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We present a detailed description of the path-integral quantum Monte Carlo and effective potential
methods for the calculation of the first few even-frequency moments (up to the fourth) of the
spectral density of an atomic-displacement time-correlation function as functions of temperature in
the quantum regime. Classical moments are also calculated up to the sixth to analyze the inQuence
of finite-size effects. Numerical results are presented for Lennard-Jones interaction-potential models
of solid argon and solid krypton. The relevance of quantum efFects at lower temperatures is pointed
out. The advantages and limitations of these approaches to the calculation of frequency moments
are discussed.

I. INTRODUCTION

The calculation of equilibrium thermodynamics func-
tions of anharmonic crystals in the regime of low temper-
atures when quantum effects are large can now be car-
ried out with good accuracy by the path-integral quan-
tum Monte Carlo method or by the variational ef-
fective potential method. However, the calculation of
nonequilibrium properties of anharmonic crystals in the
low-temperature limit, such as time-displaced correlation
functions of the atomic displacements, remains a chal-
lenging problem.

An approach to solving this problem that has been suc-
cesful in application to linear chains is based on working
with the spectral density of a time-displaced correlation
function, i.e. , with the Fourier transform in space and
time of such a correlation function. These spectral den-
sities are often measured directly when an external probe,
such as a neutron, is scattered by the vibrations of the
crystal. In this approach the first few frequency moments
of the spectral density are calculated as functions of tem-
perature for a fixed value of the wave vector appearing
in the definition of the spectral densities. The calcula-
tion of each moment is a calculation of an equilibrium
property of the cr'ystal, and can be carried out by the
path-integral quantum Monte Carlo method, or by the
effective potential method. The spectral density, as a
function of frequency, is then reconstructed from these
moments, e.g. , by a continued fraction representation
with a suitable termination. If the spectral density
consists of a single peak, an accurate determination of it
in this way by the use of only few moments is feasible. If
the time-displaced correlation function is that of atomic
displacements, the peak in the spectral density is cen-
tered at the frequency of the phonon whose wave vector

is the one for which the spectral density has been cal-
culated, and its width gives the inverse lifetime of that
phonon due to its interactions with the other phonons
of the crystal. Thus, from calculations of such spectral
densities the temperature dependence of the phonon fre-
quencies and lifetimes can be determined in a nonper-
turbative fashion. In view of the success of such calcu-
lations of these important characteristics of phonons for
one-dimensional crystals, ' it is of interest to explore
the possibility of carrying out analogous calculations for
three-dimensional, Bravais, crystals. By suitable choices
of the components of the atomic displacements entering
the correlation function, and by choosing the wave vec-
tors for which the spectral density is being calculated
along symmetry directions in the Brillouin zone of the
crystal, one can ensure that the resulting spectral den-
sity possesses a single peak. It is therefore reasonable to
expect that a good representation of the spectral density
can be obtained by the use of only a few frequency mo-
ments. In this paper we describe the calculation of the
temperature dependence of the first few frequency mo-
ments of a time-displaced correlation function of atomic
displacements for a nearest-neighbor Lennard-Jones (LJ)
crystal, i.e., a face-centered-cubic crystal in which each
atom interacts only with its 12 nearest neighbors through
a 6-12 Lennard-Jones potential. The long-range interac-
tions are taken into account in a static approximation.

The path-integral Monte Carlo and effective potential
methods will be used in the calculations, and various tests
of the reliability of the results obtained will be carried
out. The use of these moments in different approaches
to the reconstruction of the spectral density will be de-
scribed in a subsequent paper.

The outline of this paper is the following. In Sec. II we
define the displacement correlation function to be stud-
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ied in this paper and obtain formal expressions for the
first four even-&equency moments of its spectral density.
The evaluation of the quantum mechanical averages that
appear in the expressions for the moments on the basis of
both the path-integral quantum Monte Carlo and effec-
tive potential methods is discussed in Sec. III. In Sec. IV
the three-dimensional (3D) Lennard-Jones crystal model
underlying the numerical calculations carried out in this
paper is introduced, and the Monte Carlo method used
in this calculation is described. Numerical results for
the &equency moments of the spectral density of atomic
displacements as functions of temperature in both the
classical and quantum regimes are presented in Secs. V
and VI for solid argon and solid krypton. A summary
of the results obtained, and the conclusions reached &om
them, in Sec. VII, concludes the paper.

C-2(~ ~) = —f« '('2«;(2)E «22-(o)

+( 1 )s(o)(1 (t)),

where the k vector is defined within the erst Brillouin
zone (FBZ), and

&1, —~)
1

is the Fourier transform in k space of $1 ——x1 —1, i.e. ,
of the instantaneous displacement of the 1th atom from
its classical equilibrium position. Moreover, the angular
brackets stand for the canonical average

(A) = —Tr(pA),

II. DISPLACEMENT CORRELATION
FUNCTION OF A 3D CRY'STAL

where Z = Tr(p) is the partition function and p
exp( —PH) is the non-normalized density matrix. It
is conveiiient to introduce the projections of C p(k, ~)
along the longitudinal and transverse polarizations of the
vibrational mode k, namely,

Let us consider a crystal of N atoms of mass m moving
in three dimensions and interacting through a pairwise
central potential u(r). Its Hamiltonian is

C„(k2 ur) = ) ei,„~C~p(k2 (u)ei, „p2
nP

(6)

where

2«

a =) p' +v(x),
1

where ei,& (p = 1, 2, 3) are the polarization vectors. By
expressing the thermal average in square brackets in
terms of the exact eigenfunctions and eigenvalues of the
Hamiltonian H it can be proved that C„(k,ur) possesses
the symmetry properties

V(X) = -) ) ) u(ix1+,„—x1i).
1 ~ d

(2)

In Eqs. (1) and (2) atoms have been labeled by their
classical equilibrium position 1 = {I )(n = 1, 2, 3) corre-
sponding to the sites of a fcc Bravais lattice, p1 = {p1
and x1 = {xi ) are the instantaneous momentum and
position operators of the 1th atom, and the sum over
n = 1, 2, . . . takes into account its interaction with the
successive shells of neighbors labeled by their relative
equilibrium position d . The dynamical behavior of the
system is investigated by means of the symmetrized spec-
tral density tensor

C„(k,ur) = C„(—k, —u)) = C„(k, —(u) = C„(—k, ~), (7)

where we have also used the fact that every atom in the
lattice is at a center of inversion symmetry. The even-
frequency moments of C„(k,u) are defined by

M2 „(k) = f d~C„(k, «2)22 ", (8)

while the odd moments vanish in view of Eq. (7). By
coinbining Eqs. (8) and (6), and taking advantage of the
stationary properties of the system, the expressions for
the frequency moments can be written in a very conve-
nient way as follows:

M2, 2(k) = —((kkl Ck ) (kkl 1—k) + (kkk 1 k) (kkl ' $k ))
where

(1O)

Moreover, the equal time correlation functions given by Eq. (9) can be explicitly evaluated by means of the the
equations of motion; in the quantum regime a repeated use of the Heisenberg equations of motion leads to the
following expressions for the first four even moments:

~2,„(k) = ((«««. Ck) (kk, . 6 «) ),
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where we have introduced the notation

0
Vi ——

8$,

and

refer to this procedure by the label CMC (classical Monte
Carlo) .

III. QUANTUM AVERAGES

Vk = ' ) e'"'V, .
N

In the classical regime the integration over the momenta
can be easily carried out so that Eqs. (11)—(14) reduce
to

In the last section we have seen that the calculation
of the frequency moments requires the evaluation of me-
chanical equilibrium averages such as static correlation
functions. In the quantum regime statistical averages of
functions of coordinates and conjugate momenta can be
expressed as follows:

Mo, v(k) = ((eke ' ~k) (eke ~—k)) &

1
M2 „(k) =

mp'

(
(A) = — dYA

i i', Y ——g
~Z i '

2 )

xpi Y ——
vy, Y+ —q i

2 2 )
(23)

1
M4, ~( ) =, ((ek~. &kV) (ek~ &-kV))

1 ~ 0
Ms „(k) = ) (ek„.V'kV)

my

0
(ek, . &—kV) (2o)

3Ni2

f axe&x).
Z& i2~52P) (21)

The angular brackets here denote the classical configura-
tional average

where p(X~, X~) is the non-normalized density matrix,
Z is the partition function, and the function A appearing
in the integral is the so-called p-left ordered form of the
related operator A.

In the classical regime Eq. (23) reduces to the classical
phase space integral which, after the trivial integration
over momenta, leads to Eqs. (21) and ( 22).

An ideal starting point to deal with the quantum sta-
tistical average (23) is the path integral formulation of
equilibrium statistical mechanics. Within this formalism
the density matrix p(X~, X~) is expressed by an integral
over all paths X(u), ue[0, ph], having the initial point
X(0) = X~ and the anal point X(Ph) = X~ so that

and the classical partition function reads

3NI2
z~ = ~, ~ f ax.-&' &"&.

i2 npi (22)

Xg
p(X, X ) = D[X(u)]e ~(x(")j,

+A
(24)

where the weighting factor S[X(u)] is the Euclidian ac-
tion defined by

Therefore the evaluation of the frequency moments in the
classical regime can be carried out by means of standard
Monte Carlo computations. In the following we shall

S[X(u)] =
~" du -m . ,—X (u) + V(X(u))

2
(25)
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A. Path-integral Monte Carlo (PIMC)

In the PIMC approach the integration over the "imaginary time" u is approximated by a summation over a discrete
set uz = PhJ/P with J = 0, 1, . . . , P, where P is called the Trotter number, so that the density matrix appearing in
(23) can be written

dXg exp (—PVpIMc((Xg})),
( P ) 3NP/2 P 1—

P(X~ XII) =
I

(26)

where X~ = X(ug) and the potential in the Boltzmann factor is defined by

P P
VPIMc((XJ)) =

2 2 ) (XJ XJ—1) ) [V(XJ) + V(XJ—1)]~
J=l '" J=l

with Xo ——X~ and Xp ——X~. The averages of observables with a simple dependence on p can be easily evaluated
using the PIMC approximation of the density matrix. in Eq. (23); for the first three even moments we have

Mo, ~ = ([&k~ . &k(XP)] &k~ &-k(XP) )p,MC

P 1 P'
M2, p =

2 2 ) e ([eke (Xl —XP)i] [eke ( 1 —XP)1 ])pIMC,mp Xh2 (29)

M4 „=([ek„VkV(Xp)] [ek„V k V(Xp)])p, MC,

where the contracted notation ( )pIMc has been introduced for the normalized classical-like configurational integral
whose Boltzmann weighting factor is defined in Eqs. (26) and (27). Explicitly, the average of a function A((XJ))
reads

(&)PIMC = ( P ) 3NP/2

+PIMC (2&h P) I

dXJ A ((Xj})exp (—PVpiMC ((Xz)))

where

( P ) 3NP/2 P
&PIMC =

I

dXJ exp (—PVPIMc((Xg)) }

and Xo ——X~. In view of these expressions the evaluation of the frequency moments within the PIMC approach turns
out to involve the calculation of classical-like configuration integrals, but for a system of N x P particles. Therefore
numerical evaluation of these expressions can be set up in the form of standard classical Monte Carlo simulations.
However, in order to obtain exact results in the quantum regime (P —+ oo) an extrapolation of the numerical outcomes
for increasing values of P is necessary. For this reason the PIMC technique is very time consuming in practice, and
sometimes provides results that are not completely reliable. Moreover, the accuracy of the calculations becomes worse
and worse for increasing Trotter numbers.

B. Effective potential

The e6'ective potential method developed by Giachetti and Tognetti is based on a variational approximation
for the partition function, and has been successfully used to calculate thermodynamic averages of observables closely
related to the &ee energy and its derivatives. Recently this method has been generalized in order to calculate
quantum averages of functions of coordinates and conjugate momenta. Cuccoli et al. ' ' applied the effective
potential method to a linear chain of particles interacting with their nearest neighbors, in order to reconstruct the
spectral shape of the displacement correlation function by the evaluation of the related frequency moments. Our aim
in this section is to obtain the expressions for the first three even Inoments for a 3D system.

Let us recall the most important features of the effective potential framework. The density matrix is approximated
by

( ) / 3N2

q 2~8,2
pv (x}

(Yg —Xi, )
/k' (X) 2

- —- p 2~a~ (x)
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where the subscripts refer to the normal mode of vibration kp whose frequency uk„(X) is obtained through the
transformation Ui,„i (X) which diagonalizes the frequency matrix

1 0 V
p(X) = — (X+ u)

m (9 i~ ')9 mp X

Here, the shorthand notation ()x has been introduced to define the Gaussian average over the variables v,

2~,„(X)(y(v))„= f d~y(~)
[2tr ni, „(x)] ~

(35)

Moreover, the so-called "global" effective potential reads

v (x) =(V(x+~)) —2) ) ~»,.p(x)
& z (~+~) + —)»~] . 82V 1 (sinh fg~(X) l

11' nP

(36)

where fi,„(X)= PRuk~(x)/2 and

o.ii ~p(x) = ) Uk„i (X)Ur,„ip(x)ni, „(X).
where the partition function ZG. is

Finally, the "quantum renormalization parameters" o.k~
and Ak~appearing in the preceding equations are defined
in terms of the eigenvalues of the frequency matrix (34)
as follows:

ni, „(x)=
~

cothfr, „(x)— ~, (38)
2m~i, „x

Ak„(x) = —+ pk„(x), (39)

where pg„(x) = m wi, (X)gati,~(x). These parameters
represent the pure quantum contribution to the quadratic
fIuctuations of position and momentum of the normal
mode kp evaluated in a Gaussian approximation.

The quantum average of observables depending on co-
ordinates and momenta can be obtained by using the ef-
fective potential approximation for the density matrix in
Eq. (23). Explicit expressions for operators with a simple
dependence on p are given in Ref. 11. Let us recall here
the equations we need to calculate the first three even
moments, namely,

( ) 3N/2

q2trh'P)i (44)

The formalism so far developed is still too compli-
cated to handle because of the implicit dependence on
X in the quantum renormalization parameters and in
the frequency matrix (34). To make it computationally
tractable, in what follows we will use the low coupling
approximation (LCA) in its lowest-order form. In this
approximation all the con6.guration-dependent quantities
are expanded around the minimum X = Xp of VG(X),
and only first-order terms in bwi, „(x) = wi, (X)—
pti, „(xp) = e are retained in all the calculations and
in the quantum renormalization parameters (o.). The
details of this procedure are extensively described in a
previous paper; we outline here only its basic features,
and refer the reader to the aforementioned reference for a
deeper discussion. The first advantage of the LCA man-
ifests itself in solving the secular equation (34). Due to
the translational invariance of the system, the orthogo-
nal matrix Ur, & i (Xp) turns into the tensor product of a
Fourier transformation and the 3 x 3 polarization matrix

. If "bare" frequencies are used, we have simply

(~) = ((~(X+~))x), (40)

(41)

2 2
kg, a.~k ~p6k& P

np
(45)

where A is an operator depending on the coordinates
only, and

Aiil ~p(x) = ) Ui,„i~(x)Ui, „i p(x)Ar, „(x). (42)

In Eqs. (40) and (41) we have also introduced the no-
tation ()~ for the classical con6gurational average with
the effective potential:

where, for a fcc lattice, the frequency matrix ~k p can
t

be written

u p(d„) 2 (k d„l
m ( 2 )'

7l

(46)

where u p is the second derivative tensor of the central
potential u(r). Furthermore, by taking advantage of the
pairwise form of the interaction potential, the effective
potential VG. can now be written in a much more conve-
nient way as follows:
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=1 1 1 sinh fk„V~(X) = —) ) ) & u(~x(+g„—x|~) + —) [u p (~x)+g„—x)~) —u p(d„)]D)g p ) + —) ln
1 ~ d nP kp kp,

(47)

where D~d p is the pure quantum part of the square of the displacement between the atom 1 and its nth-neighbor
shell in the d direction; for a fcc lattice the expression for it reads

k 'd„l
D)g p = ) .4sin (48)

The tensor Dyd p is invariant under operations of the lattice translation group but has a nontrivial dependence on
the direction of d . However, the calculations can be greatly simplified by assuming that the different components of
the relative atom displacements are uncorrelated and the tensorial product appearing in Eq. (47) can be calculated
using the approximation

vers(x~+g„—x~) vers(d ) = d (49)

so that
I) u ~(r)D&,„., -u"(r)D„'+ DT.

cxP

Therefore, only the longitudinal (D ) and transverse projections (D ) of the tensor D—:D&z„p need to be
considered, and these parameters are invariant under the operations of the lattice rotation group. At the present
stage the expressions for the frequency moments up to the fourth can be obtained by means of the LCA form (first
order) of Eqs. (40) and (41), which read

(»-» ~) = ~» ~-~+»—~,-~+ (~»~,-~(X))~+ &(~")

where the terms bo. , bp take into account the deviation of the renormalization parameters from the exact values
calculated on the basis of w(Xp) (to first order in e). The derivation of the frequency moments is then carried out
exactly as discussed in Ref. 11 with the slight di8'erence that in our calculations bare frequencies are used. The
expressions obtained for the &equency moments up to the fourth are

Mp &(k) = ((ek& gk)(ek~ ' 6—k))G + ok' + (~~k~(X))D&
2(dye Rdgp

1 2 t Cdk~ Bo'kp
M2, ~(k) = +~k~~k~+

l
~k~+ "~ "

l
(~~k~(X))~

mP " ~
q

" 2 a~k„~

M4, ~(k) =, ((eke ~kv)(eke'~ —kv))~+ 2 ) ) e ) (ek~ d )(&kp d )
11' dnd~

x D (u (x~g„)u (x~ g )) + D —
2

u (&1'd'„)
&ld 1d

+o'kg ~k~ +
l

2okp + ~ ~km
~
~kg(~~kg, (X))t-"~4 f 2CXkgl

Rdk~ )

(53)

(54)

(55)

where we have used the shorthand notation xki = ~x~+g„—x~~. It should be noted that the approximation (49)
has been used once again in order to introduce in (55) the expressions for the longitudinal and transverse projections
of D . Furthermore, the same approximation enables us to express the deviation uk~(X) &om the exact eigenvalue
ark„(Xp) (first order) by

$~„~(X)= (u„„(X)—~„„(Xp)

= —) ) 2 sin
~ ~

[u" (&) —u" (& )](&kp . d )' +
~

—
~ I

[1 —(&kv d )']1,f k d„l,g, l -, ~u'(r) '( n)m, -
q 2 y

"
& & " )

(56)
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Therefore the average (Su&„(X))G appearing in the pre-
ceding equations involves global averages of derivatives
of the central potential only.

The evaluation of the &equency moments within the
efFective potential approach through Eqs. (53)—(55) in-
volves terms equal to the classical ones, except for the
replacement of the classical average by the G average,
which can be calculated via classical-like Monte Carlo
computations. We shall describe this procedure by the
label EPMC (effective potential Monte Carlo). Moreover,
the same equations require the evaluation of additional
purely quantum correction terms which can be evalu-
ated with high accuracy by means of double-precision
FORTRAN codes.

On approaching the classical regime (Pku —+ 0) the
quantum renormalization parameters vanish so that the
global averages turn into the classical ones, and the clas-
sical expressions for the moments are recovered with the
anharmonicity fully taken into account. Of course, in the
quantum regime the effective potential approach gives
the exact results for a purely quadratic interaction po-
tential; the nonlinear quantum correction terms are eval-
uated within the LCA (first order) through the approxi-
mation (49). Such an approach has proved to be very ac-
curate for the calculation of thermodynamic observables
related to the &ee energy derivatives and for the kinetic
energy. Furthermore, the evaluation of the &equency
moments in the quantum regime has been successfully
performed for L3 chains with the same quantum coupling
as in argon. At this stage it is interesting to check the va-
lidity of the method for three-dimensional systems. For
this reason the results obtained by means of the effective
potential method will be compared in the following with
the "exact" results of the PIMC simulations.

teractions have been dynamically taken into account in
all the computations; the contribution of the interactions
beyond the nearest-neighbor shell has been considered in
a "static approximation" in which the instantaneous rel-
ative positions of the atoins are replaced by their (classi-
cal) equilibrium values. This approximation apparently
does not affect the evaluation of the moments of the spec-
tral function (3), but gives an additional temperature-
dependent contribution to the average energy and pres-
sure. This procedure allows us to use the all neighbor
interaction parameters e and o of Ref. 18 which give, for
the aim of this paper, a reasonable representation of the
equation of state of the system and the dispersion curves.
The latter are obtained from the solution of Eqs. (45)
and (46) where, as a consequence of the above assump-
tions, the sum over the neighboring shells drops out, and
d runs over the 12 first neighbors only. The model de-
scribed above allows us to carry out quantum simulations
at low temperature and zero pressure with values of the
density in very good agreement with the experimental
data

In the next section we report numerical results for
two different sets of the &ee parameters e, o, m repro-
ducing, respectively, solid argon and solid krypton. The
quantum behavior of these solids is determined by the
"quantum coupling parameter" q = hO/e, which is
the ratio between the quantum harmonic energy hO
[0 = u"(r;„)/mj and the characteristic energy scale

For the lighter argon (iI = 0.223), the quantum ef-
fects are expected to be more important than for krypton
(q = 0.123)

V. MONTE CARLO EVALUATION
OF THE FREQUENCY MOMENTS

IV. MODEL POTENTIAL
AND MONTE CARLO SIMULATION

The above formalism is applied in this section to a 3D
LJ crystal whose Hamiltonian is given by Eqs. (1) and
(2) with a pair interaction potential given by

(57)

This simple model, through an appropriate choice of the
adjustable parameters m, cr, and e, is able to reproduce
reasonably the behavior of thermodynamic observables
of rare gas solids such as the internal energy, kinetic en-
ergy, specific heat, and pressure. Nevertheless, it is well
known that the model needs to be improved to calcu-
late physical quantities closely related to the dispersion
curves of these solids such as the time-correlation func-
tion defined in (3).i 2 However, as was stated above,
the main purpose of this paper is to focus on the reliabil-
ity of the effective potential approach for the evaluation
of the frequency moments of the quantum spectral func-
tion (3). Therefore, at this stage we employ the simple
LJ 12-6 model with the interaction potential defined in
Eq. (57). In the same spirit, only nearest-neighbor in-

In Sec. II it has been shown that the evaluation of
the frequency moments in both the classical and quan-
tum regimes can be reduced to the calculation of config-
urational integrals, which can be carried out by means
of Monte Carlo simulations. In all these simulations we
have used the single-particle version of the METROPOLIS
algorithm; namely, in any single move an atom is picked
at random and given a uniform random displacement
along each of the coordinate directions. The maximum
displacement allowed is an adjustable parameter which
has been set so as to lead to an acceptance ratio of 30%%uo—

50% of the trial moves.
We have implemented algorithms for CMC, EPMC,

and PIMC computations which can be used in princi-
ple for every wave vector k in the reciprocal lattice. In
these calculations particular care must be taken in the
choice of the simulation box size. In fact, the expres-
sions to be evaluated involve thermal averages of Fourier
transforms in k space whose values might be dependent
on the box considered if its linear size is not big enough
with respect to the wavelength A = 2vr/~k~. An anal-
ysis of the data against the size of the simulation box
is sometimes necessary to obtain the correct results in
the thermodynamic limit. In practice, if high accuracy is
required in the evaluation of the moments, only wave vec-
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FIG. 4. Temperature dependence of the longitudinal ze-
roth moment at zero pressure for k = 2vr/ao(1, 0, 0) and
rI = 0.223 (solid argon). Open squares, classical Monte Carlo
data (CMC); open circles, efFective potential Monte Carlo
data (EPMC); stars and error bars, PIMC data.

FIG. 6. Temperature dependence of the longitudinal sec-
ond moment at zero pressure for k = 2z/as(1, 0, 0) and
g = 0.223 (solid argon). Symbols as in Fig. 4 except that
the solid line (classical data).

the EPMC and PIMC data for the zeroth and second mo-
ments. The situation seems to be a little bit less favorable
for the fourth moment (Figs. 8 and 9); even though the
reliability of the PIMC data is sometimes questionable
we believe that the evaluation of the fourth moment in
argon could be slightly underestimated. Since the efFect
is more visible at low temperatures and for the highest-
order moment calculated, the disagreement might be due
to a small underestimation of the quantum efI'ects. In
other words the efI'ective potential framework based. on
the lowest-order LCA and on the approximation (49)
might fail to take fully into account the quantum anhar-
monic part of the interaction, which plays an increasingly
important role as the order of the moments increases;

indeed, higher moments are related to higher-order cor-
relations. For a smaller value of the quantum coupling
parameter rl (solid krypton) the EPMC and PIMC data
match the computational results within the statistical
uncertainty, and the agreement is found to be excellent
for every moment in the temperature range investigated
(T = 20, 40, 60 K). Figures 10 and ll present the data
for the fourth moment of krypton.

The evaluation of the sixth moment has been per-
formed in the classical regime only (CMC). At each tem-
perature we have analyzed. the data against the size of the
box. In particular, different sizes (N from 108 to 4000)
have been considered in the simulations, whose results
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FIG. 5. Temperature dependence of the transverse zeroth
moment at zero pressure for k = 2z/ao(1, 0, 0) and rI = 0.223
(solid argon). Symbols as in Fig. 4.

FIG. 7. Temperature dependence of the transverse second
moment at zero pressure for k = 2z /ao(1, 0, 0) and rl = 0.223
(solid argon). Solid line, classical behavior; open circles, ef-
fective potential Monte Carlo data (EPMC); stars and error
bars, PIMC data.
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FIG. 8. Temperature dependence of the longitudinal fourth
moment at zero pressure for k = 27r/ao(l, 0, 0) and rl = 0.223
(solid argon). Symbols as in Fig. 4.

have been plotted versus the inverse of the linear size of
the box; an example of this procedure is reported in Fig.
12. The same figure shows that the results obtained with
the biggest box can be considered a very good approxi-
mation to the thermodynamic limit value (1V ~ oo). Fi-
nally, Fig. 13 shows the temperature dependence of the
sixth moment (argon), whose thermodynamic limit val-
ues are deduced by the aforementioned procedure. We
believe this analysis necessary if a statistical error of 1%
or less is desired in the calculation of the moments.

VII. CONCLUSIONS

We have presented a detailed description of the tech-
niques available for calculating the frequency moments
of the atomic displacements time correlation function of
a 3D crystal. We have tested the computations against
finite-size effects for wave vectors at the zone boundary of

FIG. 10. Temperature dependence of the longitudinal
fourth moment at zero pressure for k = 2z/as(1, 0, 0). The
coupling parameter is rI = 0.123 (solid krypton). Symbols as
in Fig. 4.

the FBZ. In general, we believe that the first three even
moments are unaffected by these effects if the computa-
tions are set up respecting the safe condition L 8z/~k~
for the choice of the linear size I of the simulation box. If
high accuracy is necessary, we also believe that an analy-
sis of the data as functions of the size of the box is appro-
priate in calculations of higher moments, which require
the evaluation of sums over larger clusters of particles.
Finite-size effects increase with the number of shells of
neighbors taken dynamically into account in the com-
putations, and turn out to be more important at high
temperatures where the configurational phase space is
explored more effectively.

We have also developed a method to calculate the fre-
quency moments in the quantum regime for an all neigh-
bors interacting crystal. The numerical data reported
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FIG. 9. Temperature dependence of the transverse fourth
moment at zero pressure for k = 2z /ap(1, 0, 0) and rl = 0.223
(solid argon). Symbols as in Fig. 4.

FIG. 11. Temperature dependence of the transverse fourth
moment at zero pressure for k = 2z /ao(1, 0, 0). The coupling
parameter is rl = 0.123 (solid krypton). Symbols as in Fig. 4.
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FIG. 12. Longitudinal sixth moment (classical data)
vs number of cells per edge of the simluation box for
k = 2s /ap(1, 0, 0) at T = 60 K (argon).

FIG. 13. Temperature dependence of the longitudinal (tri-
angles) and transverse (circles) sixth moment at zero pressure
in the classical regime for k = 2s'/ap(1, 0, 0) (argon).

here refer to a nearest-neighbor potential with a static
long-range correction; tests against the extensive PIMC
computations show that, for both values of the quantum
coupling parametrs g considered here, the effective po-
tential method provides excellent results for the second
and the zeroth moments. The latter can be related to
the integrated intensity in a neutron scattering experi-
ment which, in the quantum regime, is strongly affected
by the zero-point motion of the system.

The limits of our approach show up in the few percent
underestimation of the fourth moment in solid argon, but
we believe that the method is absolutely reliable for solids
with smaller quantum coupling parameters rl (krypton,
xenon). In this case the advantage of the effective po-
tential method over PIMC resides in the high accuracy
which can be achieved in the computations.

It is not an easy task to extend, in a simple form, the
formalism developed here beyond the I CA; we believe
that efforts to make the method reliable in systems where
quantum effects are more important must focus on the
possibility of taking into account higher-order terms in
the renormalization parameters (n). The first step in
this direction is allowing the &equency to be renormal-
ized by Eq. (34).ii Moreover, even though the approx-
imation (49) greatly simplifies the formalism, it might
become poor as the order of the moments increases, so

that its use in calculating higher moments might be ques-
tionable.

Nevertheless, from a knowledge of the Grst three even
moments it is possible to determine the short-time behav-
ior of the atomic displacements time correlation function,
and by introducing appropriate approximations for the
long-time behavior we believe that an estimate of the
phonon lifetimes can be achieved in regions where per-
turbative methods are no longer valid. This method
should be particularly useful in the quantum regime
where molecular dynamics simulations are not able to
give a correct description of the correlations in the par-
ticles' motion. Furthermore, through an appropriate
choice of the pair interaction potential, the method could
be used throughout a wide temperature range in order to
determine the phonon lines shapes of real rare gas crys-
tals that are directly accessible by experimental measure-
ments.
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