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Slave-particle quantization and sum rules in the t-J model
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In the framework of constrained systems, we give the classical Hamiltonian formulation of slave-
particle models and their correct quantization. The electron-momentum distribution function in the t-J
and Hubbard models is then studied in the framework of slave-particle approaches and within the decou-
pling scheme. We show that criticisms that have been addressed in this context corning from a violation
of the sum rule for the physical electron are not valid. Due to the correct quantization rules for the slave
particles, the sum rule for the physical electron is indeed obeyed, both exactly and within the decoupling
scheme.

I. INTRODUCTION

includes a kinetic hopping term t," between different sites
and an on-site Coulomb repulsion U between electrons of
different spin. The operator c; annihilates an electron of
spin o. at site i and the occupation number operator is

Of particular interest is the strong-coupling regime
where an effective Hamiltonian of the Hubbard model
with nearest-neighbor hopping is the t-J model Hamil-
tonian:

8'=t g (c,. c +H. c.)+Jg(S; S —
—,'R;8' )

(ij ),o. (lj)
(2)

(with J=4t iU and S;=—,'g g; o tic;&). The on-site
Coulomb repulsion there is very large as compared with
the electron-hopping energy, and therefore when there is
less than half filling the system will avoid configuration
with doubly occupied sites. One thus has the constraint

gc, c,- (1. (3)

Apart from numerical approaches, a popular analytical
approach to the t-J model is the slave-particle theory
where, for instance, in the slave-fermion representation
the electron operator c, is written as c; =b; t";, with f
the slave fermion and b a boson. Instead of the con-
straint of Eq. (3), which is difficult to handle, one consid-

Several strongly correlated fermionic systems such as
liquid He, heavy-fermion compounds, high-T, supercon-
ductors, and Kondo systems are the subject of intense
theoretical as well as experimental interest. The Hubbard
model, originally introduced to describe correlation
effects in narrow d-band materials, has been put forward
as a possible key to the understanding of high-T, oxide
superconductivity. '

Describing electrons on a lattice with one orbital per
site, the Hubbard Hamiltonian,

8=g t; c; c + Ug n, 8',
~

ers the a priori more convenient slave-particle constraint
avoiding double occupancy at site i:

f f, +gb; b; =1. (4)

With the boson operator b; keeping track of the spin and
the fermion operator f; keeping track of the charge, this
formalism is well adapted to study the problem of the
decoupling of spin and charge degrees of freedom in the
large-U-limit Hubbard model. This decoupling, charac-
teristic of Luttinger liquids, appears to occur in one di-
mension (1D), the situation being still confused in 2D.
At the mean-field level, spinons and holons, the elementa-
ry spin and charge excitations, may be separated in this
formalism but are strongly coupled beyond the mean-field
approximation.

Such slave-particle approaches are usually studied in a
functional integral (over coherent states of Fermi and
Bose fields) representation of the partition function, the
slave-particle constraints being enforced by functional in-
tegration over Lagrange multipliers.

However, one may wonder what happens within a
direct operator quantum approach of such slave-particle
theories. Indeed, sum rules, coming from operator com-
mutation relations, for spectral functions of the boson
and fermion were used recently in Ref. 5 in a study of the
electron-momentum distribution function in the t-J mod-
el in the framework of the slave-particle approach and
within the decoupling scheme for the electron Green's
function. It was claimed there that the sum rule for the
physical electron was not obeyed within this framework
and correspondingly that the electron Fermi surface
(EFS) was not explained. However, it happens that the
operator commutation relations used in Ref. 5 for the
slave fermion and boson were the usual naive ones, i.e.,
the same as if the slave-particle constraint was not
present. One then can question the use of such operator
commutation relations in a slave-particle approach.

In this paper, we study the direct operator approach of
such slave-particle theories. In Sec. II, we present at the
classical level the consistent Hamiltonian formulation of
models having a slave-particle constraint for their fields.
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We show in Sec. III at the quantum level, for the slave-
fermion and the slave-boson representations of the t-J
model, the modifications in the sum rules for the slave
particles coming from the fact that the correct canonical
relations compatible with the constraints are not the
naive ones. We present in Sec. IV a direct explicit opera-
tor quantization of the slave-particle approaches of the t-
J model which confirms the results obtained in Sec. III.
In Sec. V, we extend our analysis to a slave-boson repre-
sentation which has been introduced for the finite-U
Hubbard model. Section VI summarizes our conclusions,
and an Appendix presents calculations omitted for clarity
in Sec. II.

II. HAMILTONIAN FORMULATION
FOR SLAVE MODELS

Let us consider the general classical Lagrangian (writ-
ten in real time) for n bosons b and m fermions f
(Grassmann variables) on a lattice:

L =iamb; d, b; +iaaf; d,f; +X(bt, b,f t,f)
i, a I, CT

++A; gbtb, +gft f, 1—
a

bosons and fermions being submitted to the slave-particle
constraint at each site i:

gbt b; —+gf; f; 1=0 . —

One shows in the Appendix that, after a Dirac treat-
ment, one gets a Hamiltonian formalism with the
nonzero brackets:

tb, ,biij= i5; 5 —p, [f;,fj j= &5;J5, , —

{A,, II, j =5;,

but with the first class constraints

N; =0 and II;=0,
where, following Dirac, first class means here
[4;,II;j=0 and where the symbol =0 (weakly zero)
means that one has to set the constraints only after com-
puting all the brackets. We use graded Poisson-Dirac
brackets such that, for instance,

(B, A j= —( —1)' [A,Bj,

( A, BCj = j A, B jC+( —1)' B [ A, C j,

[f, ,4 j= i—f; 5;, jft, 4 j=+if, 5,&,

[A, , II j =5,", (12)

(13)

A,- =0,
where the 6's, the K's, and the (Grassmannian) H's are
parameters.

We have then for the nonzero brackets of the funda-
mental variables with these gauge fixing constraints

[b, ,+'j = iG;—5,~, [b;,@'j=+iG, 5,), (15)

(if;,@1j
= iH; 5;,—[f;,N'j =+iH; 5;, (16)

t II;,A, j
= —5;,. (17)

and we obtain the bracket of the slave-particle constraint
with its gauge fixing constraint as

j@,, 4&,'j=i g(6; b; 6; b; )—
j a

+g(H, .f,.+H,'.f,' ) 5,, =iD;5,, —

which is not weakly zero.
Let us note that the Hamiltonian (see the Appendix) is

now

H3= X(b, b,f,f )—
—g(x; —A;) gb; b; +gft f; 1++II;w;, —

where the first class constraints coefficients x and w

(which are in H3 independent of the fields) are deter-
mined by the requirement that the time derivative of the
gauge fixing constraints is weakly zero

which means that the gauge transform ations are
b +e —'b, b &e—'bt, f~e 'f, f ~e'f, A~A+a,
II—+ H.

The standard strategy is then to fix the gauge by
choosing explicit forms for each gauge and imposing
them as constraints not following from the Lagrangian.
The choice of gauges should be made in such a way that
the constraints 4, and H; will cease to be first class. It
happens that a convenient choice here is the linear one,

N,'=Q(6; b; +6;"b; )+g(H; f; H; f—; )+K; =0,

where a =0 if A is a bosonic quantity and a =1 if 3 is a
fermionic quantity.

The role of first class constraints is to generate
infinitesimal contact transformations (that we shall call as
usual gauge transformations) in the Hamiltonian formal-
i.sm that do not affect the physical state of the system. We
have here for the nonzero brackets of the fundamental
variables with the first class constraints:

[4,', H3 j =i+ 6; —
t

—6;

aX & aX
'~ df

i(x; —A, )D,—=0,
fA;, H3j =w, =0.

(20)

(21)

[b;,@Jj= ib, 5,~, jb;,@—j=+ib;t 5, Defining Ip&—=4)';, y2
——@,', y3 ——H, , y4

——A;, the matrix
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C,b
=—[y„yb } is nonsingular and all the constraints are

now second class. Systematic use of the standard
Dirac bracket of two quantities A and 8,

[X"X"],=(X'5, +X"5,)5.

with X; ++X; =1, (36)

[~»}.=—[~»}—X[~ m. }« ').b[vb»}

i[b;,bjp}„=[5p (G,pb—, G,tb—
,tp)/D, ]5, .

i j b;, b&p},= [.( G;pb; G, b—,~p ) /D; ]5,",
[b;,b'jp}, = [(G,pb; G;t b—;p)/D; ]5,",

i [f;,f~, },=[5,+(H;,f; +Ht f~, )/D; ]5;

i[f; fj.},= [(H;„f;—+H; f;, )/D;]5;, ,

i [f;,fJ„},= —[(Ht f; +Ht f;,)/D, ]5,

i [f;,b,
t

}„= f ( G,Q—; H,t b,t—) /D, ]5,,
i jf;., b,.}.= [(G,'&,'. H—

,.b,.)/D, —]5,,
&'[f;,b~ },=[(G;+. ;t H; b,t )/D, ]5-,",
[f;,b, },= [(G;tQ, H,t b, )—/D, ]5,.J .

(23)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

It is then clear, as we shall explicitly show below, that a
correct operator quantization of such slave-particle mod-
els must be based on these new canonical relations, and
not on the naive ones of Eq. (7) which are not compatible
with the constraints.

Let us note that we have [II;,A, }„=[II;,II, },=
[ A;, A; },=0 indeed compatible with the constraints

II; =A; =0. On the other hand, the Hamiltonian is final-

ly

H4= X(b, b,f t,f)— (33)

and we have consistently,
jb;,H3}=[b;,H4}, since

[b;,H3}=i t i (x; —A;—)b;
. ax
ab,'.

BX[b;,H4}„=i
Bb,

for example,

aX & aX
(jf

then allows one to set all these second class constraints
strongly to zero because the Dirac bracket of anything
with a second class constraint vanishes.

We thus obtain the correct classical nonzero canonical
relations for slave-particle models, compatible with the
constraints:

Xi [c,'. ;.}=Xi tc. ;.}.=[1+f,'f;]5„ (38)

a relation that we shall recover below in a sum rule at the
quantum level.

III. MODIFICATIONS OF THK NAIVE SUM RULES
FOR THE SLAVE t-J MODELS

As mentioned in the Introduction, it has been stressed
in the literature that a study of the electron-momentum
distribution function in the t-J model in the framework of
the slave-particle approach and within the decoupling
scheme would give rise to a violation of the sum rule of
electron number. However, to obtain this result, sum
rules for the slave particles using quantization of the
naive relations of Eq. (7) were used. On the contrary we
shall show in this section that starting from the correct
canonical relations compatible with the constraints pro-
duces modifications in these sum rules for the slave parti-
cles in such a way that the sum rule of electron number is
indeed obeyed. Though we shall present in the next sec-
tion a direct explicit quantization which confirms this re-
sult, we think that it is important for the clarity of the ex-
position to see here the simple structure of these
modifications in the sum rules.

which opens the way for a supersymmetric t-J model'
and which is verified in the literature within a slave repre-
sentation using the naive canonical relations. In fact,
taking, for instance, in the t-J model the slave-fermion
representation c; =b;Q; of the electron field c, which
corresponds to X;, the Sl(1~2) superalgebra is obeyed us-

ing either the naive initial brackets of Eq. (7) or the Dirac
brackets of Eqs. (23)—(32). For example, one has

i [c,t, c~p} =i [c,t, c,p},=[b;~ b;p+f,~f;5 p]5,, (37)

where b,~ b, p corresponds to X; p and f; f; to X; . The
reason for this property is that the Dirac bracket of any
two gauge invariant quantities is the same as their initial
bracket. As all the generators of the Sl(1~2) superalbegra
are gauge invariant, it is licit to use the initial brackets of
the b's and f's to compute the Dirac brackets of these
generators. One must, however, realize that this proper-
ty is valid only for gauge invariant quantities. At the
quantum level, a proper quantization should inherit the
same property for (anti)commutators of gauge-invariant
quantities, but not for products of these quantities. Let
us also note that, using the slave-particle constraint, one
has from Eq. (37)

which are indeed equal using Eq. (20).
One may wonder at this stage about what happens for

the classical version of the Sl(1~2) superalgebra obeyed in
the t-J model' by the Hubbard" operators X

A. The slave-fermion representation

Let us consider in the t-J model the slave-fermion rep-
A.fresentation c; =b;Q; of the electron operator c;, with

the slave-particle constraint avoiding double occupancy
at site i:
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f f, gb;b, =1. (39) g f A, (k, co)

As in Ref. 5, we assume that there is no Bose condensa-
tion of spinons; i.e., the temperature of the system is 0+.
The hole-doping concentration 5 is given by 5 = (f; f; &.

For discussing the electron-momentum distribution
function, the Matsubara electron Cireen's function in
imaginary time' *'

1 Af=—Xkq(e) X)((q+kl '('(qkk( )-)
a

+ +nb (q+k)([f,f ]
N

(46)

E (r, r)= —( T,(f; (r)b; (r)bj (0)fj(0)) & (r =i j)—,
and the expression for the number of electrons in state k

(40)

where ( .
& means the thermodynamical average, was

considered in Ref. 5 within the decoupling approximation
written on Fourier transform:

,(k)= —g „(q+k)([f,,f, ]

1——+nb (q+k)nf(q) .
q, a

(47)

E (k, co„)=—g —QF(q, co )8 (q+k, co +co„) . (41)
1 1

CO

Let us make the remark, not mentioned in Ref. 5, that
the last equation can in fact be directly derived from the
very definition of the decoupling approximation:

F is the Green's function for the slave-fermion f and 8
is the Green's function for the boson b . Introducing the
Lehmann's spectral representations,

E (r, r)=B (r, r)F( r, ——r),
where we used

(48)

A,

F (k, co„)= f Af (k, co)
277 l 67„—CO

B Ab

one easily obtains the electron spectral function as

(42)

(T,(b; ( )b, (0))&=—8 (r, r),
(T,(f;( )f,(0))&=F(—,— ) .

Then, with q —+0+, ' one has

n, =—gE (0, —g) =—QB (0, —rI)F(0,g)
1 1

f, a l~a

(49)

X [n~(co')+ n~ (co+co') ], (43)

+ oo ddt
A, (k, co)= —g f Af(q, co')Ab (q+k, co+co')

(50)g(b;b; & (ff;&
i a

using 8 (0, —g)= —(b; b; & and F(0,g)= —(f f; &.

This gives in Fourier transform the expression

where nF and n~ are, respectively, the Fermi and Bose
distribution functions.

Using the expressions for the numbers of slave fer-
rnions, bosons, and electrons in state q,

=—y(b'„„,.b„„,.&(f,f,'&,
q, a

(51)

+~ dconf(q)= f nF(co)Af(q, co),

+~ dc'n„(q)= n~(co)Ab (q, co),

n, (q)=g f n~(co)A, (q, co),

(44)

which, using the anticommutator of the fermion, can im-
mediately be written in the form of Eq. (47).

The problem now is to evaluate the thermodynamical
average of the commutator and anticommutator entering
in these expressions. Using the quantization from the
Dirac brackets

i [ A, B],~[A,S]~, (52)

the identity

n~(co) [nF(co')+ n~ (co+ co') ) =n~ (co+co') [1 n~(co') ]—,

and the sum rules

f 2 Af(q ~)=([f, f, )+&

-) (y(3, , () ),),=. .
oo 277 a

one obtains from our results Eqs. (23) and (26) of the
preceding section the form of the commutator and an-
ticommutator at equal times:

[b;,b~ ] =(1—e; )5,J,
[f; f, )+ =(1+e @;,

where we have introduced the 8 operators defined
through the quantizations:

one obtains the sum rule for the electron spectral func-
tion

(G,.b,. G,'.b,'. ) rD, =e,. —e... . .

(H;f;+H; f; )!D;=—e;~e; .
(54)
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gA; +0;=I . (55)

With B„=g~e'~"=~ and A„=g~e'i'"" ~, it follows that

Let us note that the definition of D; from Eq. (18) gives
by quantization the relation

gets by expressing each term of the anticommutator with
the boson and fermion operators

g[c;,c; ]+=1+f;f;+gb; (6; f; f—;)b;
a a

+f; (~; f;f;—)f; (64)

& [f„f,"].& =1+&--.&,

(g[b(q+) )~kb(q+k)~] =2—(+=0~&
a a

=1+(=,& .

Since with the hole-doping concentration 5 one has

—gn~(q)=5, —gn(, (q)=l —5,1 1

q q, a

one obtains the following results:

(56)

(57)

(58)

effective' leading to a consistent quantization expressed
by e =f'f

B. The slave-boson representation

Our analysis of the r Jmo-del in the slave-boson repre-
sentation c; =f; b; of the electron operator c;, with the
slave-particle constraint avoiding double occupancy at
site i,

b;b, +gf; f; =1, (65)

g f A, (k, (o)=1+(= &,
a

n, (k) = (1—5)(1+( =0 & )——gn(, (q +k)n&(q),
q, a

(59)

(60)

follows along the same lines. As in Ref. 5, we assume that
there is no Bose condensation of holons. The hole-doping
concentration 5 is given by 5= ( b; b; &.

The Matsubara electron Careen's function in imaginary
time,

—'yn, (k) =(1—5)(1+& -.&
—5) .

k
(61) E (r, r)= —(?',(b; (r)f; (r)fj~ (0)b, (0))&, (66)

One then sees clearly the modifications of the sum rules
and of the results of Ref. 5 coming from the presence of
the 6's in the correct canonical relations. The main
point is that our results show that one indeed obtains the
expected result that, if 5 holes are introduced into the
half-611ed system, the total electron number per site
would be 1 —5, instead of the (1—5) found in Ref. 5.

In fact, from the quantization of Eq. (38) at the end of
the preceding section, the sum rule for the electron spec-
tral function must be

within the decoupling approximation written on Fourier
transform reads

E (k, (o„)=——g —QB(q, (o —co„)F (q+k, (o )
1 1

N

(67)

and the electron spectral function is

A, (k, a))=—g f A(, (q, (o' (o)AI (q+—k, (o')I +oo dco

Z 1 A, (q, (c)=(Z[ck,ck, ]+)
a a

Using the identity

X [np((o')+ni)((o' a))] .— (68)

=1+—g(fkfk &=1+5,
k

(62)
nF(co) [np((o')+ ni) (co' —co ) ]=n p ((o')[1+n g (co' co )]—

being unchanged with respect to Ref. 5. Comparing with
Eq. (59), this gives

and the sum rules analogous to Eq.(45), one obtains the
sum rule for the electron spectral function,

(=()& =5 . (63)

From our results, the expected sum rule of the electron
number is indeed recovered with ( =() & =5, since

—gn, (k) = (1—5)(1+(=()&
—5)=1—5 .1

g f A, (k, co)
cr

=1 Af= ~zkk(e( X[f(q+k) f(q+k( [+)
q CT

+—gn~ (q+k)([b, b ]f (69)

However, this does not guarantee the existence of an EFS
within the decoupling scheme in the slave-fermion ap-
proach of the t-J model, and the arguments of Ref. 5
against an EFS still apply.

The electron operator anticommutator furthermore
shows that one has not only the average equality
( 0; &

= ( "o&
=5 but also the operator equality 0, =f,.f, :

on one hand, quantization of Eq. (38) gives
g [c;,c; ]+=1+f;f;, while, on the other hand, one

,(k)= —g (q+k)([b, b ]
q, cT

+ gn& (q—+k)n(, (q) .1
(70)

Again, the last equation can in fact be directly derived

and the expression for the number of electrons in state k,
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from the very definition of the decoupling approximation: g f A, (q, o))=1+5 (83)
E (r, r)= F—(r, q. )B( —r, —r),

where we used

(71)
and for the electron number

& T (f; (q)f (0)))= F—(r, q.),
&T,(b,"( )b, (0))&=—B(—., — ) .

Then, with g~o+, one has

n, =—gE (0, —q)) = ——gF (0, g)B—(0, q))
1 1

i, a i, a

(72)

=—y y&f.f,.) &b, b,'&
CT

using F~(0, —q))=+&f f; ) and B(0qj)= —&bb ).
This gives in Fourier transform the expression,

(73)

n, (k)= — QF(q+k—) (
—r))B (q))

1

q, cr

~ X &f(q+k)af (q+k)v & & bqbq &

q, o.
(74)

which, using the commutator of the boson, can immedi-
ately be written in the form of Eq. (70).

Now, with the quantizations

(G;b; G; b; )/D—; ~6;,
(H,.f,.+H,'.f,'. )/D, 6... ge,.+6, =1 (75)

(76)

and with the same notations as above:

&[b„b,'] &=1—&=,&, (77)

P [f (q+k)cr f(q+k)o ]+ =2+ &=o~ =3 —
& =o &

CT a

(78)

Inserting these results in Eqs. (69) and (70), one finally
gets

one obtains from our results of the preceding section the
relations at equal times:

[b;,bj ]=(1—6;.)5;J. , [f;,f ]+=(1+6; )51

—gn, (k) =(1—5) (84)

[instead of the (1—5 ) found in Ref. 5]. However, this
does not guarantee the existence of an EFS within the
decoupling scheme in the slave-boson approach of the t-J
model, and the arguments of Ref. 5 against an EFS still
apply. Furthermore, the same arguments as above lead,
using the electron operator anticommutator, to the
operator equality e; =b; b;.

IV. EXPLICIT QUANTIZATION OF THE
SLAVE-PARTICLE APPROACHES OF THE t-JMODEL

In the preceding section, it was shown that the expect-
ed sum rules for the electron spectral function and for the
electron number are indeed found in the slave-particle ap-
proaches of the t-J model due to the fact that
&6; ) =

& =())=5, the operator 6; being the new term
which is present in the canonical relation of the slave par-
ticle when one quantizes the correct (Dirac) brackets
compatible with the constraints.

We furthermore proved using the electron operator an-
ticommutator that 8; was the slave-particle number
operator. We shall show in this section that a direct ex-
plicit operator quantization of the slave-particle ap-
proaches of the t-J model electively confirms this result
without invoking the electron operator.

A. The slave-fermion representation

Let us first take the slave-fermion case, where we ob-
tain from the results of Sec. II

[f, ,f ] =(1+6;)5;, [b;,b ] =(1—6; )5;, (85)

where [cf. Eqs. (53) and (54)] the 6's correspond to the
quantizations

(H f +Htf )/D; 6;, (G b, G, b, )/D; 6—;.
g f A, (k, co)=1+25—&=()), (79) (86)

n, (k) =(1—5)(1—
& =o) )+—gnI (q +k)nb(q),

q, o.

—gn, (k)=(l —5)(1—&=,&+5) .1

(80)

(81)

Again, one sees clearly the modifications of the sum
rules and of the results of Ref. 5 coming from the pres-
ence of the 8's in the correct canonical relations and that
with

&=,) =5

one has the correct sum ru1es for the electron spectral
function:

However, since D; =g(G; b; G; —b;~)+(H; f;—
+H; f, ), the explicit expres. sions of the 6 operators in
terms of the operators of the fermion and bosons are a
priori not obvious. We shall now obtain these expressions
through the structure of the Fock space.

From the slave-particle constraint,

f; f;+gb; b; =1, (87)

wf A.
the operators f; f; and b; b; must be particle-number
operators satisfying

(ftf ) =ftf,. and (b,t b ) =bt b, (88)

Now it follows from Eq. (85) that
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(jj)'=jj j—f™—6
(b;b;)=b;b;+b; (b;b; 6—;)b;

and a consistent quantization is thus
A A)A A A)AB,=f f, , B, =b,.b, (90)

If; fj )+=(1+f;f }5;,

[b;,b p] =(5 p
b—;pb; )5,1,

[f b ] = b—+5;, ,

[b;.f, j-= f;—b; 5;, .

(103)

(104)

which from Eq. (85) leads to the relations

f f, =l, b b, =.1. (91)

We will show below that the dimension of the Fock space
at site i is in fact infinite (but without contradiction with
the non-double-electron occupancy at site i). Thus Eqs.
(91) are consistent with the fact that the particle-number
operators are not unity. Let us remark that we have con-
sistently, in accordance with Eqs. (55) and (87),

6, +QB; =f; f;+gb; b; =1 . (92)

On the other hand, the fundamental Dirac brackets
compatible with the constraints given by Eqs. (23)—(32)
lead to the following expressions:

i Ib,~,f,~f; j,=b, 6;, (93)

i[f;,b; b; ],=ftB; (94)

i [ b, , b; pb; p], = b;"p5 p+ b—; B;p . (95}

(97)

b; pb; pb; ~
=b; ( b;pb; p B;p) +b; p 5—p

and thus b;I3b; =5
& .

Using all our results, one easily verifies that the operators
f; f; and b; b; are indeed particle-number operators: for
exainple, f; f; acting on the fermion state f; I 0) at site i
has eigenvalue 1 and acting on the two boson states
b; IO) at site i has eigenvalue 0.

One can check the consistency of our quantization: for
example, quantizing the expression

iIb;, b;pb;pJ~= b;p5 p+6;pb,— (99)

with the same ordering of operators gives

[b;,b;pb;p] =[b;,1] =0
= —

b;135 13+b;pb;pb;

= —b;p5 p+b;p5 p=0 .

(100)

(101)

Through an explicit operator quantization of the
slave-fermion approach of the t-J model we have thus ob-
tained, at site i,

f;f; =1, b; b;p=5 p, f;b; =0, b;Qt=0

or in other words:

(102)

Quantizing these expressions with the same ordering of
operators gives via Eqs. (90) and (91)

f; f;b; =b; (f; f; —6;)=0 and thus f;b; =0, (96)

b; b;j";=f; (b; b; B; )=0 a—nd thus b;Q; =0,

Looking in the same way as above at the quantization of
the classical canonical relations involving only creators
or annihilators, we found either no informations or iden-
tities. Such relations might thus be only identities at the
quantum level. The results of Eq. (102) will, however, be
sufFicient for the purposes of this paper.

In fact, as a consequence of this study we directly re-
cover the expressions

B,=f,'f, , &6, )=&=,)=5, (105)

which through the analysis of Sec. III leads to the con-
clusion that the expected sum rules for the electron spec-
tral function and for the electron number are indeed
found in the slave-fermion approach of the t-J model
within the decoupling approximation. Using Eq. (50) and
our result f;f; = 1, one can also see directly that

n, =—g g&b; b; ) &f f; )=(1—5) .
i a

(106)

It is also important, with the expression of the electron
operator,

c, =6+, (107)

and using our results for the quantization, to found the
exact electron number operator

6'; =pc; c; =gb;Q, f; b; =gb; b, =1 f; f; (108—)

and to verify that

[ ] =b+fb +fb b j—b f' f5

y[c, , c,.]+=1+j f", ,

(109)

(110)

efFectively corresponding to the quantization of Eqs. (37)
and (38).

We can now examine, as announced above, the struc-
ture of the Fock space at site i. Apart from the three
states if; ) =f; IO) and ib; ) =b; IO), we have an infinite
number of states of the form either ii f; ):f; ( A; }"IO) or-
ijb; ) =b; ( A; )"IO) whe—re ( A; )" are products of b;p and
f;. The constraint of Eq. (87), counting only the last
created particle, is satisfied for all these states. The parti-
cle content of these states can be found using a basis of
new corn mutiny operators; for example, one has
(b; b;pb;pb; )b; b; IO) =b; b;pi0). Nevertheless, the
states

~
) and

~~
I share the same properties concerning

the electron operators:

c.If; &
= Ib;.&, c.Ib;p) =0,

c, c, if, )=0, c, c, ib, p)=5 pib, p),
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we obtain directly the t Jmodel H-amiltonian of Eq. (2) in
the slave-fermion representation:

P=t g (b+ f b +Hc )
(ij ),a

+Jg —gb; b;pb pb R;8. —''
-,p" '""2

+pgf; f; —)MX, (112)

with 6', given by Eq. (108), and where we have added the
p chemical potential term, X being the number of lattice
sites.

c'. Illf; &=lib;. & c.lib;p&=o

c, c, llf; &=0, c; c, lib, p&=5 pllb, p

Thus, there is always either no electron or one electron at
site i, as is also expressed by the relation c; c;&=b;Q; b; pf; =0 using Eq. (102). In spite of the infinite di-
mension of the Fock space at site i, the non-double-
electron occupancy at site i is well satis6ed, and further-
more it is equivalent for physical purposes to use only ihe
sector of the three states

I f; & and b;
Let us finally insist on the fact that we have now a sys-

tematic direct algebraic procedure to find the expression
in the slave-particle approach of any operator initially
written in terms of the electron operators. For instance,
since using our result f;f; = 1 one has

and using our results for the quantization, let us also
found the exact electron number operator:

8';=pc; c; =gf; b;b; f; =gf; f; =1 b,—b; (118)

ftbbtf ftf (119)

we obtain directly the t Jmodel H-amiltonian of Eq. (2) in
the slave-boson representation:

P=t g (f; b;b f +H. c. )

(ij ),o-

+Jg —g f, f,,f,f 8;R~ +—p, g'b; b; pE, —

(120)

with R'; given by Eq. (118), and where we have added the

p chemical potential term, X being the number of lattice
sites.

V. GENERALIZATIQN TG A SLAVE-BASIN
APPROACH GF THE HUBBARD MADEL

to be compared with the ambiguous result using the (in-
correct) naive quantization: since boson and fermion
operators would commute in this naive quantization,
g c, c, could either be written g f, f; b; b, , which us-

ing the slave-particle constraint and the naive commuta-
tor of the boson would give 1 —(b, b; ), or be written

g b,P; f; b;, which in the same way would give
—(b; b; )[1+b; b; ].

Finally, since using our result b; b; = 1 one has

B. The slave-boson representation

b;b; =1, f; f;,=5, b, f; =0, f, t'), =0 (113)

The explicit quantization in the slave-boson representa-
tion of the t-J model proceeds exactly in the same way,
and we shall only give the following results expressed by,
at site i,

A slave-boson approach was introduced in Ref. 6 for
the Hubbard model, i.e., without neglecting the doubly
occupied sites, and it was also claimed in Ref. 5 that the
sum rule of the electron number was still violated there.
Let us show explicitly that it is not the case if one uses
our present quantization.

In Ref. 6 the electron operator was written in the
finite-U Hubbard model as

or in other terms:

[b;,b ] =(1 b; b, )5, —

[f; f,.]+=(5.,+f;.f; )5;J,

I:b; fj.]-= f;.b;5;, , —

[f;.b, ]—= b;f; 5~J—
(114)

b);b„+b2;bq;+gf; f; =1 . (122)

=f; S„crb2,f;( )
(o.=+1) (121)

the bosons b, and b 2 describing, respectively, the empty
and doubly occupied states. The slave-particle constraint
here is

%'e therefore directly recover in this case the expres-
sions

e, =b,'b, , &e, &=(=,&=5,

which through the analysis of Sec. III leads to the con-
clusion that the expected sum rules for the electron spec-
tral function and for the electron number are indeed
found also in the slave-boson approach of the t-J model
within the decoupling approximation.

VAth the expression of the electron operator

c; =f;b; (117)

or in other terms:

fb;, bp ]=(5 p bp;b;)5;. —

If;.fj.]+=(5..+f;.f; »;,
(124)

The explicit quantization of this slave-boson represen-
tation of the Hubbard model proceeds in the same way as
shown above for the slave-particle representation of the
t-J model, and we obtain the results at site i:

A.f
baibpi =5ap & fiafi~=5a~ & baifia =0

~ fiabai =0

(123)
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A. A,f
[bai &fJ'a ]—= fiabai5ij'

[f;,b J] = b—;f; 5J,
(125)

where a or P= 1,2 and o or r=+1.
The electron field being gauge invariant, one verifies as

above that at the classical level one can use the initial
brackets of the b's and f's to compute the Dirac brackets
of the electron field:

n =1-
e (132)

Let us again emphasize that the expression of the
Hamiltonian in the slave-particle approach is obtained,
using our results, through a direct algebraic procedure.
Equations (127) and (123) lead to

8;+h, =(f;+fi++b2;b2; )(f; f; +b~;b2; )=b2, b2;

(133)
i Ict, c,,] =i tct, c;,],=5, ,

while at the quantum level our results give

c; c;,=f; f;,+b~;b2;5

c;~, —crrf;(, )f;( )+b 1;b);5, ,

which effectively leads to

(126)

(127)

(128)

and we obtain directly the Hubbard Hamiltonian of Eq.
(1) with nearest-neighbor hopping in the slave-boson rep-
resentation of Eq. (121):

8= t g f; ( b „b,j b~; b ~~—) )fJ
(ij ),a

+tg [f +fz (b)ibz—j+b,jbz;)+H. c. ]
(ij)

[c;,)c,a ]+=5a, . (129) + Ug b z; b z; +pg ( b „.b „.—b 2, b ~, ) pN, —(134)
One has from Eq. (127) the expression of the exact elec-

tron number operator:

gc; c; =1—(b1;b1; b2;b2;) —. (130)

Let us define 5 as the average number of empty sites, d
the average number of doubly occupied sites, and 5 the
hole doping concentration:

b, =(b„b„), d=(b2;b2; ), 5=6, d. (131)—

The total electron number per site is then correctly ob-
tained from Eq. (130) as

+F ( r, r)B2—(—r, q. ) . (135)

On one hand, one obtains the sum ru1e for the electron
spectral function within the decoupling approximation:

where we have added the p chemical potential term, 1V

being the number of lattice sites.
The decoupling approximation for the Matsubara elec-

tron Green's function in imaginary time is here expressed
by

E (r, q ) = F(r, r)B)—( r, —r)—

XI 2
".(('~]=~Xr((,(e]IX(f(,+() i(,+a) ]+)+~X))( (s+(]& „(()'„()]

C7 , cr

+—x))( (q]&((),( ~,), (, ())] (&+—x„,(e+&)(x(f",f" ](l,
q, cr q CT

which using our quantization gives

+ oo dCO
A, (k, co) =b(3 b. d) l(1——b —d—)(1 -—d)+(1 —b, —d)(1 —b. )+d (3—b, —d) =2

2'

(136)

(137)

as it should be from Eq. (129).
On the other hand, Eq. (135) gives the expression for the number of electrons in state k within the decoupling approx-

imation:

X[(f(q+k)af (q+k)a ~ ( b1qb 1q ~ + ~ b2(q+k)b2(q+k) ( ~fqafqcr ~ ]
q, cr

=—ynf (q+k)([b)q, b(q] ~+ ynfa(q+k)n—i, (q)
q, cr q, cr

+—gn~ (q+k)([f,f ]+)— gn~ (q+k—)n~ (q) .
q, cr q, o

(138)

Using our results for the quantization of the b, boson and
the f ferrnion, one obtains

I

from which we indeed get the expected sum rule of the
electron number:

n, (k)=(1 5) d+2d+ ——gn& —(q+k)ni, (q)
1

q, cr
gn (k)=(1—b.+d)=1——5 .1

k

(140)

1
gni, (q+—k)n~ (q)
q, o'

(139)
This last result also directly follows from Eq. (135):
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=1(l—6, —d)+2d =1—5 (141)

I.=i ,'(—A+,1)gb, B,b, +i ,'(—A, —1)QB,b; b,
i,a

+i ,'(—A'+1)gf;"B,f; +i—,'(A. ' —1)QB,f,. f,
i, o t', CT

+X(b, b,f,f)++A; gb; b; +gf; f; —1

using the results of our quantization, instead of

(I+6, )(1—b, —d)+[2—(1—b, —d) jd =(1—b, +d )

using the (incorrect) naive quantization of Refs. 5 and 6.

VI. CQNCI. USIGNS

In this paper, we have first presented at the classical
level the consistent Hamiltonian formulation of models
having a slave-particle constraint for their fields. Due to
this constraint, the naive canonical relations are replaced
by modified canonical relations which are compatible
with the constraint. This is achieved through the use of
Dirac brackets, after Axing the gauge generated by the
slave-particle constraint.

We have then shown at the. quantum level, for the
slave-fermion and the slave-boson representations of the
t-J model and for a slave-boson representation of the
Hubbard model, that a consistent quantization of these
modified canonical relations changes the naive sum rules
for the slave particles. These naive sum rules used in Ref.
5 were there shown to lead to difhculties in these slave-
particle approaches for the t-J and Hubbard models,
coming from the fact that the sum rule of the electron
number was violated within a decoupling approximation.
Qn the contrary, we find that, using our quantization and
modified sum rules for ihe slave particles, the sum rule of
the electron number is in fact well obeyed. On the other
hand, we obtain a systematic direct algebraic procedure
to find the exact expression in a slave-particle approach
of any operator, e.g. , the Hamiltonian, initially written in
terms of the electron operators.

We thus show that one has to be careful about the
canonical relations when using a direct quantum operator
approach for slave-particle theories. Of course we are
not concerned for these theories neither with the func-
tional integral approach nor with the Abrikosov'
method used in some slave-particle theories. '

(A 1)

the Lagrangians of Eq. (5) being obtained for A, =A, '= 1.
The canonical momenta are then

b; =i ,'(A+—1,)b;, b; =i ,'(A—1,)—b;

f, = i ,'—(A.'—+1)f,t, f; =i 2(A—' ,l—)f;
(A2)

The canonical graded [see Eq. (9)] Poisson brackets, the
nonzero ones being

[b~~&b, ii j
=

I b~~, b)i3 j 5,J5—
(A3)

are, however, not compatible with the expressions of the
canonical momenta. Following the general procedure of
Dirac, one has to consider here as Hamiltonian

Hi = X(b, b, f—,f)
—gA; gb, b; +gf; f, —1

i a 0'

+g(8; u; +u; 8;~)
i,a

+g(F; u; +u; F; )++II,iu;, (A4)

are primary constraints which are weakly zero, meaning
that one has to set the constraints only after computing
all the brackets. In order to have a consistent system, we
require the time derivatives of these primary constraints
to be weakly zero ( =0), which gives

where u, u, u, u, iu are unknown (at this stage indepen-
dent of the fields and of the canonical momenta)
coeKcients and where H; and

8;:b; i ,'(A—+1)—b;—,, 8; =b; —i—,'(A, —1)b;

F; =f; +i ,'(A'+ l )—f;,,—F; =f; —i—,'(A, ' —1 )f; —(A5)

ACKNOW'LED GMKNTS

We would like to acknowledge useful conversations
with D. Arnaudon, F. Delduc, L. Frappat, and Th. Jol-
icoeur about this paper.

APPENDIX

IB, ,H, j
= +A;b; iu, =0, —BX

ab,.
[Bt,H, j

=
t +A;b; +iu; =0,BX

Bb;

[F, ,H, j
= A;f; +iu,t=0,— .BX

!CT

(A6)

(A7)

[F,t,H, j= t +A f; iu; =0, —BX

df
In this appendix, we show how the brackets of Eq. (7)

and the first class constraints of Eq. (8) are obtained and
we present the expression of the corresponding Hamil-
tonlan.

Let us consider the classical Lagrangian (written in
real time) for n bosons b and I fermions f
(Grassmann variables) on a lattice:

[II,,H, j =gb, '.b,.+gf,'.f,. 1=—
Equations (A6) and (A7) determine the u, u, u, u and Eq.
(Ag) gives the slave-particle constraint which appears as
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+g( f, v—, +v; f; )=0. (A9)

Using the expressions of the u, u, v, u given by Eqs. (A6)
and (A7), Eq. (A9) reads

a secondary constraint .Repeating the process, we require
the time derivative of this secondary constraint to be
weakly zero, which gives

I@;,H, I=+(b; u; +u; b;~)

with a second class constraint vanishes.
One then finds the following results:

Ib;, btpID= —,'(i(, —1)5; 5 p,

I b;, b pI D
= —

—,
' (A, + 1)5j5 p,

Ib, , b pjjj=i ,'(A—,1—)5;jb p,

[b;,b pID= —'5; 5 p,

If;,f t, j ti =
—,'(1,' —1)5;,.5 „,

(A17)

(AiS)

BX
'

ab,'. lQ ~f ~flCT

(A 10)

I f, ,f,j D
= —

—,'(A, '+ 1)5, 5

I f, ,f I D
= i ,'(—A' —l, )5—, 5, ,

(A19)

(A20)

which is identically satisfied if X is a function of b~b and

IB;,Bjpj= i5; 5 p—

IB;,4& I
= b,t 5, —

IF;,4 I
=+ft bj,

IF;,Fj, j= ib, —6, ,

IB;,4& I
= b, 6, —

IF;,4 I
= f, o, —

(A 1 1)

(A12)

(A13)

However, the following linear combination of these
second class constraints

%, =N, +i+( B, b, +b, B—
, )+i+(F, f,. +f, F, . )

(A14)

=i+( b; b, +b; b—; )+i+(f; f; f; f, ) —1—

One recalls that a quantity is called ftrst class if its
bracket with each of the (primary and secondary) con-
straints is weakly zero, and second class if at least one of
these brackets is not weakly zero. H,- is then first class,
while our other constraints are a priori second class since

I A;, IIj I D
=b;j .

Since we can now set the second class constraints strong-
ly to zero, i.e., use the expressions of b;,b;,f, ,f; given
by Eqs. (A2), a choice of independent nonzero canonical
relations is

Ibia&bj pea t~ij ap & Ifiu~fj~ ID = t~ij ~a~ ~

(A22)

IA, , iljI =fl„,
which are those of' Eq. (7) of Sec. II where we have
dropped for convenience the subscript D. Let us note
that the parameters A, and A,

' of the Lagrangian (Al) no
longer appear, and can thus, as usual, be taken as unity in
the Lagrangian.

At this stage, the Hamiltonian is

Hz = X(b, b,f,f—)

(A15)
—gA; gb; b; +gf; f; 1'++II;to;—

a
(A23)

(which is weakly equal to @;) can be verified to be first
class.

Thus, H, and 0', are first class, and BIa BI-a I'ia
F, (which are such that no linear combination of them is
first class) are second class. Defining y, =B;, qr2

——B;,
Ip3 —F;, yz =F, , the matrix—C,&

——
I y„y& I is nonsingu-

lar. Systematic use of the standard Dirac bracket of two
quantities 3 and B,

gb;~b; +—gf; f; 1=0, II;=0 . —(A24)

Let us note that we have consistently, for example,
Ib;,H&I =Ib;,Hz}D since

Ib, ,H, I =u, (A25)

and one now has to deal, as shown in Sec. II, with the
first class constraints:

I~ BID (~ BI XI~ 0 I(c ) b{v»»J
a, b

(A16)

then allows to set all these second class constraints
strongly to zero because the Dirac bracket of anything

. axIb;,H2ID=i
&

+iA;b;
Bb;

which are indeed equal using Eq. (A6).

(A26)
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