconducting to a metallic
state. The phase transition is of 6rst order, and there
is a large hysteresis since, on lowering the pressure, the
material does not return to the diamond structure, but
transforms to a metastable fourfold coordinated struc-
ture with a body-centered-cubic unit cell (BC8).

The experimental value for the coexistence pressure
for Si in the diamond and the P-tin phases appears to be
uncertain. McMahon and Nelmes measured a value of
103 kbar. In an x-ray di8'raction study, Hu and Spain
found the transition to initiate at 112 kbar and that the
two phases coexist up to 125 kbar. Under nonhydrostatic
stress, however, Si can transform at pressures lower than

diamond-structure P-tin structure

FIG. 1. Comparison of the diamond structure (left) and
the P-tin structure (right). The P-tin structure can be re-
garded as a tetragonally distorted diamond structure with
lattice constants a and c.

in the hydrostatic case. ' Knowledge of the tempera-
ture dependence of the coexistence pressure pt(T) for Si
in the diamond and P-tin structures is rather vague, mak-
ing an extrapolation of the experimental results measured
at room temperature to zero Kelvin very unreliable,
and thus we will not attempt such a correction. However,
we estimate &om the experimental phase diagram that
the coexistence pressure at least should not decrease by
more than 10 kbar.

The coexistence pressure for the diamond to P-tin tran-
sition in Si derived within DFT-LDA (computational de-
tails will be given below) turns out to be 80 kbar, which is
jn agreement with other recent LDA calculations xo, i8,2

Even though the experimental values do scatter, we find
the LDA pressure to be signi6cantly below the range of
experimental values. In this paper we will argue that this
is due to the insufFicient description of inhomogeneous
systems within the LDA.

A similar transformation from a diamond to a P-tin
phase also occurs for the two heavier group IVA elements
Ge and Sn in the periodic system. The transition pres-
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sure becomes increasingly smaller; it is around 105 kbar
—107 kbar for Ge, and in the case of Sn the transition
(driven by temperature change) already occurs at ambi-
ent pressure. In view of the close similarity of Si and
Ge, and to look for "chemical trends, " we also calculate
how well the LDA performs for Ge, and compare to our
findings for Si.

To improve upon the local-density approximation
in density-functional total-energy calculations, various
generalized gradient approximations (GGA) for the
exchange-correlation energy functional have been sug-
gested in literature. Their' general form is

Exc[n] = f rxc(n(r), Vn(r))n(r)d r,

the difFerence with respect to LDA being the additional
local dependence of the integrand on the gradient of
the electron density n(r). In this paper we apply two
GGA's, the semiempirical exchange functional proposed.
by Becke2 in combination with a correlation functional
by Perdew (BP), and Perdew's more recent GGA-II
(Refs. 29 and 30) (PW91). These functionals are more
refined than the original functional proposed by Langreth
and Mehl. 25 The Langreth-Mehl expression for the ex-
change energy still resembles the form of the gradient
expansion, and is less accurate than Perdew and Wang's
functional. ~ As noted by Perdew, the correlation part
of the Langreth-Mehl functional does not go beyond the
random-phase approximation for the correlation energy,
and it d.oes not recover the gradient expansion in the limit
of slowly varying densities. The more recent XC func-
tionals (BP, PW91) have been improved with respect to
these shortcomings. The PW91 XC functional is based
on a parameter-&ee correlation energy functional and a
refined Becke exchange functional. For small values of
the scaled density gradient typical for a solid, Perdew's
modified Becke exchange is very similar to the 1986 ver-
sion of the Perdew-Wang exchange, 2~ which is based on
the gradient expansion of the exchange hole combined
with a real-space cutofF to assure that the hole is nega-
tive everywhere and obeys the sum rule that it integrates
to —1 electron.

Umrigar and Gonze have compared the exchange-
correlation potential and the electron density of light
atoms calculated within LDA or GGA with the respec-
tive exact quantities &om quantum Monte-Carlo calcu-
lations. However, as aH the approximate XC potentials
differ drastically &om the exact XC potential, it seems
to be rather difBcult to draw any conclusions regard-
ing to what extent present GGA's should be superior
to LDA. Therefore, to judge the usefulness of the GGA's
in "real-life" total-energy calculations, a vast amount of
test calculations for atoms, molecules, and solids has to
be carried out. Such calculations for solids using the
BP functional and the PW91 functional ' reveal that
lattice constants are not consistently improved by GGA,
being often too small in LDA but overcorrected by GGA.
The static dielectric constant for Si calculated at the
experimental lattice spacing comes out smaller in BP-
GGA than in LDA, thereby decreasing the difFerence

from experiment by = 1/3 of the LDA error; however,
this improvement is practically lost when the calcula-
tions are carried out at the respective theoretical lattice
constants. On the other hand, in general the cohesive
energy, which is overestimated in LDA, is improved sig-
nificantly by the BP and PW91 GGA. This is due
to the fact that by introducing the GGA the total en-
ergy of the more inhomogeneous atom is lowered by a
larger amount than the total energy of the solid. An-
other area where GGA proved to be of importance is
the calculation of activation energy barriers and. barri-
ers of ad.sorption: For example, the dissociation barrier
for H2 on a Cu(ill) surface turns out to be almost ab-
sent in the LDA calculation, while it is large (0.73 eV)
when calculated within the PW91 GGA, and only the
GGA result conforms with experiment. Furthermore,
Lee et al. used the BP GGA to study the equations of
state for difFerent phases of ice. They found that gradient
corrections have to be included in order to describe the
hydrogen bond properly.

We suspect that gradient corrections might be useful
for yet another class of problems, certain structural phase
transitions in solids. To corroborate this view, we take
the diamond to P-tin transformation in Si and Ge as an
example and investigate how well this phase transition is
described by modern GGAs, as compared to the standard
LDA description.

II. COMPUTATIONAL DETAILS

We have carried out DFT total-energy calculations
for Si and Ge in the diamond and P-tin phase. For
the LDA exchange-correlation functional we use Perdew
and Zunger's parametrization of Ceperley and Alder's
data for the correlation energy (henceforth denoted
CA). For the GGA calculations, on the other hand, we
use either the BP (Refs. 26 and 28) or the PW91 (Ref.
30) form of the exchange-correlation energy.

Ab initio norm-conserving pseudopotentials are gen-
erated with Hamann's scheme generalized to include
GGA functionals. The cutofF rad. ii for pseudoionization
have been chosen equal to 0.56 A, 0.68 A, and 0.68 A
for the s, p, and d pseudo-wave-functions of Si, and
equal to 0.71 A, 0.67 A, and 0.84 A. for the s, p, and
d pseudo-wave-functions of Ge, respectively. The Ge
d potential was generated from the 4s 4p 4d 5 con-
figuration in order to obtain a well-localized normal-
izable d wave function. These potentials are further
transformed into fully separable pseudopotentials of the
Kleinman-Bylander type. For Si, the d potential was
used as the local potential, while in case of Ge, to improve
the transferability of its Kleinman-Bylander pseudopo-
tential, we have chosen the p potential as the local one.
All calculations are performed consistently, i.e., the same
expression for Ex~ is used in the atomic Kohn-Sham
equation, the unscreening of the efFective potential of the
atom to determine the ionic (LDA or GGA) pseudopo-
tential, and the solid-state calculation. There has been
evidence that this consistency is essential when lattice
constants are calculated. Furthermore, we have taken
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the nonlinearity of the core-valence exchange-correlation
energy into account. This nonlinear core-valence (nlcv)
interaction is negligible in the case of Si within the LDA,
and our results show that it is, in fact, still unimportant
for the PW91 GGA calculations. For Ge, on the other
hand, the overlap of the core and the valence electron
densities becomes significant, and thus the nonlinearity
of the exchange-correlation energy (with respect to the
care-valence interaction) cannot be neglected anymore.

The plane-wave basis set was de6ned by an energy
cutoff of 20 Ry (50 Ry for calculations including non-
linear core-valence XC), and the electron density was
calculated IIrom special k-point sets 5 equivalent to 144
and 1024 sampling points in the full Brillouin zone of
the tetragonal four-atom cell for the diamond and P-tin
structures, respectively. The Fermi surface of the metal-
lic P-tin phase was broadened according to an electron
temperature of 0.1 eV, and the total energy extrapolated
to zero temperature in the usual way. We expect our
numerical values for total energy difFerences to be accu-
rate within +14 meV per atom, which translates into an
error of the coexistence pressure of +5 kbar.

We have calculated the total energy per atom for Si and
Ge in the diamond structure for several volumes of the
unit cell, varying the lattice constant within about +5%
of its equilibrium value. These energies were then fitted
to Murnaghan's equation of state, which yields the val-
ues of the equilibrium lattice constant and the bulk mod-
ulus. The P-tin structure is slightly more complicated in
that it has an additional degree of freedom, the c/a ratio
of the lattice constants, which, at least in principle, has to
be optimized separately for each volume. We have mini-
mized the total energy as a function of c/a at some fixed
volume close to the equilibrium volume of the P-tin phase
to get a theoretical estimate, and in comparison with ex-
periment found c/a to be well reproduced. Furthermore,
comparing total energy versus volume curves calculated
for several fixed c/a ratios around this value, we found
that there is practically no loss of accuracy when we drop
the optimization of c/a and instead just assume that c/a
is constant and equal to its experimental value. As for the
diamond structure, the total energy data are then Gtted
to Murnaghan's equation of state. The coexistence pres-
sure is finally calculated from a common tangent (Gibbs)
construction to the two energy versus volume curves for
the diamond and P-tin phases.

III. RESULTS AND DISCUSSION

A. Silicon

The calculated structural parameters of Si in the di-
amond and P-tin phases are listed in Table I. The ex-
perimental lattice constant of the diamond phase cor-
responds to zero pressure and temperature T =0 K.
The diamond-structure LDA and Becke-Perdew GGA
lattice constants (co ——5.39 A. , cp ——5.47 A) and bulk
moduli (Bo ——0.97 Mbar, Bo ——0.90 Mbar) are in ex-
cellent agreement with recent theoretical results by Gar-

TABLE I. Structural properties and the diamond to P-tin
phase transition of Si calculated within different approxima-
tions for the XC functional in comparison to experiment. For
a compilation of experimental data, see, e.g. , the articles by
Y'in and Cohen (Ref. 8) and Hu et al. (Ref. 14).

Phase
Diamond

Expt. CA BP PW91

cp (A)
Bp (Mbar)

5.43
0.99

5.39
0.97

5.47
0.90

5.45
0.92

P-tin
cp (A)
c/a
Bp (Mbar)

2.60
0.552 0.548

1.15

2.67

0.99

2.66
0.548

1.04

ARp (eV) 0.226 0.404 0.341

0.918 0.908 0.900
0.710 0.692 0.696

0.909
0.700

pt, (kbar) 103 125 80 146 122

Experimental coexistence pressure from Ref. 16.
Experimental coexistence pressure from Ref. 13.

' cia et al. (cp ——5.37 A, cp ——5.47 A, BA=0. 98 Mbar,
Bonp=0. 88 Mbar) and Ortiz (cpc+=5.37 A. , coBP=5.49 A).
In comparison to experiment, the equilibrium lattice con-
stant is underestimated by 0.8% within LDA, but overes-
timated within both GGA schemes, by 0.8%%up and 0.4% for
BP and PW91, respectively. Correspondingly, the bulk
modulus is underestimated by the GGA. However, our
PW91 results are distinctly closer to experiment than
those calculated by Juan and Kaxiras, who stated a
large overestimate of the lattice constant by 3% within
PW91. We attribute this difFerence to the additional
smoothing of the pseudopotential close to the origin in-
troduced by these authors, which apparently undermines
the quality of their pseudopotential. We conclude that
in the case of Si, the overall agreement between theory
and experiment is similar for both the CA-LDA and the
BP and PW91 GGA schemes.

The optimum c/a ratio for Si in the P-tin phase is
0.548, which is very close to the experimental ratio of
0.552. Furthermore, the value of c/a turned out to
be practically independent of the choice of Exc (CA or
PW91). The "equilibrium lattice constant" for the P-tin
phase is formally defined by the position of the minimum
in the equation of state for this structure. Similarly to
the lattice constant in the diamond structure, its GGA
values are larger than the corresponding LDA value and
the corresponding bulk moduli are smaller.

In Fig. 2 the equation of state for both the P-tin and
the diamond phases is shown for difI'erent approximations
to Exc. All con6gurations corresponding to portions of
the equation of state energetically above the common
tangent (denoted by a dashed line in Fig. 2) are ther-
modynamically unstable. In equilibrium, this interval
instead corresponds to a region of two-phase coexistence,
and the coexistence pressure pz is given by the slope of
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FIC. 2. Total energy per Si atom plotted versus volume.
The total energy of Si in the diamond phase at equilibrium
has been chosen as a zero-energy reference. The volume is
expressed in units of the experimental equilibrium volume.
Calculations were based on the Becke-Perdew (BP), Perdew
GGA-II (PW91), and Ceperley-Alder LDA (CA) XC energy
functional, respectively. The dashed line denotes the common
tangent to the equations of state of the diamond and the P-tin
structure (Gibbs construction).

FIG. 3. Distribution of pseudo-electron-densities in the
P-tin and diamond phases of Si. The density parameter r,
is defined by r, = (3/4vrn) ~, with n denoting the particle
density. The volume of the part of the signer-Seitz cell hav-

ing a density parameter within the interval r, and r, + Ar„
divided by the experimental equilibrium volume times Ar„
is plotted versus r, .

the common tangent. In Table I the quantity LEO de-
notes the difFerence between the energy minima of both
phases, and V~" and V~~ are the volumina of the coex-
isting diamond and P-tin phases, respectively, in units
of the experimental equilibrium volume of the diamond
phase. Corrections due to the difFerence in zero-point
energy between both phases have been neglected. For
each phase, the contribution to the total energy &om
zero-point motion could be estimated &om the respec-
tive Debye temperature OLi, EzpM = 9/8k~0~. For the
n to P-tin transition of Sn AEzpM was found to be about
2 meV. We therefore expect this correction to be neg-
ligible for Si (and also Ge) in comparison to the value of

Eo
Our calculated LDA value of the transition pressure,

pg 80 kbar ) is in go od agreement with the LDA re-
sult of 84 kbar of Boyer et al. , and the LDA result of
78 kbar of Needs and Mujica. However, this theoretical
value appears to be significantly smaller than the mea-
sured one. The coexistence pressure is increased by the
GGA schemes. To interpret this ending, we have plot-
ted the distribution of electron densities in Fig. 3. The
electron density of the semiconducting diamond phase is
much more inhomogeneous than that of the metallic P-tin
phase. The GGA lowers the total energies of both phases;
however, this energy lowering is larger for the more inho-
mogeneous diamond phase than for the metallic phase:
LEO comes out larger in both the BP and PW91 than in
the LDA calculations. Therefore, the coexistence pres-

sure is larger in the GGA than in the LDA. Note that
the difFerence in equilibrium volumes V,"—V, (equal to
0.216 for CA, 0.204 for BP, and 0.209 for PW91, all val-
ues in units of the experimental equilibrium volume of
the diamond structure) depends much less on the choice
of the XC functional than AEo does (which is increased
by 50% when the PW91 XC functional is used instead
of the LDA). Thus the change in Vi" —V~ does not af-
fect the above argument. The larger value of pq in the
GGA is due to a larger energy difFerence LEO between
the equation of states of the diamond and P-tin phase, it
does not seem to be directly linked to the quality of the
prediction of structural parameters (such as V&" —Vi~).

In Table II we focus on two technical aspects that be-
come important when using GGA pseudopotentials. To
check the transferability of our GGA pseudopotentials
we have included nonlinear core-valence XC, i.e., we

have constructed a pseudocore electron density, which be-
comes identical to the true core electron density outside
a radius of 0.66 A. , and which is continuous with respect
to its erst and second radial derivatives. The nonlin-
earity of the exchange-correlation functional is thereby
accounted for. In the case of Si, it is well established
that the correction due to nlcv XC is negligible for the
LDA XC functional. Here we find that this also holds
true for the PW91 XC functional (which was not obvi-
ous, because this XC functional depends not only on the
electron density as in LDA but also on the density gra-
dient and could therefore have transferability properties
diff'erent from the LDA XC functional).
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Phase PW91 PW91
nlcv

PW91
CA-ps

TABLE II. Comparison of several properties of Si in the
diamond and P-tin phase calculated within DFT using the
PW91 GGA. The first column corresponds to a self-consistent
calculation as described in the text. Incorporating the non-
linear core-valence XC leads to the results of the second col-
umn. The third column denotes a calculation in which the
LDA pseudopotential was used instead of the correct PW91
pseudopotential.

Phase

Diamond cp (A)
Bp (Mbar)

Expt. CA CA BP PW91
nlcv nlcv nlcv

5.65 5.55 5.59 5.74 5.73
0.77 0.77 0.75 0.62 0.64

TABLE III. Structural properties and the diamond to
P-tin phase transition of Ge calculated within different ap-
proximations for the XC functional in comparison to experi-
ment. For a compilation of experimental data, see, e.g. , the
article by Yin and Cohen (Ref. 8).

Diamond
cp (A)
Bo (Mbar)

5.45
0.92

5.45
0.91

5.40
0.94

P-tin cp (A.)
c/a
Bp (MBar)

0.551
2.78 2.78 2.86 2.85

0.547
0.86 0.86 0.67 0.70

P-tin
cp (A)
Bp (Mbar)

AE'p (eV)

2.66
1.04

0.341

2.65
1.05

0.335

2.64
1.04

0.493

AEo (eV) 0.212 0.182 0.293 0.251

0.875 0.863 0.891 0.907 0.921
0.694 0.700 0.723 0.745 0.752

pt, (kbar)

0.909
0.700

122

0.906
0.697

119

0.845
0.656

190

pq (kbar) 105 107 87 73 118

Experimental coexistence pressures from Ref. 22.
Experimental coexistence pressures from Ref. 23.

98

Furthermore, it would be convenient if one could sim-

ply use the ionic pseudopotential calculated within LDA
also for plane-wave total-energy calculations with the
PW91 XC functional. However, from the third column in
Table II it becomes obvious that such an approach would
be invalid, leading, for example, to a dramatic overesti-
mate of the transition pressure. Hence, we consistently
have to use the same approximation to Ex~ for both the
generation of the pseudopotential and the total-energy
calculations.

Our LDA lattice constant is only 1% lower than the
experimental value, and the agreement is slightly wors-
ened by both GGA schemes. The lattice constant we
have calculated using the BP XC, co ——5.74 A, is close
to the result of Ortizs (coBP=5.72 A.). Using the PW91
XC functional, we overestimate the lattice constant by
1.4%%, which, however, is still less than the overestimate
of 4.7% (co =5.92 A) reported by Juan and Kaxiras. 7

A similar discrepancy for Si is discussed in the preceding
subsection.

The equation of state calculated for the experimen-
tal c/a ratio is plotted in Fig. 4, with the dashed line

B. Germanium

We have repeated the calculations described above for
Ge, using the CA LDA as well as the BP and PW91
gradient-corrected XC functionals. Our results are sum-
marized in fable III. Nonlinear core-valence interactions
have been included, with a pseudocore electron density
that becomes identical to the true core electron density
outside a radius of 0.63 A. . This was done because, con-
trary to our findings for Si, the transferability of the
Ge pseudopotential with valence XC only turned out to
be insuKcient in view of the accuracy needed here, as
can be judged by comparing the LDA data in the two
columns of Table III labeled "CA." Differences in the
structural properties of Ge in the diamond phase calcu-
lated within the LDA may thus partially be due to in-
equivalent pseudopotentials and transferability problems
with Ge pseudopotentials not accounting for the nlcv XC
interaction. Our LDA lattice constant and bulk modulus
are co ——5.59 A and B+=0. 75 Mbar. Garcia et aL ar-
rived at co ——5.55 A and Bo +=0 78 Mbar (valenc. e XC
only), and Mujica and Needs calculated co ——5.64 A.

and Ho ——0.75 Mbar, including nlcv XC interactions.

0.8

0.6

CO

~ 0.4

C4

0.2

0.0
0.6

I I I I

0.7 0.8 0.9 1.0
Relative volume V/Vo„,

FIG. 4. Same as Fig. 2 for Ge.

ond
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marking the diamond and P-tin two-phase coexistence
regions. Our transition pressure of 73 kbar calculated
within the LDA is in very good agreement with the re-
sult of Needs and Mujicas (p~= 74 kbar) and by Kresse
and Hafner4s (Jx&

——75 kbar). By the same mechanism as
described above the transition pressure becomes larger
when the gradient corrections are included. Similarly as
in the case of Si, this effect is more pronounced for the
BP XC functional: When this scheme is used, the tran-
sition pressure for Ge increases to 118 kbar, while the
PW91 XC functional leads to a transition pressure of 98
kbar. Comparing these difFerent theoretical results with
the experimental values, 2' we find that the coexistence
pressure is underestimated by 30'%%uo within the LDA, while
the GGA results are closer to experiment (with a devia-
tion of about 10'%%up).

IV. SUMMARY AND CONCLUSION

We have carried out DFT total-energy calculations for
the equations of state of bulk Si and Ge, and derived
the coexistence pressure for the diamond to P-tin struc-
tural phase transition. Comparing with the experimental
data, we found that (despite the scatter of the experimen-
tal values) the LDA leads to a significant underestimate
of the transition pressure. When we use a GGA XC en-
ergy functional and thus account for the inhomogeneity
of the electron density, the transition pressure increases.
While the BP XC functional apparently overestimates
this effect, the PW91 XC functional leads to a coexis-
tence pressure very close to the experimental value by
Hu and Spain for Si, and also improves agreement with
experiment in the case of Ge. The coexistence pressure
measured by McMahon and Nelmes for Si lies halfway
between the respective LDA and PW91 GGA results.

The difference between our LDA and GGA results for
the coexistence pressure of the diaxnond to P-tin struc-
tural phase transition in Si and Ge clearly demonstrates
that the calculated pressure does, in fact, sensitively de-
pend on the form of the exchange-correlation functional.
Very recently, Seifert et al.4 found a distinct increase of
the calculated coexistence pressure as a consequence of
the BP gradient correction for a phase transition in Sb.

Thus, when calculating such quantities, special attention
has to be paid to choose an exchange-correlation func-
tional that is capable of correctly describing the delicate
total-energy difference between the respective phases.

We interpret the increase of the coexistence pressure
to be analogous to the well-known effect of "overbind-
ing, " i.e., the overestimate of cohesive energies in LDA
calculations. In both cases, one is interested in a total-
energy difference between two systems that distinctly
differ with respect to the homogeneity of their electron
density. Atoms, which have an inhomogeneous electron
density, bond together to form a solid with a more ho-
mogeneous electron density distribution. Similarly, the
electron density of Si or Ge in the metallic P-tin phase
varies over a much smaller interval (i.e. , is more homoge-
neous) than the electron density in the diamond phase.
In comparison to the LDA, the GGA always lowers the
total energy; however, this energy decrease is larger for
the more inhomogeneous systexn (i.e., for the atom or the
diamond phase, respectively). ss Thus, cohesive energies
come out smaller in GGA than in LDA. Similarly, the
energy difFerence LEO becomes larger in GGA. There-
fore, the coexistence pressure calculated within the GGA
schemes is larger than that calculated within LDA.

This mechanism appears to be rather general. The
improvement of the LDA total energy with respect to
the exact total energy &om quantum Monte-Carlo cal-
culations with increasing "homogeneity" of the system
has recently been demonstrated by Mitas and Martin
for the nitrogen atom, molecule, and two types of solid
structures. The difference between the LDA errors of
the total energies [E(LDA) —E(Monte Carlo)j of the
two solid phases are, in principle, analogous to our GGA
correction to LEO. Hence, we expect the inclusion of
electron-density inhomogeneity efFects in Exc to be of
importance also in the case of other structural phase tran-
sitions that are accompanied by a substantial change in
electron density homogeneity.
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