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Unstable periodic orbits and characterization of the spatial chaos in a nonlinear monatomic chain
at the T=0 first-order phase-transition point
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We consider the problem of characterization of the observed spatial chaos in a nonlinear monatomic
chain model. The model is used for describing the systems that show a structural phase transition such
as a ferroelectric transition, metal-insulator transition, charge-density-wave transition, etc. The charac-
terization of the spatial chaos in the previously inaccessible chaotic regime of the nonlinear system is
made by calculating the unstable periodic orbits associated with the system in the regime using the sym-

bolic dynamic technique. The characteristic quantities such as the Lyapunov exponents are calculated in
terms of the periodic points of the unstable periodic orbits so obtained, and the hierarchical framework
based on the lengths of the periodic orbits have been used to calculate the topological entropy of the sys-
tem in the chaotic regime. The usefulness of such unstable periodic orbits so obtained for studying the
quantum behavior of the nonlinear system is also discussed.

In recent years, one-dimensional monatomic chain
models with harmonic coupling between neighboring
sites and an on-site strongly anharmonic potential have
been used for describing systems that show a structural
phase transition (SPT), such as the ferroelectric phase
transition, charge-density-wave transition, metal-insula-
tor transition, etc. The Hamiltonian of such systems can
be written as

H =g(A, /2)(P„—P„,) +y V(P„),

where P„denote displacements of the particle at the nth
site of the chain and V(P„) is the nonlinear on-site po-
tential. All these models describe two types of SPT,
namely, order-disorder and displacive phase transitions.
Whereas in the former case the on-site potential is much
larger than the intersite interaction, in the latter case the
reverse is true. In the case of the displacive phase transi-
tion, using an exact nonlinear technique is important,
since near the transition temperature the displacement is
large and perturbation theory is not valid. It may be not-
ed, however, that these one-dimensional chain models do
not show a phase transition at finite temperature. The
efFect of the nonlinear on-site potential on the dynamics
of the system is to create soliton states in the system. The
presence of the soliton states in turn gives rise to the ob-
served spatial chaos in the type of systems represented by
Eq. (1).

8 =4AC, A, C &0 and 8 &0, (3)

the potential has doubly degenerate minima for all odd
values of the parameter m and triply degenerate minima
for all even values of m. For m =2, this potential de-
scribes the well-known A,P theory for the first-order SPT.
The m =1 case of this potential has been used to study
the statistical mechanics of field theories with broken,
global, and local SU(3) gauge symmetries, where it has
been shown that the presence of the cubic term in the po-
tential restores the symmetry by a first-order phase tran-
sition, rather than a second-order transition.

The discrete forms of the equations of motion for this
potential have amplitude solitons (kink/antikink) given
by (paper I)

In a recent paper' (hereinafter referred to as paper I),
we have shown how the occurrence of spatial chaos in the
system can be clearly explained in terms of the soliton
states present in the system. %'e considered a model non-
linear on-site potential, which describes a first-order
phase transition as

V(y )
—

Cy2m +2+gym +2+ g y2 +D

The order of nonlinearity in this potential can be adjusted
through the parameter m which takes on integer values
m =1,2, 3, . . . . At the transition point

2 '~
Po[ 1+tanh(mna /2$o]'~ for m = 1,3,5. . .

+2 '~ Po[1+tanh(mna/2('o]'~ for m =2,4, 6. . . ,

(4a)

(4b)

where Po=[2A/~8~]'~, 5=2y/A, , g'o=A/2Ay, and a is
the lattice constant. Note that, because of the chosen
form of our potential Eq. (2), we have a two-parameter
problem. The parameter m determines the e8'ect of the

change in the order of nonlinearity, while the parameter
5 describes the efFect of the variation in the strength of
nonlinearity on the dynamics of the system. We can vary
both the parameters m and 5. This is in contrast to the
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E;„-exp(—2m /m5&A ) . (6a)

The pinning of the soliton to the lattice sites is overcome
by the soliton (repulsive) interaction energy' (paper I)

E;„,—exp( —lm 5P A /2), (6b)

where I =a/c (c being the soliton density) is the distance
between the solitons. The solitons get pinned to the lat-
tice sites if the soliton interaction energy cannot over-
come the pinning energy. If the interaction between the
solitons is very weak (for large separation between them),
then one expects a random distribution of the soliton
states on the lattice. Such a stable random distribution of
the soliton states appears as spatial chaos, as is observed'
(paper I) in the numerical iteration of the map Eq. (5).
From Eqs. (6a) and (6b) we see that, in contrast to the sol-
iton interaction energy E;„„the soliton pinning energy

E;„increases with an increase in the parameters m and
5. This explains why the observed spatial chaos is more
pronounced for larger values of the parameters m and 5.

In this paper, we consider the problem of characteriza-
tion of the observed spatial chaos' (paper I) in the non-
linear system represented by a nonlinear on-site potential
as in Eq. (2). Chaotic behavior in dynamical systems has
been a subject of extensive study in recent years. Many
low-dimensional condensed matter systems exhibit a
transition from regular to chaotic behavior. More re-
cently, the emphasis has been shifted to the chaotic re-

usual one-parameter problem considered in the litera-
ture where the variation of the parameter involves
only a change in the strength of the nonlinearity (5)
while keeping the order of the nonlinearity (m ) fixed.

The discrete equation of motion Eq. (3) can be written
in the form of a two-dimensional map:

Q„+,=f„+5/„[1—$„jt 1 —(m +1)P„],
An+1 4n+0n +1

where f„=P„—P„ i. For given arbitrary initial values

$0 and $0, the above map determines the displacement
field P„at all subsequent sites along the chain for
different choices of the parameters m and 5. Beside being
a two-parameter map, the other advantage in studying
this particular map is that it represents a model for the
first-order SPT, whereas most of the other models studied
in this connection so far have been confined to the study
of the second-order SPT.

The iteration of the map in Eq. (5) shows the presence
of spatial chaos in the system (paper I), ' for various
values of the parameters m and 5. It is observed that the
spatial chaos becomes more pronounced for increasing
order of nonlinearity (larger values of the parameter m).
Similarly, for a fixed value of the parameter m (order of
nonlinearity), the spatial chaos is more pronounced for
increasing values of the parameter 5 (the strength of the
nonlinear on-site potential). In terms of the soliton pic-
ture the occurrence of spatial chaos can be described as
follows. The soliton gets pinned to the lattice sites due to
the lattice commensurability. The pinning energy can be
calculated as' (paper I)

gime itself and the characterization of the chaos in this
regime. There are no systematic methods to get any
quantitative information in this regime. For example, in
paper I, we have identified the chaotic trajectories by
visual inspection of the random distribution of the points
in phase space corresponding to that particular trajecto-
ry. Characterization of chaos means quantitative mea-
sure of the degree of stochasticity for a trajectory in the
chaotic regime. Usually, the measure of the degree of
stochasticity in the chaotic regime is obtained by calcu-
lating, for the nonlinear system concerned, characteristic
quantities like the Lyapunov exponents, Kolmogorov en-
tropy, fraction dimension, topological entropy, etc.
However, the numerical evaluation of these quantities re-
quires a large number of points in phase space, which are
obtained by iterating the map starting from a given initial
condition. So the question arises as to how one charac-
terizes chaos for a trajectory which has only a few ran-
domly distributed points in phase space. The present pa-
per is motivated by this question. Here we are faced with
the same situation for the chaotic trajectories which have
only a few points in phase space as reported in paper I.
As has been mentioned above, Eq. (5) represents a two-
parameter map; one parameter represents the order of
nonlinearity (m) and the other parameter (5) represents
the strength of the nonlinear on-site potential Eq. (2).
Now, as we increase the values of either of the two pa-
rameters and try to iterate the map Eq. (5), we get a
lesser number of points in phase space, as after a few
iterations the numbers become very large and cannot be
numerically handled any further. For example, in Fig.
6(a) of paper I, the outermost trajectory, which
represents the chaotic trajectory, has just 150 points.
Further iteration makes the numerical value of P„very
large and it cannot be handled by the computer any
more. If we try to increase the values of the parameters
m and 5 above those considered in Fig. 6(a) of paper I, we
get even fewer points to plot in the phase space for a tra-
jectory. Because of this difhculty, it is not possible to
characterize chaos for these chaotic trajectories by calcu-
lating characteristic quantities like the Lyapunov ex-
ponents, etc., as the evaluation of these quantities re-
quires a large number of points in phase space.

To solve this problem, we have used the approach sug-
gested by Auerbach et al. that a useful way to get quan-
titative information in the chaotic regime is to consider
the unstable periodic orbits associated with the chaotic
dynamics. Such orbits provide a hierarchical framework
based on their lengths, which can be used for calculation
of the topological entropy, Lyapunov exponents, etc.
which characterize the dynamics of chaotic systems. In
terms of such unstable periodic orbits, the topological en-
tropy Eo is defined as the exponential growth rate of the
number of periodic orbits and is calculated as

IC0 = lim 1/n ln(N& —1),
p~ 00

where N is the number of points which belong to the
periodic orbits of order p and its divisors, i.e.,
Nz =g;iN, (i), where N, (i) is the number of periodic cy-
cles of order i and the summation is over all divisors of p
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including 1 and p. For p sufficiently large, we have the
approximation to the pth order entropy as po ——1/
p ln(N~ —1). For such unstable periodic orbits in the
chaotic regime, it is now also possible to calculate the
Lyapunov exponents which are given by the logarithm of
the diagonal elements of the matrix obtained by taking
the product of the Jacobian matrices evaluated at each
point of the corresponding unstable periodic orbits.
Thus, if we can obtain the unstable periodic orbits of the
nonlinear system in the chaotic regime, we can also
evaluate quantities like the Lyapunov exponents, topolog-
ical entropy, etc. which characterize chaos in the system.

Cvitanovic, Gunaratne, and Procaccia have given a
method for obtaining the periodic orbits of a map by
iterating the given map using the symbolic dynamic tech-
nique. However, we cannot use this method for our map,
because, as has been mentioned above, our problem is
with the map iteration itself. As we increase the value of
the parameters m and 5 and try to iterate the map in Eq.
(5), we find that after a few iterations P„becomes very
large and it becomes difficult to handle numerically with
the computer. So for our map we have used an alternative
method recently suggested by Biham and Wenzel' to ob-
tain the unstable periodic orbits and determine the
Lyapunov exponents for such orbits. The method in-
volves calculation of the extremal configurations of the
Hamiltonian from which the given map can be derived.
The extremal configurations are obtained by using the
symbolic dynamic technique. From this one can find the
unstable periodic orbits to any desired accuracy. The ad-
vantage of this method is that it can be used for any
range of parameter values. For example, using this
method Biham and Wenzel' have obtained unstable
periodic orbits of the Henon map even in the previously
inaccessible region of parameter values. This is exactly
what we need for our problem, i.e., to obtain the unstable
periodic orbits in the parameter region where map itera-
tion is not possible beyond the first few iterations.

The Hamiltonian Eq. (1) describes an infinite chain of
atoms interacting with an on-site potential V(P„) and
among themselves. The force on the nth atom in the
chain is given by F„= BH„/BP„, wh—ich for the poten-
tial V(P„) in Eq. (2) becomes

F„=(P„+(
—2P„+$„,) —5$„(1—P„)[1—(m + 1)(t„]

with $=2y/A, . When the chain is in stable or unstable
equilibrium (namely, an extremum configuration of the
Hamiltonian), then F„=O for all n In this c. ase, F„=O
corresponds to the static Euler Lagrange equation associ-
ated with the Lagrangian corresponding to the Hamil-
tonian in Eq. (1). Note that this set of equations is

equivalent to the map in Eq. (5) in the sense that every
trajectory of the map obeys E„=O and vice versa. This
can easily be seen by taking the map in Eq. (5) and elim-
inating 1(t„ for all n Now, to find the unstable periodic
orbits of the niap in Eq. (5), we use the symbolic dynamic
technique due to Biham and %'enzel. ' In the extremum
configurations, each atom in the chain can be either at a
local minimum or at a local maximum of the potential
Eq. (2), there being 2" configurations of order p. Each of
these configurations x„.. . , x can be identified by a
symbol sequence of the form S&, . . . ,S, where the sym-
bol S„ takes the value +1 when the atom is at a local
minimum and —1 if it is at a local maximum. To find
then a specific extremal configuration of order p of the
given Hamiltonian, we introduce an artificial dynamics
defined by

dx„ /dt =S„F„, n = 1, . . . ,p,
where S„=+1.Then we solve the above set of coupled
equations subject to the periodic boundary condition
x +,=x, for initial conditions x„. This drives the sys-
tem towards the desired extremum associated with the
given set IS„].When the forces on all the atoms decrease
to zero (to a desired accuracy), the resulting structure x„,
n = 1, . . . ,p, is simultaneously an extremum static
configuration of the Hamiltonian and an exact periodic
orbit of the map in Eq. (5).

We have calculated all the unstable periodic orbits of
order p, up to p = 19, for the whole allowed set IS ] of
the symbol sequence. For example, there are six allowed
unstable periodic orbits of order 9, and Table I shows the
corresponding symbol sequence, periodic points, and
Lyapunov exponents obtained numerically for one of
such orbits.

The existence of a positive Lyapunov exponent (A, &)

shows that this particular unstable periodic orbit is a
chaotic orbit. The values of the two Lyapunov exponents
obtained are equal in magnitude and opposite in sign as is
expected for the Hamiltonian system Eq. (1). This result
reported here is for the parameter values m =6 and
5=1.0. As has been mentioned above, the iteration of
the map in Eq. (5) is not possible for such values of the
parameters and hence it is not possible to characterize
chaos for such values of the parameters. However, in
terms of the unstable periodic orbits as obtained above,
we can now say that there are chaotic orbits present for
these particular values of the parameters and such chaot-
ic orbits can also be characterized in terms of the
Lyapunov exponents obtained for the corresponding or-
bits. In Table II we present the number of allowed unsta-
ble periodic orbits of order p =11—19 for the values of

TABLE I. Results for one of the six allowed unstable periodic orbits of order 9.

Symbol sequence
Points on the unstable periodic orbit

Lyapunov exponents

ISq] I11 1 11 11 1 1

0.8152
0.1929
0.7862

A. l
=0.6047

0.2074 0.8814
0.7862 0.9873
0.1929 0.2074

A,2= —0.6047
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TABLE II. Results for the allowed unstable periodic orbits
of order p = 11—19.

Period

11
12
13
14
15
16
17
18
19

No. of allowed
unstable orbits

9
12
17
22
33
41
61
86

119

Topological entropy

0.6027
0.5974
0.5991
0.5905
0.5976
0.5848
0.5893
0.5886
0.5884

the parameters m =6 and 6=1.0. The corresponding to-
pological entropy, which is another quantity that charac-
terizes chaos in a system, is also listed for unstable
periodic orbits of order p. It can be easily seen that the
topological entropy Xo saturates for orbits of higher or-
der p. The unstable periodic orbits can also be obtained
for even higher values of the parameters m and 6.

In conclusion we say that the main aim of the present
paper has been to answer the following questions: given a
map, how does not get any information about the regular
or chaotic behavior of the map in the parameter region
where it is not possible to iterate the map (inaccessible
parameter region), and, if there is chaotic behavior of the
map in the inaccessible parameter region, how does one
characterize the chaos? These questions are particularly
relevant for the model considered in this paper, because,
as has been reported in paper I, it is not possible to
iterate the map for all values of the parameters m and 5.
The inaccessible parameter region appears in this model,
because, as has been said above, this map is different from
the similar ones reported in the literature in the sense
that this is a two-parameter map, where both parameters
m (order of nonlinearity) and 5 (strength of nonlinearity)
are varied. In the other maps reported in the literature,
this problem of map iteration does not arise, because
there the parameter m is kept fixed, and for a fixed value
of parameter m usually the maps can be iterated for all
values of the parameter 5. Moreover, the map considered
in this paper represents a model of first-order phase-
transition phenomena, whereas most of the systems con-
sidered in the literature describe second-order phase tran-
sitions. The reason why one is interested in answering
this particular question of regular or chaotic behavior of
this map is because of the fact that the physical proper-
ties of the system, like the metal-to-insulator transition,
can be explained in terms of a transition from regular to
chaotic behavior of the map, as discussed above in terms
of the soliton excitation, soliton interactions, and soliton
pinning. It is very important to know the parameter
values of the map for which the system admits regular or
chaotic behavior. The parameter values once determined
can be related (paper I) to physical properties of the sys-
tem like the soliton concentration (alternatively given by
the doped critical impurity concentration, as at each im-
purity site a soliton is created), which is related to the
metal-insulator transition in the system. As the map in-

teraction diverges for this map for parameter values in
the inaccessible parameter region, we obviously cannot
use the standard procedure of map iteration here to
determine the regular or chaotic behavior of the map. We
have avoided the problem of map iteration by obtaining
quantitative information about the chaotic behavior of
the map in the inaccessible chaotic regime in terms of the
unstable periodic orbits associated with the chaotic dy-
namics in this regime. %'e have also used a different
method, the symbolic dynamic procedure, to obtain the
unstable periodic orbits, as the usual method of deter-
mination of such orbits by the map iteration technique
cannot be applied to the map considered here. The ad-
vantage of the symbolic dynamic technique used. here is
that it can be used for any value of the parameters, even
for those in the inaccessible parameter region. The
periodic points of the unstable periodic orbits so obtained
have been used for calculation of the Lyapunov ex-
ponents of the corresponding orbits. The hierarchical
framework based on the lengths of such orbits has been
used to calculate the topological entropy of the system.
These quantities characterize chaos in dynamical systems
and, from the numerical values of these quantities ob-
tained above, we can now say that there are chaotic or-
bits present in the previously inaccessible parameter re-
gion of the system and also characterize (quantify) the
chaos in the orbits. In terms of the soliton picture, the
system will be an insulator for such parameter values and
these parameter values also give the critical impurity
concentration necessary for the metal-insulator transition
in the system. This method can be used for other maps
which show divergence in the map iteration for some pa-
rameter values.

The unstable periodic orbits obtained above are useful
for studying the quantum behavior of the system. For ex-
ample, the eigenstates of quantum systems that are chaot-
ic in the classical limit can be expressed in terms of the
periodic orbits of the corresponding classical systems.
For some chaotic systems it is found" that some eigen-
states are strongly peaked near the periodic orbits that
are unstable; these peaks are termed "scars." The study
of the scar phenomenon in a variety of systems is of
current interest. ' This problem is particularly relevant
for the model considered here, because this is a general-
ized two-parameter model and many other models like
the A,P model (corresponding to the parameter value
m =2), which is a widely used model' for first-order
phase-transition phenomena like the ferroelectric phase
transition, order-disorder transition, charge-density-wave
transition, etc. , can be obtained from it. Similarly, the
model corresponding to the parameter value m =1 has
been used for studying statistical mechanics of field
theories. Neither of these nonlinear theories is quan-
tized so far and thus the quantization of our generalized
model will be a step in this direction. In addition, as has
been said above, this model is different from other similar
models studied in the literature in many aspects and we
would like to see how to quantize such systems, which
have divergences in the map iteration for some parameter
regions. However, this is an independent problem, the
result of which will be reported elsewhere.
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