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We reformulate theories for electronic structure calculations of periodic systems in a way suitable for

large scale calculations using Gaussian basis functions. An accurate grid is introduced for eKcient cal-
culation of matrix elements. A dual-space approach is used to calculate the Coulomb potentia1 with

computational cost that scales linearly with the size of basis set. A preconditioned generalized conjugate
gradients approach is introduced for rapidly converging wave functions expressed in terms of Gaussian

basis functions. This method is applied to a variety of crystals {including diamond, Gaw, Alw, CdTe,
and C60) and surfaces [including CraAs (110)and BN (110)jwith excellent results.

I. IN'IODUCTION

Density-functional theory (DFT), particularly in the
local-density approximation (LDA), ' has been applied
with considerable success to investigate the properties of
molecules and solids. In the LDA the electronic ground-
state energy Eo is given by

Eo[[g,] ]=2+Jdr g;( —
—,'Vz)g, + J dr V„„,(r)p(r)

+ ,' Idr—Vc,„,(r}p(r)+E„,[p(r)],

where for simplicity we consider a closed-shell system
(using Hartree atomic units). Here V„„, is the nuclear
potential, VG,„, is the Coulomb potential, and E„, is the
electronic exchange-correlation energy functional (ap-
proximated as a function of density). The one-particle
wave functions [g, (r }] are determined through the
Kohn-Sham' equation

F"'@;(r)=I( —
—,'7 )+ V„„,(r)+ Vc,„,(r)+ V„,(r)I

Xg,.(r) =e,g, (r) .
The density is given by the squared sum of occupied or-
bitals

p(r) =2+
~ P;(r))',

and the exchange-correlation potential V„,(r) is given by

dE„,[p(r)]
V„,= (4)

dp r
In such first-principles calculations, the most expensive

steps are (a) construction of the Coulomb potential
( Vc,„,), (b) construction of the Fock operator (F+), and
(c) update of the wave functions. The bottleneck for very
large-scale calculations is the cost of updating the wave
functions, which scales at least quadratically with the size
of the basis set. Consequently it is essential to use the
most eKcient basis set for representing the electronic

wave functions. Among the common basis sets (Gaussian
functions, plane wave, augmented plane waves, and
muffin-tin orbitals), Gaussian basis sets lead to the most
compact size for high accuracy. Indeed, quantum chem-
istry studies of 6nite molecules have accumulated a
hierarchy of standardized optimum Gaussian basis
sets. '

Since the potentials are local in real space, both the
Coulomb potential and the Pock operator are more con-
veniently calculated in real space. This allows optimiza-
tion of the computational e8'ort to attain linear scaling
with basis set size. To accomplish linear scaling we parti-
tion p(r) into localized contributions, [p, (r) I, so that the
Coulomb potential can be constructed as linear superpo-
sition of local contributions. The next step is to introduce
an accurate numerical grid so that construction of the
Fock matrix can be done in real space. This maximizes
the bene6t of locality in both the Gaussian basis functions
and the 6elds.

To accomplish this, here we develop the dual-space ap-
proach for electronic structure calculations on periodic
systems using Gaussian basis functions (GDS/DFT). In
GDS/DFT, projection functions are used to partition the
electronic density p(r} into atom-centered contributions.
The Coulomb potential is then obtained by solving radial
Poisson equations. The residual charges (the difference
between the total density and the projected density) are
then conveniently transformed to reciprocal space, where
the Coulomb potential is updated. In addition, we intro-
duce an accurate grid for calculation of the Fock matrix.
Finally we develop the generalized conjugate gradient
(GCG) method for updating (converging) the wave func-
tion. The advantage of GCG over standard conjugate gra-
dients (GS's) is that it avoids evaluating the total energy
for every orbital update (prohibitively expensive for
methods using Gaussian basis functions).

GDS/DFT has an advantage over other standard
methods (plane wave, Gaussian, 7' muffin tin, and
augmented plane waves' '

) in that it is applicable to all
elements of the Periodic Table, and implementation of
forces is straightforward. To illustrate the general appli-
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cability of GDS/DFT, we report calculations for several
crystals (diamond, C60, A1N, GaN, and CdTe) and sur-
faces [GaAs(110) and Bn(110)].

The organization is as follows. Section II describes the
method for calculating the Fock matrix, the design of the
numerical grid, and the dual-space approach to calculat-
ing the Coulomb potential. The generalized conjugate
gradient is described in Sec. III. Results of various appli-
cations are reported in Sec. IV, and a summary is in Sec.
V.

II. METHOD FOR CALCULATING
THE FOCK MATRIX

In GDS/DFT, the Fock matrix is calculated in real
space. The Coulomb potential, exchange-correlation po-
tential, and nuclear potential are calculated on an atom-
based numerical grid, and their contributions to the Fock
matrix are calculated using numerical integration. The
numerical grid is divided into blocks of contiguous grid
points distributed according to the symmetry of the sys-
tem. Only nearby atoms make significant contributions
to the fields for each grid block. Similarly, only basis
functions centered on nearby atoms make significant con-
tributions to integrating the Fock matrix in a particular
grid block. With an eKcient cutoff strategy, calculation
of the Fock matrix in GDS/DFT scales linearly with
basis set size for large systems.

The kinetic-energy contribution to the Fock matrix
and the overlap matrix are calculated analytically. Al-
though the matrix from the nuclear potential could be
calculated analytically, we use numerical integration, so
that this term cancels with the Coulomb potential at
large distances from the atoms.

S3(p, )=—,
' [1—p3(p) ],

where

(7a)

(7b)

(7c)
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P s (r)= (7d)
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and r, is the distance to the grid point r from atom a.
The function p,b(r) has values between —1 and 1. It as-
sumes the value —1 when very close to atom a and the
value 1 when very close to atom b. Correspondingly
p (p,b ), and thus p3(p, & ), assumes the values —1 and 1 in
these two limits. Therefore, the pair projection function
S3(Jfl b ) has values close to 1 near atom a and close to
zero near atom b.

In order to ensure accuracy and stability when the
atoms move, the projection functions must guarantee

A. Numerical grid

The numerical grid in GDS/DFT is constructed by re-
placing three-dimensional integration of periodic func-
tions with a set of single-center numerical integrations us-
ing properly normalized projection functions. ' At a grid
point r the projection function for an atom a is defined as

1.0

0.8—

0.6—
V}

(b)
180

~&maOa~~
Og+ 90Ogg

~a~0y~~ hgg ~r~~ ~ag~

ri, (r)
P, (r}= (5a) 0.4—

with 0.2—

QP,a(r)=l, (5b)
0.0

0.5 2.5

where R denotes lattice vectors and a labels atoms in the
central unit cell. (Clearly the projection function P,a has
the periodicity of the crystal. ) For the projection func-
tion to be useful, it must be unity when close to atom a
and must vanish when close to other atoms. We start
with the Becke construction' for unnormalized atomic
projection functions q, :

'ri, (r)= QS3[p,b(r)] .

Here the pair projection functions are given by'

FIG. 1. (a) Comparison of the generalized Becke projection
function (Sz&) with three constructions (S&, S2, and S3) pro-
posed by Becke (Ref. 14), plotted as a function of the diatomic
coordinate p,,b. A11 constructions approach unity at the center
atom a and zero at neighboring atoms b. So& aOows continuous
adjustment of the projection function for difFerent atoms. (b)
The genera1ized Becke diatomic projection function for dia-
mond p1otted as a function of distance from atom a for five
difFerent angles: 8=0 (along the a-b bond), 30', 60, 90', and
180 .
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TABLE I. Numerica1 grids for atoms used in this paper. The first number in brackets (r;,n;) gives
the upper boundary of the ith radial section, while the second number is the number of angular points
for each radial shell in the section. r0 is the smallest radial point. The radial grid is constructed using
the geometerical scaling factor y, Eq. (11).

Atom {r1,n1) {l2 82) {P3 7l3) {14 )f4) (rs, n5) (~6,n6) (r7, n7) P0

H
C
B
N
0
Al
Ga
As
Cd
Te

(0.18,12)
{0.18,12)
(0.18,12)
(0.18,12)
(0.18,12)
(0.001,12)
(0.001,12)
(0.001,12)
(0.001,12)
(0.001,12)

(0.4,26)
{0.4,26)
(0.4,26)
(0.4,26)
(0.4,26)
(0.1,26)
(0.1,26)
(0.1,26)
(0.1,26)
(0.1,26)

(0.6,50)
{0.6,50)
{0.6,50)
(0.6,50)
(0.6,50)
(0.5,38)
(0.5,38)
(0.5,38)
(0.4,38)
(0.4,38)

{3.3,194)
(3.3,194)
(3.3,194)
(3.3,194)
(3.3,194)
{0.6,50)
(0.6,50)
(0.6,50)
(0.6,78)
(0.6,78)

(12.0,116)
(12.0,116)
(12.0,116)
(12.0,116)
(12.0,116)
(5.0,194)
(5.0,194)
(5.0,194)
{6.0,194)
(6.0,194)

(12.0,116)
(12.0,116)
(12.0,116)
(12.0,116)
(12.0,116)

(16.0,50)
{16.0,50)

1.18 0.00001
1.18 0.000 01
1.18 0.000 01
1.18 0.000 01
1.18 0.000 01
1.15 0.000001
1.15 0.000001
1.15 0.000 001
1.15 0.000 001
1.15 0.000 001

that two atoms decouple smoothly when far away from
each other. In order to achieve the smoothest decou-
pling, we generalize the original Becke construction in
two ways. First, we introduce a cuto6' into the denomi-
nator of (7d),

Because the projection function P,&(r) is periodic, the
integration of a periodic function f (r) can be decom-
posed into atomic integrations as in (10),

f dr f(r)=g f drP, (r)f(r) . (10)

and limit the value of p,b(r) to remain between —1 and
1.

Second, we introduce the generalized Becke projection
function (GBPF),

Soii(P) =
—,
' [1—P3(P)]+—sin[73(P)m],

in place of Becke pair projection function (7). This
modification allows the slope in the falloff region (p-0)
of SoB to adjust continuously in grid optimizations (see
Fig. 1). The two parameters R,„,and p in Eqs. (8) and (9)
are associated with each atom and are adjusted to optim-
ize the accuracy of the grid. We 6nd that 8.,„,=5.6ao
(where ao is the Bohr radius) and p=0.07 are satisfactory
for nonhydrogen atoms, while R,„,=5.6 and p=0.03 are
satisfactory for hydrogen.

8;+i=yR;,
with weights given by

W;=R; ln(y) .

(1 la)

(1 lb)

We use a minimum radius of RO=0. 00001ao, a max-
imum radius of R,„=12.881 62ac, and y = 1.18 (which

Since the projection functions are localized, the atomic
integrations in (10) are liinited to atomic spheres of finite
radius (between 10ac and 20ac).

For the atomic integration we use atom-centered
spherical grids constructed from concentric radial shells.
Each radial shell supports an angular set of Lebedev grid
points' that integrates exactly angular functions up to
I = 17 in the interstitial region and up to I =5 close to the
nuclei. The radial grid is divided into several radial sec-
tions. Each section is assigned the number of angular
points in Table I. Generally each radial section contains
many radial shells spaced geometrically,

TABLE II. Numerical integration normalization error for sets of Gaussian functions.

Exponent

0.15
1.0
5.0

10.0
50.0

100.0
500.0

1000.0
10000.0

100000.0

1=0

0.46x
0.11x
0.23 x
0.86 x

—0.46 x
0.75 x
0.14x
0.55x
0.16x
0.52 x

10-"
10—1o

10—11

10-"
10

—12

10
—11

10 10

10—10

10-'
10

0.15x 10-'
—0.64 x 10-"
—0.15x 10-'
—0.10X 10
—0.15x 10
—0.13X 10
—0.15 X 10
—0.15x 10-'
—0.15x 10-'
—0.15x 10

1=2
—0.21x 10-'
—0.11x10-'
—0.46x 10-'
—0.98x 10
—0.14x 10-'
—0.77 x 10-'

0.18X 10
—0.50x 10-'
—0.19x 10-'

0.14X 10

—0.65x
0.78 x
0.54 x
0.25x
0.62x
0.41 X
0.65 x
0.53 x
0.61x
0.65 X

10-'
10-'
10-'
10-'
10-'
10-'
10-'
10-'
10-'
10-'

—0.65x
0.28 x
0.20 x
0.28x
0.14x
0.25x
0.73 x
0.21 x
0.15x
0.82 x

10
10
10
10
10
10
10
10
10
10-'
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Molecule
Size

Atoms Basis
Error

Total per atom

TABLE III. Accuracy of molecular HF total-energy calcula-
tions using numerical integration. All energies are in mH, with
1 mH=0. 0272116eV=0.62751 kcal/mol.

nates are then referenced to atom a). The Coulomb po-
tential from each locally projected charge density is ob-
tained by solving the atom-centered Poisson equation [see
(15) below]. We first express p, as a partial-wave decom-
position in terms of cubic harmonics XI

Oxygen
%'ater
Carbon dioxide
Methane
Benzene
Glycine
Glutamine
Porphine
C60 (Ip)
C~ (T„)

2
3
5

12
12
10
20
38
60
60

30
25
45
35

120
100
200
430
540
540

0.004
—0.007
—0.018
—0.016

0.022
0.024
0.072
0.160
0.206
0.255

0.002
—0.002
—0.006
—0.003

0.002
0.002
0.004
0.004
0.003
0.004

max

p, (r) = Q p(, (r)XI (Q, ),
Im

(12b)

where the limits on I are —l to +l and the limits on l
are 0 to l,„. We next introduce the screened density p,
which for each angular momentum about atom a is ex-
pressed in terms of two Gaussian functions according to

p&, (r)=(c&,e ' +d&, e ' )r (13a)

Here we choose

gives 86 radial shells). This leads to integration errors of
less than 5.2X10 for Gaussian functions with ex-
ponents in the range of 0.15 to 100000 (see Table II).
Smaller y increases the numerical accuracy at the ex-
pense of increased grid points. We tested the accuracy of
this grid with analytical Hartree-Fock (HF) calculations
on molecular systems. For molecular systems the con-
struction of the grid is identical to that in crystalline sys-
tems, except that the lattice sum is absent and the projec-
tion functions are not periodic. The Fock matrix is ob-
tained numerically for the Coulomb potential, exchange-
correlation potential, and nuclear potential contributions.

The test results in Table III show that the error per
atom in the total energy is less than 0.006 mH=0. 16
meV, which is acceptable for studies of normal chemical
processes. For C60 the error in the energy difFerence be-
tween the two structures (with Iz and Tz symmetry) is
only 0.049 mH=1. 33 meV.

S. Dual-space approach for construction
of the Coulomb potential

p(r) Ere R(r)p(r) Xp R(r) '
a R

(12a)

where the projected density p,z is both localized and
periodic. Consider an atom a in the unit cell (all coordi-

The usual approach for calculating the Coulomb po-
tential with Gaussian-type basis functions requires
analytical three-center integrals. This is very expensive
(the most expensive part of the self-consistent cycle) in a
periodic system because of the slow convergence in the
lattice sum. We overcome this problem by taking advan-
tage of the difFerent convergence properties for the core
and valence electrons in real and reciprocal spaces. The
idea is to project the total density into atom-centered
pieces which are used to calculate their contributions to
the Coulomb potential in real space. The residual charge
density (difference between the total density and the pro-
jected density) is mainly in interstitial regions whose con-
tribution to the Coulomb potential can be calculated easi-
ly in reciprocal space.

The projection works in the following way. From (Sb)
we have

Z2=1.4Zi . (13b)

dl'P 1 7" = f' (&PI I" T (14b)

Equations (13) and (14) ensure that the moments satisfy

M =f r dr(pi pi )

X fdQP (Q)Xi (Q)=0 (14c)

for p ~ l [where P (Q) is the Legendre polynomial of or-
der p]. [For l =0 we use only a simple Gaussian function
in (13a) with the parameter deterinined by (14a)]. This
screening ensures a zero Coulomb potential outside the
range of the atomic grid. The screening charges are taken
into account in reciprocal space in the spirit of the Ewald
method.

The Coulomb potential is calculated easily by solving
the radial Poisson equation

dr
l (l + 1)

U, (r)= 4~rp, (r)—
over a discrete radial grid. The derivatives are evaluated
using the seven-point Lag range formula (except for
boundary points where we use four, 6ve, and six points to
ensure a banded matrix). Thus the Poisson equation (15)
transforms to linear algebraic equations having a banded
matrix on the left-hand side.

The Coulomb potential of the crystal then becomes

max

UIygg ( rat )X/pyg ( Qgg ) ~rg (16)
a bn

where the sum is over all lattice vectors R, and subscript
aR indicates that all coordinates are referenced to atom

The value of Z& is somewhat arbitrary. We 6nd it con-
venient to choose small Z& for systems with large unit-
cell volume in order to limit costs of reciprocal-space cal-
culations. A value of Z& between 0.3 and 1.0 was found
to be appropriate for the applications reported here. The
two parameters ci, and d&, in (13) are determined to
satisfy the screening conditions

f r2dr p(, (r)= f r~dr pi, (r),
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aR. Since the Poisson equation is solved in the atomic
grid, we use cubic splines to interpolate U, ,(r) from the
atomic grid to the crystal grid.

The residual charge

max

p...(r)=p(r) —X Xpi .z(&.z)xi «.z)
aR Im

is Fourier transformed to reciprocal space (see the Ap-
pendix for technical details) to update the corrections in
the Coulomb potential. With this correction, the dual-
space approach is exact, while having the benefit of fast
convergence in reciprocal space and efticiency in real
space. The computational cost in real space is linear in
size and negligible for all applications reported in this pa-
per (we use an angular momentum cutoff of 1,„=3).

Recently Termath and Handy reported a study on
small molecules using the Becke numerical grid. They
concluded that analytical evaluation of the Coulomb po-
tential is faster than solving Poisson equations, where
they find that cubic spline interpolation dominates the
computational costs. This is a surprising conclusion since
the interpolation need be done only for the radial grid.
Our test on crystals indicates that the numerical ap-
proach is faster by almost two orders of magnitude than
the analytical approach. The discrepancy between our re-
sults and theirs might be because (1) they used the max-
imum angular grid throughout the space (this is unneces-
sary waste) which would contribute to the expense due to
the rapidly growing number of spherical harmonics as
angular momentum increases; (2) we use a projection
function in our approach which reduces the number of
centers to the number of atoms in the unit cell (normally
for a crystal there are a large number of centers contrib-
uting to the Coulomb potential); (3) we use a dual-space
approach, allowing us to limit the cost in real space by
using small angular momentum cutoff; and (4) we use an
e%cient grid which also contributes to the savings in
computational cost for our method.

Once the Coulomb potential is calculated on the grid,
the exchange-correlation potential, Coulomb potential,
and nuclear potential are combined together to obtain the
Fock matrix elements numerically using (10). The
nuclear-nuclear interaction energies are calculated using
standard Ewald methods. ' For systems with fcc, bcc,
and hcp symmetries, the sampling of the Brillouin zone is
done using standard special k points. ' For other less
symmetric systems, we use the Froyen' method with the
number of irreducible k points minimized by adjusting
the parameter f0 in Eq. (3) of Ref. 19.

exchange-correlation energy, E„is the Coulomb interac-
tion energy between electrons, E,n contains all interac-
tions between electrons and nuclei (for heavy atoms this
is modeled by a pseudopotential PP), and E„„contains all
the nuclei-nuclei interactions (including any residual in-
teractions between the PP for heavy atoms).

The calculation of Ek;„ is done analytically using the
Obara and Saika' recursion relation. E„, is calculated
easily using the numerical grid. The E,&„t terms take
more care. For convenience we introduce square brack-
ets to represent Coulomb-type integrals. Thus
E..=-,'[p. Ilp. ] E..= [p. lip. ] and E..=-,'[p, lip, ]
where p„and p„respectively, are nuclei charges (point
charges in the case of all-electron calculations and Gauss-
ian functions in the case of pseudopotential calculations).

In GDS/DFT electrons and nuclei are screened sepa-
rately to accelerate convergence of Ewald sums. Thus we
have

E,i„t=Ei„+E„,
where

(19a)

and

Ei.a=l[p. lip.
—p ]+-,'[p. lip ]——,'[p, lip, ] (19b)

E-=2[p +p. lip +p 1+[p Ilp p ), (19c)

where p is the screening charge for nuclei and p, is the
screening charge for electrons. Both screening charges
are s-type Gaussian functions with the exponent of p,
twice that of p . With this choice the last two terms in
(19b) cancel out, leading to

Ei.t =-,'[p. lip. —p. ] . (19b')

d [p, (r)+p, (r)]

The calculation of [p„lip„—p„] is done easily with stan-
dard analytical approaches (involving a lattice sum of
complementary error functions). '

The calculation of the E„ involves first obtaining the
potentials V, (r)=(rip, +p, ] and V„,(r)=(rip„—p, ] us-
ing the dual-space approach described in Sec. II B. Then
the calculation of energy is carried out via straightfor-
ward numerical integration on the grid.

The calculation of forces follows the same procedure.
The only special point is the contribution from
E„=—,

' [p, +p, Ilp, +p, ]. The force coming from this
term is given by

C. Calculation of total energy and forces

The calculation of forces in GDS/DFT is facilitated by
the use of an optimized numerical grid. The ground-state
energy is given by

where a indicates an atomic coordinate. Thus the only
significant extra cost in calculating the force is the evalu-
ation of the density gradient, which can be done simul-
taneously with an evaluation of the density. Similarly for
the force resulting from [p, Ilp„—p, ], we have

Etot Eki +E +E 1 t

Eelect ee +Een +Enn

(18a)

(18b)

d [p (r)l d V„,(r)
F„;= fdr '

V„,(r)+ fdrp, (r)
da da

where Ek;n is the kinetic energy, E„, is the electronic where the gradient of V„, can be done analytically.
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III. W'AVE-FUNCTION UPDATE
USING GENERALIZED CONJUGATE GRADIENTS

8V„„i(r)
m„=2Re &h.l",," + 8 V„,(r)

ltP„&
. , (24a)

With the dual-space approach of Sec. IIB, the wave-
function update becomes the dominant computational
step for self-consistent calculations of large systems. For
plane-wave pseudopotential (PW-PP) calculations, much
progress has been made in the application of conjugate
gradient (CG) methods. The basic steps in CCr's are as
follows.

(1) Find the gradient vector Ig„& for an orbital
I g„&:

lg. &
= (F ~—„)11t„—&, (20a)

where F is the Fock matrix and e„ the orbital eigenvalue.
(2) Construct the conjugate vector Ih„&:

Ih„& = Ig„&+y„lh„' &, (20b)

where Ih„' & is the conjugate vector from the previous
iteration,

11(".'"&
=

I 1(. & cos(e)+ lh. & sin(e), (21)

where the rotation angle 8 is obtained by energy minimi-
zation (the orthonormalized vectors

I 1t „& and
I h„& are

mutually orthogonal).
Step (4) dominates the computational cost. The energy

minimization requires the first derivative

and Ig„' & is the gradient vector from the previous itera-
tion.

(3) Orthogonalize
I h„& to I g„& and to I P~ &, where

p (n.
(4) Update the wave function as

which would involve an effort equivalent to one evalua-
tion of the Fock matrix for each occupied orbital. This is
unacceptable. Since g„ is generally small, we use the fol-
lowing empirical expression:

unocc
I (h IFI@.& I2

(h. IFlh, &
—e„

(24b)

where the constant f is introduced to account for the ap-
proximate nature of i)„.We have found f = 1 to be satis-
factory for applications considered herein. Smaller f re-
sults in faster convergence but can sometimes cause con-
vergence instabilities, especially for poor initial guesses.
Large f causes slower convergence.

In addition to the above modification for line minimi-
zation (21), we also use a preconditioning of the gradient
so that it becomes parallel to the direction obtained by a
second-order method. For calculations with plane waves
this is dificult to achieve, and only the diagonal kinetic
contribution is preconditioned. For calculations with
Gaussians, this is done easily using the preconditioning
operator

cc
I1t

. &(y. l

j Q(E„E ) +co
(25)

where gj is the jth eigenfunction of the Fock matrix, and
co is the energy scale over which orbital mixing occurs.
The scale of co is the order of the gap, E'g

p at the begin-
ning of the self-consistent loop, and decreases as conver-
gence is achieved. Empirically we find the following ex-
pression for u to be satisfactory:

=2 R.I (h„lFI1(„&I (22) co'=«„,Ql (g„ lh„& I,

and the second derivative

=
& h„IFIh„&—

& O„IFI@„&+q„ (23)

with re=1. This has the property that closes to conver-
gence

~'-«s, pV(& 1(„IF'ly„&—e'„) .

(or another quantity of equivalent cost). The first deriva-
tive and the first two terms in (23) are obtained easily
from the Fock matrix. The most expensive part is

Tables IV and V report convergence tests for a number
of molecules and crystals. Comparing to the direct inver-
sion in the iterative subspace (DIIS) method ' (the

TABLE IV. Number of iterations to achieve convergence of 10 for Hartree-Fock (HF) and
GDS/DFT using GCG.

Molecule N2 02 H20 CH4 C6H6 glycine glutamine C60I& C60Th

a
~ ~ basis

biV
30
7

30 25
5

35
5

120
21

100
20

200
39

540
180

540
180

HF (DIIS)
GDS/DFT (GCG)

'Nb„;, is the number of basis functions.
1V „is the number of occupied molecular orbitals.

9
12

0
15

8
10
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TABLE V. Number of iterations to achieve convergence of 10 ' for GDS/DFT calculations of crys-
talline sytems. Notation as in Table IV.

Method Diamond c-BN h-BN c-AlN c-GaN GaAs CdTe C60

basis

GDS/DFT (GCG)

30
6
8

30
6
8

60

8

34
10
9

50
19
12

70
32
15

78
50
15

540
180

11

current method of choice for ab initio Hartree-Fock cal-
culations in molecular systems) GCG requires much less
memory. Thus l3IIS requires storing the full Fock ma-
trices in previous steps, leading to a size of

+DIIS "' iter 2" basis (27a)

while GCG requires only the immediate precedent conju-
gate vectors and wave functions, leading to

2
+GCG =+occ+basis +( 2 )+basis (27b)

Also GCG converges well for both molecular systems
and for solids.

IV. APPLICATIGNS

A. Ihsmond

Diamond is the prototypical covalently bonded insula-
tor with highly directional sp bonding. Each carbon
atom in diamond is bonded tetragonally to its four
nearest neighbors, forming a close-packed fcc structure
with two atoms per unit cell. It leads to large deviations
from overlapping spherical densities and provides a good
test case for real-space approaches. Diamond leads to a
hard-core pseudopotential, requiring large basis sets for
PW-PP calculations.

We used the Dunning-Huzinaga basis set, , which is the
standard for ab initio calculations of 6rst-row elements.
This basis set consists of ten primitive s-type Gaussians
contracted into three basis functions (the grouping is 7-
2-1) and five primitive p-type Gaussians contracted into
two basis functions (the grouping is 4-1) for each of the
three components. To account for polarization e6ects in
the valence orbitals, we add one set (six) of d-type Gauss-
ians with exponent 0.75. This basis set is denoted DV .
Using the Pople 6-316 basis set augmented with one d
function (631-G') gives no appreciable difference in band

TABLE VI. Lattice constant (a) and bulk modulus (B) for di-
amond.

Expt. ' GDS/DFT PW-PP PP-GTO' PP-LCAO

a (A) 3.567
B (Mbar) 4.52

3.535
4.57

3.530
4.73

3.69
4.56

3.56
4.37

'Reference 26.
Plane-wave pseudopotential, Ref. 23.

'Pseudopotential linear combination of Gaussian basis func-
tions, Ref. 24.
Pseudopotential linear combination of atomic orbitals, Ref. 25.

B. GaAs(110) surface

GaAs(110) is one of the most studied semiconductor
surfaces. Generalized valence bond (GVB) calculations
show that the two dangling bonds broken at the surface
coalesce into one lone pair of electrons localized on the
As center. This surface is therefore a good test case for
LDA-type calculations since spin polarizations are not
required. The cleaved GaAs(110) surface has the same

TABLE VII. Energy levels for diamond.

LCAO' LAPWb PW-PP'

I (

I is
I2
X)
X4
X)
X4
L2
Li
L3
L3
Li

—21.35
0.00
5.53

13.55
—12.64
—6.30

4.70
16.60

—15.51
—13.38
—2.82

8.36
9.01

—21.34
0.00
5.57

13.56
—12.66
—6.34

4.79
16.71

—15.52
—13.41
—2.81

8.45
9.07

—21.06
0.00
5.51

13.13
—12.48
—6.18

4.68
16.41

—15.33
—13.14
—2.73

8.33
8.75

—21.38
0.00
5.51

13.56
—12.67
—6.31

4.64
16.81

—15.53
—13.47
—2.81

8.37
8a97

Linear combination of atomic orbitals, Ref. 7.
bLinear augmented plane waves, Ref. 27.
'Plane wave pseudopotential, Ref. 28.

structure (the maximum difFerence is 0.04 eV) for the
conduction band and 0.07 eV for the valence band).

To facilitate comparison with other band-structure cal-
0

culations, the experimental lattice constant a =3.567 A
was used, and the self-consistent potential was obtained
using ten special k points' in the irreducible wedge of
the fcc Brillouin zone. The atomic grid (constructed ac-
cording to Sec II) .has 317 inequivalent points in the irre-
ducible wedge. The Hedin-Lundquist form for the
exchange-correlation potential was used.

The lattice constant and bulk modulus are reported in
Table VI. The lattice constant is 0.032 A smaller than ex-
periment and 0.005 A larger than PW-PP. The calculated
band structure is reported in Table VII (and Fig. 2). We
obtain a band gap of 4.04 eV, in good agreement with
PW-PP results (4.05 eV) and about 30% smaller than
the experimental value of 5.47 eV. This large discrepan-
cy is due to the LDA, which fails to reproduce the
discontinuity of the exchange correlation potential across
the Fermi surface.
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FIG. 2. The band structure of diamond calculated with

GDS/DFT (DV basis) at the experimental lattice constant
(a =3.567 A). O
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stoic hiometry as the bulk, and it relaxes without
significant reconstruction. ' The hybridization angle of
the unrelaxed surface, 109.5, changes toward the ideal
hybridization angles (120' for Ga and 94.3' for As) (Ref.
32) as it relaxes. This causes the surface As atom to
move away from the bulk while the Ga atom moves down
into the surface, roughly preserving the bond lengths. '

For these calculations we use the ab initio MS4 basis
set with additional valence d functions optimized from
calculations of GaAs crystal (exponents of 0.286 for Ga
and 0.396 for As). The MS4 basis is contracted as
(43321/4321/311) for both Ga and As to form a split
valence basis ( ls, 2s, 3s, 4s, 4s'; 2p, 3p, 4p, 4p '; and
3d, 3d', 4d) where the outer d Gaussians (4d) describes
valence polarization effects.

Wc used ten special k points' to sample the irreducible
Brillouin zone and the Ceperley-Alder exchange-
correlation potential as paramctrized by Perdew and
Zunger. We obtain a bulk lattice constant a =5.678 A,
in good agreement with the experiment (a =5.65 A) (Ref.
35) but 0.13 A larger than the PW-PP result (a =5.52
A). It is not known why PW-PP leads to such a small
cell; ' it may result from the significant overlap be-
tween the shallow Ga 3d electrons and the valence charge
density.

The surface calculations were carried out using a
periodic slab (see Fig. 3) of three double layers (total
thickness =12 A) separated by a vacuum of two double
layers (thickness =8 A). The irreducible Brillouin zone
was sampled using eight special k points optimized with
the Froyen method (see also Sec. III about our
modifications). In these calculations we fixed the Ga—As
bond lengths at the theoretical bulk value and allowed
only the surface atoms to relax. This leads to a single de-
gree of freedom, the angle co between the surface Ga—As
bond and the [001] direction (the reconstruction angle).
This rigid-bond-first-layer only approximation captures
the dominant effects of surface relaxation (fully relaxed

0.010

0.008—

0.006—

0.004—
S4

0.002—

0.000—

15
I

20 25
I

30 35

Reconstruction angle (m)

FIG. 3. (a) Side view of the relaxed GaAs(110) surface
(co=26.3 ). (b) Potential curve for relaxation using GDS/DE j.'

(MS4 basis).

ab initio calculations lead to relaxations in the lower
layers that are an order of magnitude smaller). The re-
sults are summarized in Table VIII. Wc obtain co=26.3,
which agrees reasonably well with other theoretical calcu-
lations (co=27.4 -31.6'). It is quite close to the GVB
cluster calculations (co=25.8'). 3 The LEED data lead
to co =28.0 obtained by Tong, Mei, and Xu and
co=31.1' obtained by Duke et al. We find the average
As—Ga—As bond angle to be 119.3' [slightly smaller
than the ideal angle (120') for trivalent Ga] and the aver-
age Ga—As—Ga bond angle to be 96.5' [somewhat
larger than the ideal angle of 94.3 (for AsH3)]. These re-
sults agree very well with GVB cluster calculations,
which give average angles of 119.3 for Ga and 95.8 for
As.
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TABLE VIII. Reconstruction of GaAs(110) surface. Report-
ed in the table are the bulk lattice constants.

a (A)'
~ (degree)d
As5z (A)'
Ga5z (A)'
d„(A)'

Experiment'

5.65
27.0,3 1.3
0.09,0.19

—0.506,—0.527
0.65,0.75

5.678
26.4
0.19

—0.446
0.63

pm-pp'

5.52
27.0,28.5
0.19,0.22

—0.44, —0.51
0.58-0.68

'Experimental data, summarized in Ref. 36.
"Plane-wave pseudopotential calculations, summarized in Ref.
36.
'Bulk lattice constant for three-dimensional crystal.
Reconstruction twist angle.

'Displacements of surface atoms perpendicular to the surface.
The diIlerence of the two surface displacements (most sensitive
quantity from LEED experiments).

C. BN(11D) surface

Cubic boron nitride is of considerable interest because
of its hardness and possible use as substrate material for
CVD growth of diamond films. ' BN is also interesting as
an adherent coating of ceramics such as MgO. Howev-
er, there is very little experimental data available on the
electronic structure for the cubic (zinc blende) form of
BN, and few theoretical or experimental studies of BN
surfaces.

Our calculations use the ab initio MS4 basis set with
additional valence d functions optimized for cubic BN
(exponents of 0.337 for 8 and 0.7994 for N). The bulk
calculation used the Ceperley-Alder —Perdew-Zunger
exchange-correlation potential and two special k
points' to sample the irreducible Brillouin zone. We ob-
tain a lattice constant a =3.593 A, very close to the ex-
perimental value of 3.615 A (Ref. 43) and to PW-PP cal-
culations (3.606 A ). We find a bulk modulus of
8 =3.764 Mbar, slightly larger than the PW-PP result
(3.67 Mbar). These values are significantly lower than es-
timated value of 4.65 Mbar reported in Ref. 44 using an
empirical interpolation of experimental elastic con-
stants. This estimated experimental value is larger than
the bulk modulus for diamond (4.52 Mbar) and is, we be-
lieve, too large.

We examined the (110) surface for cubic BN using a
slab of four double layers separated by a vacuum with a
thickness corresponding to two double layers. The irre-
ducible Brillouin zone was sampled using two special k
points constructed as for GaAs. As for GaAs, we used
the rigid-bond-top-layer only approximation. We obtain a
reconstruction angle of co =15.58', corresponding to aver-
age hybridization angles of 116.37' for the cation and
99.03 for the anion. Similar calculations using two dou-
ble layers with six k points (co=15.26') and two double
layers with two k points (co=15.44') give no significant
difference in structural properties. This is smaller than
the co=21.7' from Hartree-Pock cluster calculations
(where the hybridization angles for 8 and N are found to
be 118.7 and 103.5', respectively). This difFerence might

be due to the use of the cluster approximation or the lack
of d basis functions for boron in Ref. 46. We could find
no experimental data for comparison.

D. C60 crystal

The fullerite allotrope of carbon, C60, has been of con-
siderable interest because of possible chemical and bio-
logical applications and because of the superconductivity
at 33 K in its alkali-doped compounds. The use of Gauss-
ian basis sets has an advantage here since all electronic
properties are directly expressed in terms of local orbit-
als. This facilitates a tight-binding interpretation and is
useful for extracting parameters for model studies of su-
perconducting mechanism.

Below 249 K, the C60 molecules are rotationally or-
dered and the crystal structure has a simple cubic lat-
tice with four C6o molecules per unit cell. At high tem-
peratures the C60 molecules rotate freely around their
center, leading to a strictly fcc structure. For computa-
tional convenience, all calculations were performed using
a hypothetical fcc structure having a single C60 molecule
per cell oriented according to the cubic symmetry. This
approximation reduces the C60 center from I& symmetry
to T& symmetry. The distortion caused by this symmetry
reduction is very small.

The structure of Iz C60 can be described by two param-
eters, namely the short carbon-carbon bond distance R,
and the long C—C bond R&. Our calculations used
R, =1.414 A and R2 =1.455 A obtained from molecular
mechanics simulations. We used the 6-31G basis set,
giving to a total 540 basis functions per unit cell. The
Brillouin-zone sampling was done with one special k
point. Tests using two special k points give energy
differences of less than 0.01 eV in the valence and con-
duction bands.

The band structure in Fig. 4 shows C60 to be a direct-
gap insulator with E&, =0.97 eV at the X point. This is

3 00
C (fcc)

Z.50

1.50

1.00

0.50

0.00

-0.50

-1.00 r
0

FIG. 4. Band structure of fcc C60 at a = 14 A using
GDS/DFT {DV basis).
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TABLE IX. Key parameters in the band structure of face-
centered-cubic C60 obtained by calculating the Coulomb poten-
tial either analytically or numerically. All quantities are in eV.

Band gap
Wri
WH„
Wp)~'

Analytical

0.96
0.62
0.84
0.74

Numerical

0.97
0.60
0.83
0.71

'Bandwidths of the two lower conduction bands.
Bandwidth of the top valence band.

slightly smaller than PW-PP result (Es»=1.04 eV),
presumably due to the use of difFerent structural con-
stants. To check the numerical accuracy in our calcula-
tions, we carried out a parallel calculation where the
Coulomb potential is calculated analytically. The numeri-
cal errors are found to be less than 0.02 eV (see Table
IX). To check the basis set error, we carried out a paral-
lel calculation using the Dunning-Hunzinaga basis set '

The results agree with the 6-31G results within 0.07 eV in
the energy range between —21.42 and 16.62 eV.

Both theoretical results are much smaller than the ex-
perimental gap of Es, =1.85 eV from microwave con-
ductivity experiments and the values of E, =2.3—2.6
eV from photoemission experiments. ' It is expected
that LDA calculations lead to too small a gap.

E. GaN and AlN materials

The group-III nitrides (GaN, A1N) are attracting con-
siderable interest because of their particular stability at
high temperatures, considerable hardness, and potential
device applications due to the wide band gap. The ni-
trogen favors formation of short bonds, leading to a wurt-
zite crystal structure with small c/a axial ratio [1,600 for
A1N (Ref. 55} and 1.628 (Ref. 56} for GaN]. The energy
difFerences between the wurtzite form and zinc-blende
form are very small, and GaN zinc-blende Slms have
grown on a single-crystalline GaN bufFer which is epitaxi-
ally grown at low temperature on Si(001) by electron cy-
clotron resonance microwave-plasma-assisted molecular-
beam epitaxy. Because of the large ionicity, high pres-
sures transform the wurtzite structure in these systems

into the rocksalt structure (A1N at 12.9 GPa and GaN at
47 GPa) rather than into the zinc-blende structure. s7

Experimental data on the microscopic parameters and
electronic properties are scarce due to the di%culties in
growing high quality single crystals. Recently there have
been several theoretical studies. In mu5n-tin-based
methods, the large ionicity and directional bonding in ni-
trides make the atomic sphere approximation quite un-
reasonable. Full potential linear muffin-tin orbital (FP-
LMTO} and full potential linear augmented plane-wave
(FP-LAPW) methods should overcome this difficulty, but
it is not clear whether they are su%ciently accurate to
resolve the small energy difFerences between difFerent
phases and to provide a correct transition pressure.

Here we present Gaussian-based DFT calculations for
the zinc-blende structure of GaN and AlN using two spe-
cial k points' to sample the irreducible Brillouin zone.
The calculations were carried out using the MS4 basis
set with an additional set of d functions (optimized ex-
ponents of 0.88 for N, 0.2378 for Al, and 0.286 for Ga).
The omission of these polarization d functions leads to a
slight increase in the lattice constant (by 0.3% for A1N,
0.03% for GaN) and significantly increases the bulk
modulus (by 32% for A1N and 4.4% for GaN).

For A1N (see Table X), we obtain a lattice constant of
4.395 A (4.408 A without d functions), in close agreement
with the experimental value [4.37 A (quoted in Ref. 58)]
and with PW-PP calculations [4.35 A (Ref. 37)]. We find
the bulk modulus to be 1.71 Mbar (2.26 Mbar without d
functions). Ab initio Hartree-Fock gives 2.25 Mbar, 59

while LMTO calculations give 2.15 Mbar. The experi-
mental result quoted in Ref. 44 is 2.06 Mbar.

The band structure is presented in Fig. 5. %'e Snd
zinc-blende A1N to have an indirect minimum band gap
(I",—+X, } of 3.08 eV (3.14 eV for calculations without d
functions). This is in close agreement with the PW-PP
result (3.2 eV). Both theoretical results lead to a much
smaller gap than experiment (6.2 eV from optical-
absorption data }. We calculate a direct gap at the I
point (I i~1 i) of 3.96 eV (3.89 eV without 1 functions),
somewhat smaller than 4.2 eV obtained with P%'-PP.
As discussed above, the LDA is expected to underesti-
mate the band gap.

For GaN (see Table XI), we obtain a lattice constant to
be 450 A (4.52 A without 1 functions). The results are in
close agreement with experimental data [4.50 A (Ref.

TABLE X. Properties of cubic A1N.

CDS/DFx
with d no d Expt. ' FP-LMTOb pw-pp'

Lattice constant (A)
Bulk modulus (Mbar)
Indirect gap (I &~X~ )
Direct gap (I &~I ~)

4.395
1.709
3.08
3.96

4.408
2.264
3.14
3.89

4.37
2.06
6.2

4.334
2.15

4.35

3.2
4.2

4.287
2.25

'Quoted in Ref. 58.
Full potential linear muon-tin orbital method, Ref. 58.

'Plane-wave pseudopotential method, Ref. 37.
Ab initio Hartree-Pock, Ref. 59.
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FIG. 6. Band-structure zinc-blende GaN at the theoretical

lattice constant (a =4.50 A) using GDS/DFT with the MS4
basis.
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FIG. 5. Band structure of zinc-blende A1N at the theoretical
lattice constant (a =4.395 A) using GDS/DFT with the MS4*
basis.

54)] and with PW-PP calculations (4.42 A). ' We find a
bulk modulus of 1.58 Mbar (1.65 without d functions).
We could not find other reports of this property either
from theory or experiments. However, experimental data
for the wurtzite form lead to 8 =1.95 Mbar, somewhat
higher than the calculated zinc-blende bulk modulus.

Band-structure calculations (see Fig. 6) indicate that
GaN has a direct minimum gap of 2.00 eV (1.96 eV for
calculations without d functions) at the I point
(I'6~1 &). This is in close agreement with the PW-PP re-
sult of 2.1 eV but substantially smaller than the experi-
mental value of 3.5 eV. We calculate an indirect gap
(I ",5~X; ) of 3.26 eV (3.04 eV for calculations without d
functions), again close to the PW-PP result of 3.2 eV in
PW-PP.

Lattice constant (A)
Sulk modulus (Mbar)
Indirect gap {I6~I l)
Direct gap (I ls —+Xl )

'Reference 60.
Reference 54.

'References 61.

4.50 4.52
1.58 1.65
2.00 1.96
3.26 3.04

4.50b

32'

4.42'

2.1'
3.2'

TABLE XI. Properties of cubic GaN. Same notation as for
Table X.

GDS/DFT
with d no d Experiment PW-PP'

F. CdTe band structure

II-VI semiconductors, such as CdTe, are of current in-
terest because of potential device applications. We use
the MS4 basis set augmented with an additional set of d-
type polarization functions (exponents of 0.5889 for Cd
and 1.023 for Te). We use the Hedin-Lundquist
exchange-correlation potential and two special k points'
to sample the irreducible Brillouin zone. We find a lattice
constant of 6.478 A, in good agreement with the experi-
mental value of 6.48 A, but smaller than the LAPW

Relativistic
r, „
I lsd

r„„
lsv

I l, (gaP)
I ls,
I lsd

Xlv

X3v

Xsv

Xlc
X3c
Ll„
Ll„
L3„
Ll,

LAPW'

Yes
—11.30
—8.43
—8.17
—0.00

0.47
4.48

—8.43
—10.79
—4.44
—1.92

2.45
2.54

—10.91
—4.54
—0.80

1.60

GDSP/DFT"

Yes
—11.21
—8.20
—7.97
—0.00

0.58
4.53

—8.20
—10.67
—4.42
—1.91

2.44
2.67

—10.80
—4.55
—0.79

1.66

GDS/DFT

No
—10.32
—8.24
—7.66
—0.00

1.72
4.82

—8.24
—9.84
—4.11
—1.93

2.68
3.41

—9.92
—4.37
—0.79

2.54

'Reference 63.
Reference 60, using relativistic BHS pseudopotentials from

Ref. 65 in the separable form described in Ref. 64.

TABLE XII. Band structure of CdTe calculated at the
theoretical lattice constant {6.4778 A).
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CdTe(zinc-blende) nuclear relaxation. We are now in the process of imple-
menting Car-Parrinello-type molecular dynamics with
the method proposed here.

To provide a variety of tests for GDS/DFT, we report
calculations on both crystal and surface systems. These
test show that GDS/Dl I' is accurate for systems with a
variety of bonding characters.
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(Ref. 63) result of 6.541 A. We obtain a direct band gap
of 1.72 eV, which is larger than the LAPW (Ref. 63) re-
sult of 1.44 eV and the experimental result of 1.59 eV.
This LDA band gap is larger than experiment because we
neglect relativistic effects (which destabilizes the cation s
level and stabilizes the anion p level) increasing the gap.
In fact, inclusion of relativistic eSects in the LDA
reduces the gap to 0.58 eV, much lower than the experi-
mental result, as expected. Table XII reports the band
structure at some high-symxnetry points, leading to very
good agreement with the LAPW. Figure 7 is the band
structure of CdTe along some high-symxnetry directions.

APPENDIX: RECURSIVE RELATION
FOR THE FOURIER TRANSFORM

The Fourier transforxn is used for the reciprocal-space
calculation of the Coulomb potential due to the residual
charges [see (17)].The Gaussian functions is written as

2

=X x "y "z "em n p —gr
j"e I' e e e

where q denotes the center, m„+n„+p„=l (the angular
momentum, e.g., l =2 for d functions), N„ is a normaliza-
tion constant, and g& is a real number. The general form
for the Fourier transform of a pair of Gaussian functions
1s

V. SUMMARY
p~q p(G)= Jd ry~q(r)y p(r)e' (Al)

We develop the GDS/DFT method for first-principles
all-electron calculations of periodic systems using
Gaussian-type basis sets. The applicability of this
method for accurate large-scale calculations with Gauss-
ian functions relies on three major features: (1) the
design of an accurate grid; (2) the efficient dual-space ap-
proach for the construction of the Couloxnb potential via
the use of projection functions; and (3) the generalized
conjugate gradient update of wave functions with precon-
ditio ning.

For large systems we expect the cost of calculating ma-
trix elexnents to scale linearly, so that the computational
costs of the conjugate gradients becomes dominant. Since
Gaussian basis sets are typically 6—100 times smaller
than plane-wave bases, we expect GDS/DFT to become
much faster for computations of large-scale systems. Ad-
ditional advantages are that all electrons can be included
in the calculation, allowing all elements of the Periodic
Table to be treated.

The accuracy of the grid is tested rigorously for xnolec-
ular calculations where all the elexnents of the Fock ma-
trix are coxnpared with analytical results. The results are
very encouraging (see Sec. II). With grid optimization
(see Sec. II), GDS/DF'I' should be suitable for including

OO io„x m —g(x —x )2
I(G„)= dxe "(x—x') "e

m —g(x —x )X(x —x) e (A2)

where q and p denote the atoms to which the basis func-
tions p and v (with exponents g„and g,) belong. In order
to derive the recursion relation, we use the identity

+ 3 iGx m —g(x x)
x

m„—g„(x —x )X(x —x) "e " ~ ]=0,
which leads to

2&I-+i, „+2SA „, „+i

(A3)

=iGxIm m ™„Im —g, m +mvIm, m (A4)

where y&e is a Gaussian basis function on center q. The
basic integral used in computing p„, „z(G) is
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Second, from the identity xq —xp = (x —
xp ) —(x —xq )

and (A2}, we have
iG„I +, = (xq —

xp )+ I
7pv ~Tpv m"™

(xq xp} m, m Im +1,m m, m +1p' v p v
(A5)

mp mv+ Im —i m + Im, m
2'VI v " '

27pv m"™ (A6)

Combining (A4) and (A5) to eliminate I +, leads to
p7

the recursion relation

where y„=g,+g„. The recursion relation to increment
the value of m is obtained from (A6} by exchanging in-
dices.

'Present address: Schrodinger Inc. , 80 S. Lake Ave. (Suite 735),
Pasadena, CA 91101.
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