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Effects of nonlinearity on the time evolution of single-site localized states
in periodic and aperiodic discrete systems
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We perform numerical investigations of the dynamical localization properties of the discrete nonlinear
Schrodinger equation with periodic and deterministic aperiodic on-site potentials. The time evolution of
an initially single-site localized state is studied, and quantities describing different aspects of the localiza-
tion are calculated. We find that for a large enough nonlinearity, the probability of finding the quasipar-
ticle at the initial site will always be nonzero and the participation number finite for all systems under
study (self-trapping). For the system with zero on-site potential, we find that the velocity of the created
solitons will approach zero and their width diverge as the self-trapping transition point is approached
from below. A similar transition, but for smaller nonlinearities, is found also for periodic on-site poten-
tials and for the incommensurate Aubry-Andre potential in the regime of extended states. For potentials
yielding a singular continuous energy spectrum in the linear limit, self-trapping seems to appear for arbi-
trarily small nonlinearities. We also find that the root-mean-square width of the wave packet will in-
crease infinitely with time for those of the studied systems which have a continuous part in their linear
energy spectra, even when self-trapping has occurred.

I. INTRODUCTION

The study of the interplay between disorder and non-
linearity, providing two different mechanisms for locali-
zation, has received large attention in recent years. ' As
a simple model equation with applications in many
different physical areas, the one-dimensional (1D) discrete
nonlinear Schrodinger (DNLS) equation

has been studied. This equation appears, for example, in
the Holstein model for polaronic motion in solids, in the
Davydov model for transport of vibrational energy in
proteins, in models for the nonlinear optical response of
superlattices, and in models for nonlinear arrays of cou-
pled waveguides. The DNLS equation has two con-
served quantities, the norm R =g„ l g„ l

and the Hamil-
tonian

and is nonintegrable for systems with more than two
sites. For disordered systems, i.e., when the on-site po-
tential V„ is randomly chosen, the DNLS equation
reduces with a =0 to the 1D Anderson model, for which
the exponential localization of eigenstates has been
rigorously proved. In dynamical terms, this implies that
an initially localized excitation will remain localized in a
finite region and that the time-averaged probability to
find the quasiparticle at the initially excited site will al-
ways be nonzero. When the on-site potential is randomly

distributed in the interval ( —W, W) with W ( 1, the
dynamical localization has been shown to be destroyed
by the nonlinearity, in the sense that for

l
a

l
)a,

(a, -0.1) the motion will be subdiffusive [i.e., the root-
mean-square width bn(t) of an initially localized wave
packet will increase according to the law (7) below with

y =
—,'] for large times. Furthermore, for V„=O the

DNLS equation has been shown to exhibit self-
trapping '" i.e., there exists a critical nonlinearity a„
such that for la l

)a„ the probability for an initially lo-
calized excitation to remain at the initial site will be
significantly larger than 0. Using an energy balance con-
dition, a value of a„=4 for large chains was estimated in
Ref. 11.

Recently, there has also been some interest' ' in the
study of nonlinear models for systems which are aperiodi-
cally ordered, such as quasicrystals, incommensurate
crystals, or aperiodic superlattices. In the linear regime,
these systems exhibit a large variety of localization prop-
erties, depending on the specific nature of the aperiodici-
ty. Many of these systems will already in the linear re-
gime show anomalous diffuse behavior. ' Thus it is in-
teresting to compare the effect of adding nonlinearity to
such a system with the corresponding effects in disor-
dered and periodic systems discussed above. In this pa-
per, we will study the dynamical localization properties
for the DNLS equation when the wave packet is initially
localized on one single site no. We may without loss of
generality write

g„(0)=5„„
since the non-normalized case R&1 can be mapped to
the case R =1 by the rescaling g„~g„iv'R, a~aR.
We wi11 compare the results obtained for some specific
choices of the deterministic aperiodic on-site potential,

0163-1829/95/52(1)/231(10)/$06. 00 52 231 1995 The American Physical Society



UgST, AN ~~~F RiKI-U»Ml«&MAGNUS J ANSSI,M~C 52232

(4)

~ .
rope«ies 'local

~

we wi11
a1't tively di ere

h localization, w
having I .

t As measur .
tion at the

h linearll "
f6 ding the

e
blty o nuse the Pro

stat~ 0 QQ2-

0 QQ1-
Iv„I

6000

ntuare displacementhe mean-square

(t)~',[bn(t)] =n =~~ ( n no )—
~ g„

and the participa
'

ation number

n

n-s uare displacementf the root-mean-square
11' ''"1volution o e

An wi n11 ormally fo ow w

(7b,n(t)—tr

'on is localized ( y ='
n is o

' =0),whet er on ish the motion isindicating s o
subdiffusive (0 y (—,

allistic( l), ballistic (y =
while the p

thber of si e
single-si e(P=l for a

' gl- e
tt foI'=N for a sa

b 1We will begin
is emphasize

(6)
I i l

'
al localization n

'
e

nsition are discuss
pects o

g es of a se - ra

lues, and in
Sec. III w e discuss in

us set o vauon-site potentia u1 ta es a

able systems are stu
NLS equationThe D

2x1Q

iy j
1x104

3x10-4

2x10

-41x10

(b)

6000

6000

0.1

0.01

0.001

I

10

II, I'(I/gllpgggjyll, pig'a'l !;::''
~g~~ygjuew, -..—.

J
0.004—

~ 0.003-
Iy„l

0.002-

Q.001

6000

10010 10
10

a unc
' etfor- ite robability 8'0 as a u

=0 and rom, f bottom to top

8'0 will ec
40 hFor a )r fluctuations. o

o increasewill continue to '

of the wave funnctionsdistribution
~ g„~ o e nF&(CJ. 2. ' '

is rProbability is r'

when V„—:at timess t =2000,
= —2.80, a =b) a=—

The initial site i 0
—2



52 EFFECTS OF NONLINEARITY ON THE TIME EVOLVTION OF. . . 233

mainly by using a variable-step variable-order Adams
method from the NAG library. In order to eliminate the
inAuence of numerical errors, the calculations reported
here have been checked by comparing with results ob-
tained using diff'erent algorithms (e.g., Runge-Kutta
methods of difFerent order and other implementations of
Adams methods), different error tolerances, and different
precisions. For the periodic systems and also for small
nonlinearities in the aperiodic systems, we find that the
integration can easily be performed for long times with
very small errors in the results, while for some of the
aperiodic systems with larger nonlinearities numerical er-
rors become appreciable already after a few thousand
time steps. In any case, the results presented here have
been checked to be correct to at least three significant di-
gits for all times. Since our purpose is to simulate infinite
chains, we exclude the inAuence of the boundary condi-
tions by studying systems large enough so that the wave
packet will have a negligible amplitude at the end points
during the integration time (in most cases ~1t„~ & 10
near the boundaries).

II. PERIODIC CASK

trapping transition. In Fig. 1 we show how the initial-site
probability varies with time for some different values of a
when V„—:0 (a is chosen to be negative in the figure, but
when V„—:0 the behavior will be the same for positive a).
From this figure, it is obvious that there will always be a
finite probability to find the quasiparticle at the initial site
when ~a

~

~ 3.5, but for smaller ~a
~

this probability seems
to decay to 0 as t ~ ~. To get a physical picture of what
causes this transition, we show in Fig. 2 the time evolu-
tion of the wave packet for some values of a around the
transition point. As can be seen, for ~a ~

~ 3.4 the wave
packet will develop partly into two solitonlike objects
moving in opposite directions away from the start site
and partly into an oscillating state having an approxi-
mately constant, time-decaying amplitude. As

~
a in-

creases from zero, the width of the solitons will first de-
crease until ~a ~

=2. 1 and then increase until ~a reaches
the point of the self-trapping transition, where the soliton
widths seem to diverge. Also, the velocity of the solitons
will decrease monotonically as ~a is increased from zero,
as can be seen from Fig. 3. The soliton velocity will be
close to the velocity of the wave front of the oscillating
state when ~a is small and apparently approaches zero as

For V„=—0, the self-trapping transition was estimated
in Ref. 11 to occur when the energy of the initial single-
site state, obtained from (2), falls outside the energy band
corresponding to delocalized, equipartitioned states,
which gives the value ~a„~ =4 for an infinite chain. How-
ever, it was noted that this condition only gives a rough
location of the self-trapping transition and that some
self-trapping occurs already below this value. We will
show below, mainly by direct inspection of the time-
evolved wave function, that the actual transition occurs
for a somewhat smaller nonlinearity (~a„~=3.45). We
will also see that when a periodic on-site potential is add-
ed the transition occurs even earlier and that in this case
the energy-balance condition does not give even a rough
estimate of the location of the transition.

Of our three measures (4)—(6), the initial-site probabil-
ity 8'0 is the most natural to use when studying the self-
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FICx. 3. Soliton velocity as a function of nonlinearity a in the
non-self-trapping region when V„—:0. The solid line is a guide
to the eye.
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FIG. 4. Time evolution of (a) the participation number P(t)
and (b) the root-mean-square width An(t) for di6'erent non-
linearities when V„—:0. In (a), we have a =0, —3.5, —2. 8,
—1.2, —1.6, and —3.6 from top to bottom at t =6000 and in
(b) a =0, —3.5, —4.0, and —4.5 from top to bottom.
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~a
~

~ ~a„~. Increasing ~a
~

beyond the transition point
will result in one single solitonlike object localized
around the start site. The width of this single, self-
trapped, soliton decreases fast for increasing ~a ~, result-
ing in a large amplitude on the start site.

To see how the other quantities are affected by the
self-trapping transition, we plot in Figs. 4(a) and 4(b) the
participation number and the root-mean-square displace-
ment, respectively, as a function of time for different a.
We see that the participation number increases linearly
with time for all times when a =0, indicating a uniform
spreading over the chain. When ~a~ is increased from
zero, P will for an initial time period increase linearly
with time, the slope of the line increasing for increasing
a ~, but finally the curve will bend over and the participa-

tion number will begin to oscillate. We attribute these
oscillations to the formation and subsequent "breathing"
of the two solitonlike objects discussed above, the maxi-
ma (minima) in P corresponding to maximal (minimal)
width and minimal (maximal) amplitude of the solitons.
As

~
a

~
is increased further, P will initially oscillate faster

and with a smaller mean value until ~a
~

=2. 1, indicating
a decreasing soliton width, but as

~

a
~

approaches
~a„~ =3.45 the oscillations will be slower and the max-
imum value of P will increase as a result of the broaden-
ing of the solitons. It is possible that the maximum value
of P may be infinite just at the transition point, but of
course our numerical calculations cannot guarantee this.
Increasing ~a

~
beyond the transition point will rapidly de-

crease both the period of the oscillations and the max-
imum value of P, since the width of the single soliton rap-
idly decreases when entering the self-trapping region.

From Fig. 4(b) we find the perhaps somewhat surpris-
ing result that the root-mean-square deviation will follow
the ballistic law (7) with y= 1 independent of the non-
linearity for large times. For ~a~ ) ~a„~, however, we
note on closer look that the time evolution of An can be
roughly divided into four different regions. After an ini-
tial period of ballistic motion, the curve bends over show-
ing a smaller slope for t, & t & t2, which is the time period
where the formation of the self-trapped soliton occurs.
Following this, we observe a time interval t2 & t & t 3

where the slope of the curve grows to a value which is ac-
tually larger than 1, indicating some kind of superballistic
motion. Finally, for t ) t3 the normal ballistic motion is
retained. As the nonlinearity is increased t&, t2, and t3
will all decrease, and for large nonlinearities the final,
ballistic region will be observed almost immediately. The
fact that the motion is ballistic also for ~a ~

) ~a„~ can be
understood by realizing that there will always be some
amount of probability amplitude "escaping" from the ini-
tial site before the self-trapped state is formed. This es-
caping probability will be small if ~a ~

is large, and thus,
because of the smallness of the term a~/„~ in (1), the
time evolution of this part of the wave will only be weak-
ly affected by the nonlinearity. We also note that al-
though b, n grows linearly with time for all ~a ~

when t is
large, its value at a specific time will decrease as ~a

~
is in-

creased in the self-trapping region as a result of the de-
creasing amount of escaping probability.

To study the effect of introducing a simple periodic
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FIG. 5. Initial-site probability 8'0 vs time t for model (1)
with the periodic on-site potential (8) when (a) V„=—1 {odd

start site) and (b) V„=+1 (even start site) and di6'erent non-

linearities. From bottom to top in the figures, we have in (a)
a= —1.50, —1.60, and —1.70 and in (b) a = —1.70, —1.75,
and —1.85 ~

on-site potential V„ in the DNLS equation (1), we now
discuss the results obtained when the potential is chosen
as

V„=Vo( —1)" .

In Figs. 5(a) and 5(b) we show the variation of the initial-
site probability with time for different nonlinearities
(a (0) when Vo = 1 and the start site no is odd and even,
respectively. As can be seen, we also here get a self-
trapping transition, but for smaller values of

~
a ~,

Iu..,.«l = 1 55 and ~a„,„,„~=1.70, respectively. (When a
is positive, these values will be interchanged, since it is
the relative sign between a and V„ that is of importance. )

0

We also find that the values of
~ a„~ decrease as the ampli-

tude Vo is increased (see Fig. 6). The basic mechanism
behind the transition appears to be the same as for
V„=—0, and the participation number and root-mean-
square deviation behave in a qualitatively similar manner
as described above. Also, here, the motion will be ballis-
tic for large times, independent of the nonlinearity. As
we remarked in the beginning of this section, we cannot
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3.5:
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use the simple energy-balance condition from Ref. 11 to
get even a rough estimation of the location of the transi-
tion point in this case. For example, since the initial
single-site energy is given by Hss =a/2+ V„, this condi-

tion used in its original form estimates the difference
!a„,„,„—a„,dd! to be of the order of 4 when Vo= 1,
which is a large overestimation of the difference ( -0.15)
we obtained numerically. It may be possible to formulate
modified conditions of this kind by considering the band
structure of the energy spectrum for the linear models,
but we will not exploit this possibility further here.

0
6 10

III. INCOMMENSURATE MODELS

FIG. 6. Location of the self-trapping transition !a„!as a
function of potential amplitude Vp for the periodic on-site po-
tential (8). The upper (dashed) curve corresponds to the case
when the nonlinearity a has opposite sign to the potential ampli-
tude V„at the initial site, while the lower (solid) curve corre-

0

sponds to equal signs.

The perhaps most well-known and studied model for
one-dimensional incommensurate crystals is the Aubry-
Andre model, which is the nearest-neighbor tight-
binding model [Eq. (1) with a =0 and P„(t)=c„e ' '] ob-
tained by choosing the on-site potential as

V„=Vo cos(2mng),
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FIG. 7. Time evolution of (a), (b) the initial-site probability 8'p{t), (c) the participation number P (t), and (d) the root-mean-square

width b n (t) for the DNLS equation (1) with the incommensurate Aubry-Andre potential (9) with Vp =1.5 and different nonlineari-

ties a and initial sites n p. In (a) we have n p =5000 (V„=1.5 X0.48) and a = —0.7 (lower curve) and a = —0.8 (upper curve); in (b),
0

np =0 (V = 1.5) and a = 0.6 (lower curve) and Q = +0.6 (upper curve)' in (c) np =6000 (V 1.5 X0.29) and a =0 0.6 0.7

and —1.0, respectively, from top to bottom in the figure; and in (d), n p =5000 and a =0, —0.8, and —2.0 from top to bottom.
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with g irrational. For this model, the spectrum of al-
lowed energies E for an infinite chain is absolutely con-
tinuous with all states extended if Vo &2, singular con-
tinuous with all states critical if Vo =2, and pure point
with all states localized if Vo & 2 for almost all
Dynamically, the evolution of an initially localized state
is found' ' to be ballistic if Vo &2, close to difFusive

(y=0. 5) if V0=2, and localized if Vo &2. These results
are consistent with the conjecture' that the exponent y
in (7) should be equal to the Hausdorff dimension of the
energy spectrum and the rigorous result that diffusive
spread over one-dimensional lattices can take place only
if the spectrum is singular continuous. We will in this
section study the nonlinear model (1) with the Aubry-
Andre potential (9). (A similar, but more complex, model
was studied in Ref. 14 where the dynamics of polarons in
a coupled electron-lattice system with the electron-lattice
interaction taken as a symmetrized deformation potential
was investigated. ) In our numerical computations, we
choose the incommensurability to be equal to the golden
mean, i.e., g=(+5+ I )/2, but we believe that the qualita-
tive behavior should be the same for almost all g, as is the
case for the linear model. At the end of this section, we
will also discuss a related model whose linear spectrum
possesses a mobility edge.

For subcritical values of the modulation amplitude
( Vo (2) in (9), we find a self-trapping transition in a simi-
lar way as described in Sec. II. As an example, we show
in Fig. 7(a) the initial-site probability IVo(t) for the
case with V0=1.5, no=5000 (giving V„=1.5X0.48),
a = —0.7, and —0.8. Apparently, the self-trapping tran-
sition occurs somewhere between these values. The exact
location of the transition point depends on the value of
the potential on the start site, resulting here in a variation
for ~a„~ between approximately 0.3 and 0.9, where the
smaller value is obtained when

~ V„ is close to 1.5 and
0

the larger value when
~ V„~ is close to 0. However, the

0
transition occurs earlier for the incommensurate poten-
tial than for the periodic potential (8), where
~a„~ =1.1 —1.3 when VO=1. 5 (see Fig. 6). It is also in-
teresting to note that although the value of a„~ for the
incommensurate model is only weakly dependent on the
relative sign between a and V„, the self-trapping for

p

~a
~

& ~a„~ will be much more efficient when these quanti-
ties have the same sign. This can be seen from Fig. 7(b),
where the initial-site probability is shown for no =0
(V„=+1.5) and a = —0.6 and +0.6. (For this case,

a„=—0.4 and +0.3.) By studying the participation
number for this case (not shown in the figure), we find
that when a =+0.6 (equal signs) the main part of the
wave packet will be spread only over approximately five
sites, while it will be spread over as much as approxi-
mately 100 sites when a = —0.6 (diff'erent signs). Gen-
erally, the qualitative behavior of P(t) and b,n(t) in the
subcritical regime Vo &2 is similar as for the periodic
cases, as shown in Figs. 7(c) and 7(d), respectively. How-
ever, from Fig. 7(d) we note that for ~a ~

& ~a„~ there is a
more pronounced di6'erence between the four di6'erent
time regimes in the evolution of An than for V„=O, so

1DO

10 100 10 10

PIC». 8. Root-mean-square width hn vs time t for the DNLS
equation (1) with the Aubry-Andre on-site potential (9) with
Vp =2 Up =3000 (V 2X0.80) and a =0, —0. 1, —0.4, and

0—1.5 from top to bottom in the right half of the figure.

that, for example, the exponent y in (7) takes for a = —3
(not shown in the figure) a value as large as 1.36 in the su-
perballistic region 100& t ~ 1000. We also note that al-
though y may be substantially larger than 1 for large
times, it always seems to approach 1 as t ~ ~ .

When increasing the modulation amplitude Vo, ~a„~
will decrease, and as Vo approaches the critical value
Vo=2, we find that an arbitrarily small nonlinearity ap-
pears to be enough to cause self-trapping. However, al-
though the time-averaged initial-site probability always
seems to be nonzero and the participation number satu-
rates at finite values for V0=2 and arbitrary a, the root-
mean-square width will also here continue to increase for
all times. This can be seen from Fig. 8, where An(t) is
shown for diFerent values of a when Vo =2. After the in-
itial time interval of di6'usive or almost di6'usive motion
(the length of this interval decreases for increasing non-
linearity), the motion will in the general case be
subdiFusive, with typical exponents y varying between
approximately 0.25 and 0.4. This is in contrast to the
behavior reported for the model in Ref. 14, where also An
was found to saturate.

When Vo )2, the wave packet will remain localized for
all times in the linear model. Its width will only increase
during an initial, transient time period, and there will be
an upper limit value of An. For the nonlinear model, one
might expect a similar behavior as obtained for the disor-
dered model in Ref. 9, i e., that there will be a
subdi6'usive spread for large times. Our numerical calcu-
lations show that also here there is a qualitative
di6'erence between the cases when the nonlinearity and
potential amplitude at the start site have equal or
diff'erent signs. We show, in Figs. 9(a) and 9(b), b, n(t) for
some diff'erent (negative) values of a when n 0

=250
[V„=2.7X( —0.999)] and no=0 (V„=+2.7), respec-

tively. From Fig. 9(a) we see that when the signs are
equal the nonlinearity will increase the localization, while
in Fig. 9(b) it is shown that the nonlinearity may cause
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10 edges. We have studied the model obtained by taking
the negative of the absolute value of the Aubry-Andre po-
tential, i.e.,

V„=—Voicos(2mng)i . (10)

h, n

h, n

0.1

10
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~)JQ ag(ghghAI gt a
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The linear version of this model has for small Vo only ex-
tended states and for large Vo only localized states just as
the Aubry-Andre model, but for 2( Vo (7 the spectrum
contains one mobility edge separating extended states
with low energy from localized states with high energy.
Dynamically, this linear model will also behave similar as
the Aubry-Andre model for small or large potential am-
plitudes. For intermediate values of Vo, the existence of
localized states will cause the initial-state probability to
be nonzero and the participation number to be finite,
while the extended states will contribute to a ballistic
spread of the width of the wave packet as t ~~. Intro-
ducing nonlinearity will in general for these values in-
crease the localization properties as described by the par-
ticipation number and initial-site probability, while the
ballistic spread is retained for large t. An example of this
is shown in Fig. IO. Note that for this model V„ is al-
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FIG. 9. Root-mean-square width An as a function of time t
for Eq. (1) with the Aubry-Andre on-site potential (9) with
V0 =2.7 and different nonlinearities a and initial sites n0. In (a)
we have n0=250 (V„=—2.7X0.9986) and a =0 (upper curve),

a = —1 (rniddle curve), and a = —10 (lower curve); and in (b),
n0=0 (V„=2.7) and a =0 (lower curve), and a = —1 (upper

curve).
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the wave packet to be less localized when the signs are
unequal (a= —1.0 in the figure). However, we cannot
tell whether An will continue to increase subdiffusively,
since in this case (when the wave packet is very localized
and the nonlinearity is rather large) we are unable to ob-
tain accurate results from the numerical integration pro-
cedure for more than a few thousand time steps using a
reasonable amount of computer time. We have also
found that for even larger nonlinearites (e.g. , a = —10)
the localization will increase (at least in the time region
where our numerical results are accurate) also for the
case with unequal signs.

As a model for incommensurate systems, the Aubry-
Andre model is exceptional because of the energy-
independent metal-insulator transition at V0=2 and the
existence of a purely singular continuous spectrum.
Generically, models with continuous on-site potential
have for intermediate modulation amplitudes an energy
spectrum consisting of regions of absolutely continuous
and point spectrum separated by one or several mobility

100

h, n

10

101 10 100 10

FICx. 10. (a) Participation number I' and (b) root-mean-square
width hn as a function of time t for the incommensurate model
with on-site potential given by (10) with V0 =6. In (a) we have
a=0 (upper curve) and a=+1 (lower curve), while, in (b),
a =0, + 1, and —1 from top to bottom in the right half of the
figure. (For t ~10, a=+1 yields larger values of b, n than
a =0.) The initial site is n0 =0 (V„=—6) in all cases.
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ways negative and that a negative a will cause the wave
packet to be more localized than a positive a, in agree-
ment with the results obtained above.

10
(a)

IV. BINARY APKRIQDIC SYSTEMS 100

In describing properties of one-dimensional quasicrys-
tals and aperiodic superlattices, one often studies tight-
binding models of the type (1) with on-site potentials tak-
ing a finite number of values. One standard way of gen-
erating such potentials is by using a substitution rule to
generate an infinite binary sequence of letters. For in-
stance, the Fibonacci sequence is generated by the rule

h, n

10

0.1
1OO 10

acting on a seed 2; i e., the first generations of
the sequence are given by A, AB, AB A, AB A AB,
AB A AB AB A, . . . . The on-site potential is then ob-
tained by choosing V„=+Vo if site n is an 3 and
V„=—

Vo if site n is a 8. For the linear model [a =0 in

(I)j, the Fibonacci system, as well as a large class of
substitutionally generated aperiodic systems, has been
shown to exhibit a purely singular continuous energy
spectrum. Dynamically, this type of spectrum generally
leads to anomalous diffusive spread of an initially local-
ized wave function, the index y in (7) continuously de-
creasing from 1 to 0 as the site amplitude Vo increases
from 0 to infinity. ' ' We will in this section study the
effect of adding nonlinearity to such systems. We will
also discuss the Rudin-Shapiro sequence, for which the
general sufticient conditions for singular continuous ener-

gy spectrum obtained in Ref. 28 are not applicable.
For the binary systems which in the linear limit exhibit

singular continuous energy spectrum, we find that intro-
duction of the nonlinear term in (1) has a similar efFect as
for the Aubry-Andre model with Vo=2. As examples,
we show, in Fig. 11, b,n(t) for (a) the Fibonacci model, (b)
the Thue-Morse model, and (c) the period-doubling mod-
el. The Thue-Morse sequence is generated by the substi-
tution rule

10

100

h, n

10

0, 1

10

100-

h, n

10-

1OO 10

and the period-doubling sequence by the rule

3 —+AB, B~AA (13) 0.1
1 10 100 10

Both these sequences have been rigorously proved to give
a singular continuous spectrum for the linear model. As
can be seen from Fig. 11, the root-mean-square width of
the wave packet will in general show different behavior
for different time regimes, and at least for the Thue-
Morse and period-doubling systems rather large regimes
of superballistic transport can be noted. From Fig. 11(a)
we also note that the index y decreases with increasing
nonlinearity for large t for the Fibonacci system, as for
the Aubry-Andre model with Vo =2, while no such ten-
dency can be noted for the Thue-Morse or period-
doubling systems in the time regime shown in Fig. 11.
However, none of the systems show any signs of satura-
tion of hn for large t.

The binary Rudin-Shapiro sequence can be generated

by the four-letter substitution rule

2 ~AB, B~AC, C~DB, D ~DC, (14)

where in the final chain each A and B are associated with

FIG. 11. Root-mean-square width hn as a function of time t
for different nonlinearities when the on-site potential V„ is ob-
tained from (a) the Fibonacci sequence, (b) the Thue-Morse se-
quence, and (c) the period-doubling sequence. In {a) we have
a =0, —1.0, + 1.0, and —5.0 from top to bottom at t =5000; in
(b), a=0, —1.2, —1.6, and —5.0 from top to bottom at
t =1000; and in (c), a = —0.8, 0, and —5.0 from top to bottom
at t =1000. The initial site is no=3000 in (a) and no=8192 in
(b) and (c) (Vo = 1.0 and V„=—1.0 in all cases).

0
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10

An

1
1 10 100 10

t

FIG. 12. Root-mean-square width An as a function of time t
for Eq. (1) with the Rudin-Shapiro on-site potential obtained
from (14) with V0=1.0 and initial site n0=1024 (V„=—1.0).

0
In the figure, a =0 (upper curve for t & 1000), a =+0.1 (lower
curve), and a =+0.5 (middle curve). Note that for a =0.5 the
wave packet will be less localized than for a =0.1, but still more
localized than for the linear case in the time regime where the
integration procedure is accurate.

an on-site potential V„=+ Vz and each C and D are asso-
ciated with V„=—Vo. The Rudin-Shapiro sequence is
exceptional among the binary substitutionally generable
systems in many ways; e.g. , the Fourier intensity measure
of the sequence is absolutely continuous as for a random
sequence, and numerical investigations ' ' of the linear
tight-binding equation have indicated a pure point energy
spectrum with normalizable but mainly weaker than ex-
ponentially localized eigenstates for almost all values of
Vo. Dynamically, the exponent y in (7) was found to be
zero for large t except when the potential amplitude Vo
takes one of the exceptional values for which non-
normalizable eigenstates exist. In the latter case, a
subdiffusive behavior was found. ' When introducing
nonlinearity, we find that the localization will normally
be increased, at least for the time region where our nu-
merical integration procedure yields reliable results. An
example of this is shown in Fig. 12, showing hn(t) when
a =0, a =+0.1, and a =+0.5 for the case Vo =1, where
all states are normalizable for the linear model. As for
the Aubry-Andre model in the localized regime, we find
that when ~a ~

~ 0.5 the growing of numerical errors will
in practice prevent us from performing the integration
for more than a few thousand time steps, and so the pos-
sibility of a subdiffusive behavior as t —+ ~, as obtained
for the disordered model, cannot be excluded in this case
either.

V. SUMMARY

The localization properties of the one-dimensional
discrete nonlinear Schrodinger equation (1) have been in-

vestigated by studying the effect of varying the nonlinear-
ity parameter a on the time evolution of an initially
single-site localized state for different periodic and deter-
ministic aperiodic on-site potentials V„. In general, we
find that self-trapping will always occur if ~a

~

is large
enough and that the self-trapping will be more efficient
when a has the same sign as the potential amplitude on
the initial site. When V„=O, the transition is found to
occur at ~a„~ =3.45, corresponding to a point of zero ve-
locity and diverging width for the two solitons created
for ~a~ & ~a„~. For periodic on-site potentials, ~a„~ de-
creases as the amplitude Vo increases, being, however,
nonzero also for large values of Vo. A similar behavior is
found for the incommensurate Aubry-Andre model in the
subcritical regime Vo (2, but for this model ~a„~ —+0 as
Vo —+2, where the energy spectrum of the linear model
becomes singular continuous. Also for other models ex-
hibiting a singular continuous energy spectrum in the
linear limit, such as the Fibonacci, Thue-Morse, and
period-doubling models, self-trapping apparently occurs
for an arbitrarily small nonlinearity. For all these sys-
tems, we find that the root-mean-square width of the
wave packet will continue to increase for all times also
when self-trapping has occurred, indicating ballistic
motion if the corresponding linear energy spectrum has
an absolutely continuous part and anomalous diffusion
for systems whose linear counterparts exhibit a purely
singular continuous spectrum. %'hen the eigenstates of
the linear model are localized, as for the golden-mean
Aubry-Andre model with Vo) 2 and the Rudin-Shapiro
model for almost all Vo, we have found cases where the
localization has been weakened by the introduction of
nonlinearity. However, because of the rapid growth of
numerical errors in the integration procedure for these
cases, we have not been able to study a sufficiently long
time interval to say whether there will be a subdiffusive
spread of the wave packet when t ~ oo, as found in Ref. 9
for a random on-site potential, or whether the wave pack-
et will remain localized for all times also in the presence
of nonlinearity. As a final remark, we stress that even in
the presence of nonlinearity the properties of the energy
spectrum of the linear model are most important to the
dynamical localization properties and that the different
aperiodic models in this sense provide a wide class of sys-
tems with qualitatively different properties also for the
nonlinear case.
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