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Sodium clusters represent an experimentally accessible and seemingly simple system for studying
the size dependence of the optical properties of metal clusters. Nevertheless, with the exception
of the atom and dimer, previous ab initio calculations have either been restricted to correlated
calculations in which pseudopotentials were used in order to reduce sodium to an effective one-
electron atom or correlation effects were entirely neglected. The present study presents the results
of correlated all-electron density-functional calculations of sodium-cluster dipole polarizabilities for
clusters through the hexamer. In particular, polarizabilities were calculated at the local-density-
approximation- (LDA-) optimized geometries using the LDA functional, with the Perdew-Wang
1986 exchange plus the Perdew 1986 correlation (PW86x-+P86¢c) gradient corrections, and with the
Becke 1988 exchange plus the Perdew 1986 correlation (B88x+P86c) gradient corrections. The re-
sults are compared with the available experimental and ab initio theoretical values. Of the three
exchange-correlation functionals presented in this paper, the mean polarizabilities calculated using
the B88x+P86¢ functional are in best agreement with the experimental values, with discrepancies
between theory and experiment of only 3.5% for the atom and 5% for the dimer. Differences be-
tween the experimental and B88x+P86¢ optimized dimer and trimer geometries are also significantly
smaller than in the LDA case. However, there is little difference between mean polarizabilities cal-
culated at the LDA-optimized, B88x+P86¢ optimized, and experimental geometries. In particular,
this cannot explain the 11-22 % discrepancies found here between the experimental polarizabilities
for the trimer and higher-order clusters and those calculated at the LDA-optimized geometries us-
ing the B88x+P86¢ functional. It is suggested that molecular motion may need to be taken into
account before a completely satisfactory explanation of the experimental polarizabilities of these
floppy molecules can be given.

I. INTRODUCTION begin with a brief review of the hierarchy of models that
have been used to describe sodium-cluster polarizabili-
ties.

There are several popular models for sodium-cluster
polarizabilities in which each N-atom cluster is treated as
a sphere of radius R determined from the number density

of atoms, p, of bulk sodium by

The polarizabilities of metal clusters have been the fo-
cus of considerable attention in recent years. This atten-
tion stems partly from the long-standing interest in the
size dependence of optical properties of small particles!:2
as an aid to the understanding and engineering of novel
materials,®> and partly from the relative ease of mea-
surement of cluster polarizabilities* ® as one structural 4t 5 N
clue in an area where direct experimental clues to clus- _3—R = o
ter geometries are few and far between. Of course, both
the prediction of optical properties and the extraction of
structural information from polarizability measurements
presupposes an adequate theoretical understanding for
quantitative predictions of cluster polarizabilities. We
will focus on the electronic component of the polarizabil-

(1.1)

The simplest and oldest model is that of a classical con-
ducting sphere, of radius @ = R, whose polarizability can
be shown’ to be

s 3N

ity, which is expected to be the dominant contribution to a=a

the measured quantity.

Homonuclear alkali metal clusters are often considered
to be the simplest metal clusters because they have only a
single valence electron. In fact, sodium clusters have be-
come a prototype system for understanding size effects in
metal clusters. A hierarchy of models has emerged from
these studies which can be used to understand cluster
properties in an increasingly quantitative fashion. We
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= g (1.2)

This is, of course, exact in the limit of a macroscopic
spherical cluster. Bulk alkali metals are often analyzed
in terms of the free electron model,® so it is not surprising
that the next and most common level of approximation
is the jellium sphere,® '° a quantum mechanical model in
which there are IV electrons and a sphere with a uniform
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charge of +N. Part of the difference between this quan-
tum mechanical jellium sphere model and the classical
sphere model stems from the fact that the quantum me-
chanical electron density extends beyond the radius of the
classical sphere, with the result that the sphere is effec-
tively larger. This simple size effect can be incorporated
into the classical formula (1.2), in a “spillout model,”®16
by taking the radius of the sphere to be a = R+ §, where
the value of § is obtained empirically.® The polarizability
is then given by

3
) 3 1/3 5
“‘N[(m) +—N1/3]

However, the spillout model cannot account for the more
interesting quantum mechanical effects. Deviations of
jellium sphere polarizabities from formula (1.3) represent
“true” quantum effects. These can be understood in part
in terms of the “shell model,”*7:1¢ which predicts clusters
with N = 2,8,18,20,... to have particularly stable elec-
tron configurations. (See Refs. 18 and 19 for detailed
reviews of the successes and failures of the shell and jel-
lium sphere models for explaining a variety of properties
of simple metal clusters.)

While spherical models may be useful in gaining a qual-
itative understanding of the mean polarizabilities of large
sodium clusters, they are obviously useless for predic-
tions of polarizability anisotropies. Furthermore, small
sodium clusters are not particularly spherical and even
a description of the mean polarizability should take into
account the molecular nature of the cluster (“atomic ef-
fects”). While some attempt to study atomic effects has
been made by packing jellium spheres whose cores repel
each other according to a Z2/r law?® or by using a spher-
ical average of atomic core potentials,'® a full ab initio
solution of the molecular quantum mechanical problem
seems more appropriate.

Moullet and co-workers?' 724 have made some progress
in this direction, in a series of density-functional stud-
ies. These results are in markedly better agreement with
the experimental polarizabilities measured by Knight et
al.* than are the predictions of the jellium model, and
represent a first serious step towards a more profound
molecular understanding of factors governing polarizabil-
ities of small sodium clusters. However, these studies use
effective core potentials (ECP’s) to reduce sodium to an
effective one-electron atom.

When one considers that, in sodium, the core repre-
sents the vast majority of the electron density, and that it
is the total charge density, not only the valence electrons,
which is involved in the response to an applied electric
field, the use of a frozen core approximation, in which the
ECP is not polarizable, for the calculation of cluster po-
larizabilities should be examined carefully. This is partic-
ularly so in the light of experience calculating the polar-
izability of the sodium atom using traditional quantum
chemistry methods. All-electron Hartree-Fock calcula-
tions give a mean polarizabilility of 190.9 bohr3.2° The
importance of electron correlation effects is immediately

(1.3)
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obvious when this is compared with the experimental
value of 159.3 + 3.4 bohr3.26 Attempts to improve on this
by introducing correlation effects, but while keeping the
frozen core approximation, lead to essentially no change
in the mean polarizabilities?”2° for the obvious reason
that there is only one electron outside the frozen core. In
contrast, including core-valence correlation effects leads
to a value of 165.2 bohr3,?” in markedly better agree-
ment with experiment. These experiences underline the
dangers of freezing the L shell when calculating sodium-
cluster polarizabilities by traditional ab initio methods.
A (less precise) alternative to all-electron calculations is
to simulate the effects of core-core and core-valence cor-
relation by use of a core polarization potential,3° but this
requires validation against the results of all-electron cal-
culations.

Since density-functional theory accounts for electron
correlation effects in a very different way than does con-
ventional ab initio theory, ECP’s may still be viable
for density-functional calculations of sodium-cluster po-
larizabilities, especially if polarizable ECP’s3! are used.
Although this would be very useful for large clusters,
such ECP’s should first be carefully checked for this pur-
pose against all-electron calculations. This is especially
true if one is interested in calculating sensitive quanti-
ties such as polarizability anisotropies or taking polariz-
ability derivatives to get hyperpolarizabilities. It should
be emphasized that, although the comparison of the
ECP density-functional mean polarizabilities of Moullet
and co-workers?' ™24 with experiment are quite encourag-
ing, the calculations using ECP’s should really be tested
against the all-electron calculations they are intended to
model, since other factors, such as vibrational effects and
experimental errors, can enter into the comparison with
experiment.

Other than for the atom,?” correlated all-electron cal-
culations of sodium-cluster polarizabilities are very rare.
Sadlej and Urban have recently performed high-level
correlated all-electron calculations of the polarizability
of the dimer in which only the innermost (K) shell
is frozen;3? however, we are unaware of any studies of
polarizabilities of comparable rigor for the trimer and
above. Given the efficiency of state-of-the-art molecu-
lar density-functional programs, such studies are quite
feasible for the first several clusters. In this paper, we
present all-electron calculations of both the mean polar-
izability and polarizability anisotropy for sodium clusters
up through the hexamer. Although polarizabilities are
among the properties that can be calculated in principle
exactly in density-functional theory in the limit of an ex-
act exchange-correlation functional, this functional must
be approximated in practice. Since the results of density-
functional calculations of polarizabilities depend upon
the particular choice of approximate functional used, sev-
eral functionals have been considered here.

This paper is organized in the following fashion. Our
theoretical method and the technical details of our com-
putations are described in the next section. Our results
are reported in Sec. III and our conclusions are sum-
marized in Sec. IV. Unless otherwise indicated, hartree
atomic units (A = m = e = 1) are used throughout.
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II. THEORETICAL METHODS
A. Density-functional theory

The conceptual basis and basic equations of density-
functional theory are too well known to need review
here. Suffice it to say that Kohn-Sham density-functional
theory3® (KS DFT) is a formally exact method in which
the ground-state total energy and charge density, n(7),
of a system of N interacting electrons in a local exter-
nal potential, vext(7), are determined by minimizing an
energy expression with respect to a set of fictitious or-
thonormal orbitals whose charge densities sum to the ex-
act charge density. This energy expression contains a
formally exact but unknown exchange-correlation energy
term, Ey[n',n'], which is a functional of the spin up,
n', and spin down, nt, charge densities. It must be ap-
proximated in practice. A detailed review of fundamental
density-functional theory can be found in Refs. 34-36.

Our calculations were carried out at the all-electron
level using the density-functional program deMon.3” No
effective or model core potentials have been used and the
core has been left unfrozen. Several choices of exchange-
correlation functional are available in deMon. The sim-
plest and most widely used approximation in the density-
functional literature is the local-density approximation

(LDA),
ELPAR? 4] = / n(P)exe(n (7, (@) a7 (2.1)

Here €xc(n',nt) is the exchange-correlation energy den-
sity for a homogeneous electron gas with spin-up electron
density n' and spin-down electron density nt. The ex-
change part of the exchange-correlation energy density
for the homogeneous electron gas is known exactly and
leads to the exchange-only local-density approximation
(LDAXx),

spin 1/3
B, ) = 253 [_g () } [ ar.
(2.2)

However, no closed form is known for the correlation en-
ergy density of the homogenous electron gas. Instead, we
use the parametrization of Vosko, Wilk, and Nusair,38
which is based upon the Monte Carlo calculations of
Ceperley and Alder.3°

Although the LDA is an adequate starting point for
many purposes, it neglects any dependence on the gradi-
ents of the density, and is therefore only rigorously jus-
tified in the limit of slowly varying densities. One way
to take into account inhomogeneities in the electron den-
sity is through the use of gradient-corrected functionals
(GCF’s),

BT, nY]

= [ exe(n (), @), It (), Fmt () ar. (23)

GUAN, CASIDA, KOSTER, AND SALAHUB 52

Two well-known exchange-only GCF’s are used in the
present work, namely, the 1988 GCF of Becke*® (B88x)
and the 1986 GCF of Perdew and Wang?! (PW86x).
The B88x GCF was designed to reproduce the correct
(—1/7) asymptotic behavior of the exchange energy den-
sity ex(7). Although the PW86x GCF does not have this
property, it does satisfy the conditions that the exchange
hole be everywhere negative and represents a deficit of
exactly one electron. Correlation has been treated using
the 1986 GCF of Perdew?? (P86¢c), which is ultimately
based upon the wave-vector analysis of Langreth and
Mehl,*? but which improves upon this by taking into ac-
count uniform-gas and inhomogeneity effects beyond the
random-phase approximation and making a more natural
separation between exchange and correlation.

The orbital basis sets used in the present work are of
the same type used in conventional ab initio electronic
structure work. This is possible because deMon belongs to
the linear-combination-of-Gaussian-type-orbitals family
of density-functional programs in which the Kohn-Sham
molecular orbitals are expanded in a basis of Gaussian-
type orbitals (GTO’s). This allows both the program-
mers and users of deMon to take advantage of the wealth
of experience accumulated during the development and
application of GTO-based Hartree-Fock (HF') codes. In
particular, the same terminology may be used for de-
scribing orbital basis sets as is current for conventional
ab initio methods using GTO basis sets.4*

An important distinction between density-functional
theory codes and conventional ab initio codes is the use
of a grid to treat exchange-correlation terms. The way
the grid is used in deMon is linked to a second difference
from conventional ab initio codes. This is the use of two
GTO auxiliary basis sets. The charge density is approx-
imated by a purely analytic fit to an expansion in a so-
called charge density auxiliary basis set of M functions.
This allows the number of Coulomb integrals which must
be evaluated to be reduced from N* to M N2, where N
is the size of the orbital basis set used in the calcula-
tion. The second auxiliary basis set is used to help eval-
uate integrals involving the exchange-correlation poten-
tials [vZ,(7)] and the exchange-correlation energy density
[exc(7)]. These integrals cannot be evaluated analytically.
Instead, the exchange-correlation potentials and energy
density are approximated by a least-squares fit to an ex-
pansion in a so-called exchange-correlation auxiliary ba-
sis set. A grid is used during the fitting procedure for the
exchange-correlation potentials and energy density, but,
once the fitting is completed, any exchange-correlation
integrals can then be evaluated analytically. Experience
shows that most results are rather insensitive to the pre-
cise nature of the auxiliary basis set.

The parameters used in our calculations tend to be
tighter than those normally used in deMon calculations.
This is necessary for two reasons. The first is that these
clusters tend to be relatively floppy, so that small numer-
ical errors can sometimes lead to qualitatively incorrect
geometries unless proper care is taken. This is the case
for the tetramer discussed below. The second reason for
using tighter parameters is our own experience that such
parameters are needed for well-converged polarizability
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calculations. The choice of basis set and method for the
polarizability calculations are discussed in detail in a sep-
arate subsection below.

The geometry optimizations reported here were carried
out at the B88x+P86¢ level for the dimer and trimer
as well as at the LDAxc level for all the clusters. Al-
though the B88x+P86¢ functional will be shown to lead
to geometries in better agreement with experiment than
does the simple LDAxc, it will also be shown that the
difference in the optimized geometry due to the choice
of functional has only a very minor effect on the cal-
culated polarizability. All geometry optimizations used
the double-zeta valence plus polarization (DZVP) qual-
ity orbital basis set and the (5,4;5,4) auxiliary basis sets
from the deMon basis set library. Convergence during the
self-consistent field steps is attained when both the en-
ergy and charge density fitting coefficients stop changing.
The convergence criteria used here for both the geometry
optimizations and polarizability calculations were 10~8
hartree for the energy and 10~7 a.u. for the charge den-
sity fitting coefficients. Geometries were optimized using
a step size of 0.05 bohr and are converged to a gradient
of less than 1075 a.u. in absolute value. The fine ran-
dom grid was used which consists of a 32-point radial grid
and a 26-point angular grid for a total of 832 grid points
per atom. This grid proved to be insufficient for opti-
mizing the geometry of the tetramer, which has a very
soft in-plane vibrational mode indicating a flat poten-
tial energy along that normal mode coordinate. In order
to deal with this problem, deMon was modified to permit
the user to expand the number of radial grid points, while
still keeping the Gauss-Legendre distribution and weight-
ing scheme used in the standard version of the program.
The final geometry for Na, was well converged using a
128-point radial grid and a 194-point angular grid for a
total of 24 832 grid points per atom.

B. Polarizability calculations

The static dipole moment, polarizability, and hyperpo-
larizability may be defined in terms of a Taylor expansion
of the molecular energy in the (z, y, and z) components

of a uniform electric field ﬁ,
- o 1
E(F)=E0) - ) wFi - 3 > ai;FiF;
i ij

1
6 ZﬁiijiFij 4o, (2.4)
ijk
where E(0) is the total energy of the molecule in the
absence of the electric field, and the quantities

9E

R 2.5

i [aFi]pza’ (2.5)
92E

P 2.

i [8R3Fj]ﬁ=6’ 26)
93E

| s 2.7

Piin [8Fi6Fj8Fk] P (2.7)
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are, respectively, the permanent dipole moment, the
dipole polarizability, and the first dipole hyperpolariz-
ability. A technical point is that even a small uniform
electric field is enough to make the potential binding
the electrons infinitely negative in the direction oppos-
ing the applied field. However, the electron states, while
no longer technically bound, are still long lived since the
barrier to dissociation is significant for sufficiently small
applied fields and the lifetime of these quasibound states
becomes infinite in the limit of an infinitely small applied
field. Thus Eq. (2.4) is rigorously valid for either infinites-
imally small applied fields or for finite systems, say, in a
box. The finite basis set calculations reported here are
essentially of the latter nature. However, explicit com-
parisons of, say, coupled Hartree-Fock calculations using
infinitesimally small fields (i.e., analytic derivatives) and
finite field Hartree-Fock calculations show that identical
polarizabilities are obtained in the two approaches.*?

The tensors p;, a;j, Bijk, etc. depend upon the choice
of coordinate system. Since this is inconvenient when
comparing with experiment or other theoretical calcula-
tions, results are often reported in terms of rotational
invariants. Traditional choices for polarizability invari-
ants are the mean polarizability,

&= %tra (2.8)
and the polarizability anisotropy,
(Aa)? = % [3tr () — (trex)?] . (2.9)

Alternatively, the Hellmann-Feynman theorem can
be used to calculate the field-induced dipole moment
Aj(F) = ji(F) — fi from the electron charge density

-

n(7; F) in the presence of the electric field,

nuclei

wi(F) = — / (@ By di+ S ZiReg,  (2.10)
I

where Z; and Rj; are, respectively, the charge on the
Ith nucleus and the ith component of its position vec-
tor. Note that this expression is invariant under trans-
lations of the coordinate system for neutral molecules.
Evidently,

" 1
wi(F) = pi + ;aiij +3 ?_k:ﬂiijij +--0, (2.11)

which shows that the polarizability and hyperpolarizabil-
ity can equivalently be defined in terms of the response
of the field-induced dipole moment.

Our polarizability calculations were carried out using
the finite field method in which the derivative of the in-
duced dipole moment is obtained by the three-point finite
difference formula,

i (+F) — pi(—F)

2.12
oF, (2.12)

Clij =

and deMon’s default field step size of 0.0005 a.u. Here
F; is a uniform electric field in the 7 direction. Since
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TABLE I. Orbital basis set used for present polarizability
calculations. Note that deMon uses six Cartesian d functions.

Sodium DZVP+ basis set
Contraction coefficients

Exponent

1S
9911.9960000000
1487.4550000000
337.9539000000
94.9139500000

0.0019504590
0.0149171200
0.0734165800
0.2456910000
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our objective is accurate Kohn-Sham polarizabilities and
given previous concerns with the numerical method used
for calculating hyperpolarizabilities,*® the accuracy of
the three-point finite difference formula and possible
numerical contamination from hyperpolarizability terms
were tested by several polarizability calculations using
the polynomial fitting method, in which the coefficients
in Eq. (2.11) are determined by a least-squares fitting
procedure.*> These results indicated that the finite differ-

30.3415000000 0.4795611000  ence method was sufficient for polarizability calculations

10.1908400000 0.3337213000  (e.g., the mean polarizability of the dimer was 226.24

28 bohr3 by the finite difference method and 226.17 bohr®

21.2296500000 0.0823028800  from a least-squares fit to a sixth-order polynomial), so

1.9804180000 -0.5608480000  the calculations reported here were carried out using the
0.6188824000 -0.5224378000  )egs expensive finite difference method.

88 The same grid, auxiliary basis sets, and convergence
0.6991738000 0.0920975500 . i4eria were used in the polarizability calculations as
48 0.0618270500 -0.6708252000 i1111 the geoLnetry (l)ptimti,zations. How}fvel:,dtl;)e effect of
changing the auxiliary basis set was checked by carrying
P 0.0237274100 1.0000000000 out calculations on the trimer with both the (5,4;5,4) and
73.0853100000 0.0167176300 the (6,5;6,5) auxiliary basis sets from the deMon library.
16.8645600000 0.1065395000 The mean polarizability calculated with the former was
5.0553910000 0.3242217000  371.27 bohr® and was 370.48 bohr® with the latter, indi-
1.5920210000 0.4891362000  cating that the (5,4;5,4) auxiliary basis set used through-

2P out the present work is indeed adequate.
0.4702690000 1.0000000000 The experience?®%® with density-functional and
3P Hartree-Fock polarizability calculations is that “medium
0.0647000000 1.0000000000  size” basis sets, such as the DZVP basis set, need to
4P (FIP) be extended by an additional set of diffuse polarization

0.0280000000 1.0000000000  functions. This is reasonable because such basis sets were
1D designed to describe the molecule in the absence of an ap-
0.1169000000 1.0000000000  plied electric field. A simple perturbation analysis*” indi-
cates that diffuse functions of at least one higher angular

TABLE II. Other orbital basis sets considered in the present study and mean polarizabilities calculated with these basis
sets. See also Fig. 2. The field-induced polarization (FIP) function exponents were optimized for the atom using the LDAxc
functional. The field strengths used were 0.025 a.u. when the exponents were determined by minimizing the energy and 0.0005
a.u. when the exponents were determined by maximizing the polarizability.

Basis Size® & (bohr?) Description
atom dimer trimer
Substrate basis set
A (DZVP) 22 95.68 189.78 312.27 Valence double-zeta plus polarization®
FIPs optimized by minimizing the energy
B 22 134.54 219.59 365.54 Basis A with outermost p function reoptimized
D 25 136.09 225.20 375.77 Basis A + p-type FIP function
FIPs optimized by maximizing the polarizability
C 22 139.11 218.20 359.36 Basis set A with outermost p function reoptimized
E (DZVP+) 25 140.12 226.24 371.27 Basis A + p-type FIP function
F 28 140.02 226.30 371.68 Basis E 4+ 2nd p-type FIP function
G 28 95.69 190.11 349.95 Basis A + d-type FIP function
H 31 140.47 226.69 376.55 Basis E + d-type FIP function
Experimental mean polarizability®
159.27+3.37 255.78+8.10 471.06+16.20

®Number of contractions.

®(6321/411%/1+).

“Calculated from the measurements of relative polarizabilities of Knight et al. (Ref. 4) and the absolute measurement of the
atomic polarizability by Molof et al. (26).
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momentum beyond that in a minimal basis are needed for
the calculations of polarizability. These are referred to as
field-induced polarization (FIP) functions and should not
be confused with the much tighter polarization functions
already included in (for example) the DZVP basis set,
which are intended to describe the polarization of atomic
orbitals upon bonding. The number of these additional
FIP functions can be substantially reduced by careful
choice of the exponent of the FIP functions. They could
be chosen to be a function of field strength,*¥75° or on the
basis of a perturbative analysis of field-induced changes
in the orbitals of hydrogenic atoms,*” or by maximizing
the polarizability of the atom.51:52

Our final choice of FIP functions were optimized by
maximizing the polarizability of the sodium atom using
the LDAxc functional and a field strength of 0.0005 a.u.
The justification for this method rests on the fact that
the total energy for the atom in the presence of an applied
field of strength F' is given by

E(F) = E(0) — %an +O(F*), (2.13)

where the direction of the applied field is irrelevant. If the
substrate basis set is assumed adequate for the field-free
calculation in the sense that addition of the FIP leaves
E(0) essentially unchanged and F' is adequately small,
minimizing E(F) and maximizing & are equivalent. The
basis set optimized in this way is given in Table I.

Variations on this procedure were also considered and
are summarized in Table II. Basis set C is a partial re-
optimization of the substrate basis set, without adding
additional basis functions, by maximizing the polarizabil-
ity of the atom. Basis sets E, F', G, and H were made

5.71 6.49
L (5.47:5.78) ®

(6.01;6.42)

5.96
(5.68;6.05)

8.09
(7.15;8.02)

6.58
(6.27:6.62)

2189

from the substrate basis set by adding orbitals with expo-
nents chosen to maximize the polarizability of the atom.
Basis sets B and D are analogous to basis sets C' and
E except that the LDAxc energy has been minimized
in the presence of a 0.025 a.u. electric field. Differences
in the cluster polarizabilities calculated with these basis
sets and our final choice of basis set E are discussed in
Sec. III.

II1. RESULTS
A. Geometries

The structures used in our polarizability calcula-
tions have been obtained by optimizations at the
LDAxc/DZVP level beginning with minimum energy ge-
ometries already reported in the literature.>® Our opti-
mized geometries are shown in Fig. 1. Comparison of
minimum energy and zero gradient criteria for the dimer
indicates that the numerical precision of deMon for the
Na, bond length at this level is about £0.03 bohr. This
number should be compared to the same estimate for the
more strongly bound molecule N2, where the numerical
imprecision in the bond length is negligible. No signif-
icant change in the optimized geometries was observed
when calculations were performed at the LDAxc/DZVP+
level. The final LDAxc-optimized bond length is within
0.04 bohr of that obtained from entirely numerical, basis-
set-free calculations with the same functional.>%5%

The optimized structures in Fig. 1 can be compared
with the available experimental and high-quality theo-
retical cluster geometries. Direct experimental informa-

6.23
(6.04;6.37)

FIG. 1. LDAxc/DZVP-optimized cluster
geometries used in this work. Clusters with
an even number of atoms have singlet ground
states. Those with an odd number of atoms
have doublet ground states. All structures
are planar except for Nag, in which the cen-
tral atom is out of the plane. All distances
are in bohr. Distances which are not shown
can be determined by symmetry and com-
parison with distances which are shown. The
numbers shown in parentheses are the inter-
nuclear distances obtained by Moullet et al.

6.19 using the BHS ab initio ECP (first number)

( 5.42;5.80)

6.48
(6.18;6.57)

(5.89;6.30)

and the brd semiempirical ECP (second num-
ber). See text for additional details.
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TABLE III. Equilibrium bond length in bohr of singlet Na,
obtained by various methods.

Bond length Method Basis Reference

Effective core potential density-functional theory

5.47 BHS LDAxc [3s3p] 21

5.78 brd LDAxc [3s3p] 21

All-electron density-functional theory

5.67 LDAxc none® 54

5.667 LDAxc none® 55

5.71 LDAxc DZvVPp present work
5.71 LDAxc DZVP+ present work
5.86 B88x+P86¢ DZVP+ present work
5.84 B88x+P86¢ HP present work

All-electron conventional ab initio
5.99 HF [7sdpld] 63
5.815 MRDCI [7s4pld] 64
Experimental value
5.818 57

2Fully numerical basis-set-free calculation.
See Table II.

tion about cluster geometries is very rare and sodium
clusters are no exception in this regard. Although the
dimer geometry has been known experimentally for some
time,56:57 the trimer geometry has only been recently de-
termined experimentally®® by optical double resonance
spectroscopy. No quantitative experimental geometries
appear to be available for the tetramer and higher clus-
ters. In contrast, theoretical information about sodium-
cluster geometries is relatively plentiful. Sodium-cluster
geometries through the hexamer have been optimized at
the effective core potential LDAxc level,53:20 all-electron
Hartree-Fock level,®® ECP configuration interaction (CI)
level,3®€% and fourth-order Mgller-Plesset perturbation
theory (MP4) level,®! to mention only a few of the many
studies of minimum energy sodium-cluster geometries.
There is broad general agreement about the topology of
the minimum energy geometry for all the clusters ex-
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cept the hexamer, where, in addition to the Cs, struc-
ture in Fig. 1, there are also nearly degenerate D3, and
Csy, structures.®? Taken together, these studies indicate
that sodium-cluster internuclear distances tend to be too
short at the LDAxc level and too long at the HF level.
Addition of post-HF correlation effects result in shorter
internuclear distances in better agreement with exper-
iment. These trends are illustrated in Tables III and
IV, where our own results for the dimer and trimer are
compared with the available experimental geometries and
with theoretical geometries obtained by other methods.
In the dimer case, our LDAxc bond length is 0.1 bohr too
short while the HF bond length of Ref. 63 is 0.17 bohr too
long in comparison to experiment. In the trimer case, the
short side of the triangle is too short in comparison with
experiment by 0.17 bohr in our LDAxc calculations and
too long by 0.22 bohr in the HF calculations of Ref. 63.
The long side of the triangle is too long compared to
experiment by 0.20 bohr in our LDAxc calculations and
too long by 0.64 bohr in the HF calculations of Ref. 63.
The magnitude of these errors in LDAxc bond lengths
should be kept in mind when considering polarizabilities
calculated with these geometries.

Also shown in Tables ITI and IV are geometries that we
have optimized at the B88x+P86¢c level and CI calcula-
tions from Refs. 64 and 65. The B88x+P86¢ geometries
have longer bond lengths and are in better agreement
with the experimental geometries than are the LDAxc ge-
ometries. Similarly, the CI geometries have shorter bond
lengths and are in better agreement with the experimen-
tal geometries than are the HF geometries. However,
we will show that these differences between optimized
geometries have only a minor effect on calculated polar-
izabilities.

Our all-electron LDAxc results can also be compared
with sodium-cluster geometries optimized at the LDAxc
level using ECP’s. We will confine our discussion to the
geometries used by Moullet and co-workers2! 724 in their
calculations of sodium-cluster polarizabilities. They con-
sidered both an ab initio ECP due to Bachelet, Hamann,

TABLE IV. Equilibrium distances in bohr and triangle area in bohr? for doublet Nas obtained
by various methods. Note that the equilibrium geometry is that of an obtuse C>, triangle.

Short side Long side Area Method Basis Reference
Effective core potential density-functional theory
5.68 7.15 15.8 BHS LDAxc [3s3p] 21
6.05 8.02 18.2 brd LDAxc [3s3p] 21
All-electron density-functional theory
5.96 8.09 17.7 LDAxc DZvPp present work
5.96 8.06 17.7 LDAxc DZVP+ present work
6.12 8.50 18.7 B88x+P86¢ DZVP+ present work
6.13 8.50 18.8 B88x+P86¢ H® present work
All-electron conventional ab initio
6.46 9.05 20.9 HF [352p] 59
6.35 8.50 20.1 HF [7s4pld] 63
6.26 7.46 18.8 MRSDCI [6s4p1d] 65
Experimental value
6.130 7.856 18.48 optical double resonance 58

®See Table II.
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and Schliiter® (BHS), which is intended to give results
as close as possible to what would be obtained from all-
electron LDAxc calculations, and the semiempirical ECP
of Bardsley®” (brd), which was parametrized by fitting
the experimental spectrum of the atom. The LDAxc-
optimized geometries obtained using these ECP’s are
shown in parentheses in Fig. 1. These numbers illustrate
the difficulties with using ECP’s for precise work because
it is the semiempirical brd ECP which best reproduces
the all-electron results, rather than the BHS ECP, which
was specifically intended to mimic the all-electron calcu-
lation.

B. Polarizabilities

Mean polarizabilities calculated at the LDAxc level us-
ing various basis sets and the all-electron LDAxc geome-
tries from Fig. 1 are shown in Table II and Fig. 2. Since
the substrate DZVP basis set has been kept fixed, the
mean polarizabilities shown are primarily an indication
of convergence with respect to augmentations with field-
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FIG. 2. Correlation plot of LDAxc mean polarizabilities
versus experiment for various basis sets. The basis sets are
described in Table II. Note that the points for basis sets E, F,
and H essentially coincide and correspond to a higher mean
polarizability than the points for basis set A. The origin of
the slight odd-even alternation observed here with respect to
the number of atoms in the cluster is not known, but may be
related to differences between closed and open shell clusters.
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induced polarization functions. It is apparent from Ta-
ble IT and Fig. 2 that the deMon library basis set DZVP
is insufficient for polarizability calculations. Reoptimiza-
tion of the exponent of the outermost set of p-type func-
tions either by the minimum energy criterion (basis B)
or the maximum polarizability criterion (basis C) im-
proves the calculated mean polarizabilities of the clus-
ters considerably in comparison with experiment, but the
replacement of a p function chosen for its ability to de-
scribe bonding with one to describe polarization in an
external field is not recommended. Instead, it is better
to add an additional set of p-type FIP basis functions
with exponents optimized either by the minimum energy
criterion (basis D) or by the maximum polarizability cri-
terion (basis E). The maximum absolute difference be-
tween the mean polarizabilities calculated using FIP’s
constructed from the minimum energy and maximum po-
larizability criterion is 3.2%. Consideration of the effect
of adding still more FIP’s to the basis set was restricted
to FIP’s constructed from the maximum polarizability
criterion. Neither additional p-type FIP functions (ba-
sis F') nor additional d-type FIP functions (bases G and
H) have a very significant effect on the calculated mean
polarizabilities, so we settled on basis set E (DZVP+)
for the polarizability calculations reported here. An in-
dependent test of the quality of the DZVP+ basis set
for calculating polarizabilities was made by performing
calculations of the atomic and diatomic mean polariz-
abilities using the more extensive basis set of Sadlej and
Urban2?® and yielded only insignificant changes. (The
atomic LDAxc mean polarizabiilty is 141.19 bohr® with
the Sadlej-Urban basis set, compared with 140.12 bohr3
using the DZVP+ basis set; the diatomic LDAxc mean
polarizability is 227.28 bohr® with the Sadlej-Urban ba-
sis set, compared with 226.24 bohr® using the DZVP+
basis set; and the triatomic mean polarizability is 379.80
bohr® with the Sadlej-Urban basis set, compared with
371.27 bohr® using the DZVP+ basis set.) Thus we are
relatively confident about the quality of the DZVP+ ba-
sis set for calculating polarizabilities. Moreover, it is in-
teresting to note that, while there is a 30% increase in
the polarizability of the atom in going from the DZVP to
the DZVP+ basis set, the percent improvement actually
decreases as the size of the cluster increases, presumably
because the importance of the FIP functions is dimin-
ished by the availability of basis functions on other sites
(“basis set borrowing”). Table V shows the convergence
of the cluster polarizability anisotropies as a function of
basis set. This property is more sensitive to choice of
basis set than is the mean polarizability. Nevertheless,
the DZVP+ basis set appears to be reasonably well con-
verged for polarizability anisotropies. The rest of the dis-
cussion of our results will be confined to those obtained
with the DZVP+ basis set.

Tables VI and VII show the effect of the choice of
functional on the mean polarizability and polarizabil-
ity anisotropy. Results for both the exchange-only and
exchange-correlation functionals have been shown in or-
der to allow a more complete analysis. Note that
the effect of choice of functional on the polarizability
anisotropy tends to be correlated with the effect on the
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TABLE V. Sodium-cluster polarizability anisotropy calcu-
lated using the LDAxc approximation and various different
basis sets at the LDAxc-optimized geometries. Here S and D
refer to singlet and doublet, respectively.

Polarizability anisotropy Aa (bohr?®)

Basis® Naz (§) Nas (D) Nag (S) Nas (D)
A (DZVP) 190.97 289.48 516.19 495.40
B 117.22 271.62

c 123.73 275.47

D 137.93 294.06

E (DZVP+)  135.82 284.58 446.44 430.86
F 135.63 284.74 447.90 431.96
G 190.74 290.58

H 135.79 290.89 449.14 432.05

2See Table II.

mean polarizability in the sense that a functional which
increases the mean polarizability tends to increase the
polarizability anisotropy and vice versa. For this reason,
we will focus our discussion on the mean polarizability.
Exchange and correlation are known to be treated dif-
ferently in LDAxc calculations of polarizabilities than
is the case in traditional ab initio theory.6®:®° This is
partially a reflection of ambiguities in the definition of

TABLE VI. Comparison of
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sodium-cluster

exchange in density-functional theory. (For example,
should the exchange functionals in density-functional
theory be designed to give the exchange energy associ-
ated with the Kohn-Sham orbitals or should they give
the Hartree-Fock exchange energy?) Mean polarizabili-
ties calculated at the LDAx level are larger than the cor-
responding Hartree-Fock quantities for rare gas atoms®®
and water,%® but smaller for the sodium atom (Table VI)
and comparable or slightly smaller for jellium sphere
models of sodium clusters (Ref. 19, pp. 697-698). In
contrast to the case with exchange, adding correlation
by means of a local functional, to obtain the LDAxc re-
sults, always seems to lower the polarizability (Refs. 68
and 69 and Table VI). This has been explained by Stott
and Zaremba®® in terms of a competition between two
effects. On the one hand, an admixture of excited-state
configurations in the many-electron wave function tends
to make the electron density more diffuse, hence increas-
ing the polarizability. This is the dominant effect, beyond
the Hartree-Fock level, on calculations of polarizabilities
of rare gas atoms®® and water.®® On the other hand, elec-
tron correlation enhances the ability of the electrons to
avoid each other, hence minimizing the effects of electron
repulsions and leading to a more contracted charge den-
sity and smaller polarizabilities. This is the dominant
effect, beyond the Hartree-Fock level, on calculations of

mean polarizabilities calculated at the

LDAxc-optimized geometries with experiment and with values obtained from other theoretical
methods. The spin state is indicated in parentheses: S = singlet, D = doublet.

Mean polarizability & (bohr®)

Functional Na (D) Naz (S) Nas (D) Nay (S) Nas (D) Nag (S)
Simple models

Spillout® 159 269 371 468 562 654

DFT with exchange-only functionals®®

LDAx 153.74 244.03 410.10 491.46 597.02 651.71

PW86x 129.00 225.45 387.54 465.11 564.72 622.08

B88x 158.27 247.42 425.84 498.51 607.08 660.60

DFT with exchange-correlation functionals®®

LDAxc 140.12 226.24 371.27 459.17 560.02 611.64

PW86x+P86¢c 135.35 221.38 360.84 447.75 548.25 603.44

B88x+P86¢ 153.76 242.32 394.47 481.50 584.50 639.51

DFT with effective core potentials

BHS LDAxc? 141.7 223.3 363.0 452.8 587.7 603.2

brd LDAxc? 148.4 251.0 408.23 515.5 649.8 677.5
Other theory

HF* 190.9

CEPA' 165.2

MP4# 264.0

EXPT® 159.27+3.37 255.78+8.10 471.06+£16.20 545.974+20.25 726.16+29.02 823.89+30.36

2The value of the parameter § = 1.43 bohr was chosen to give the experimental mean polarizability

for the atom.

bPresent work.

°DZVP+ basis set. See Table II.

dECP results from Ref. 21.

®Hartree-Fock (Ref. 25).

fCoupled-electron pair approximation (Ref. 27).

8Fourth-order Mgller-Plesset many-body perturbation theory (Ref. 32).
hCalculated from the measurements of relative polarizabilities of Knight et al. (Ref. 4) and the
absolute measurement of the atomic polarizability by Molof et al. (Ref. 26).
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TABLE VII. Sodium-cluster  polarizability = anisotropy calculated with different
exchange-correlation functionals at the LDAxc-optimized geometry.
Polarizability anisotropy A« (bohr?)
Functional Naz (S) Nas (D) Nas (S) Nas (D) Nag (S)
DFT wth exchange-only functionals®®
LDAx 143.40 320.82 471.27 447.39 397.08
PW386x 148.22 311.79 465.70 437.65 389.05
B88x 145.56 341.49 478.43 457.16 403.51
DFT with exchange-correlation functionals®®
LDAxc 135.82 284.58 446.44 430.86 377.61
PW386x+P86¢ 139.78 272.37 444.22 424.42 379.89
B88x+P86¢ 139.03 301.07 461.76 440.50 391.56
DFT with effective core potentials
BHS LDAxc® 142.4 260.5 382.1 339.4 318.88
Other theory
MP4¢ 167

®Present work.
PDZVP+ basis set. See Table II.
°ECP results from Ref. 21.

dFourth-order Mgller-Plesset many-body perturbation theory (Ref. 32).

the sodium atom polarizability (Table VI). It is also the
dominant effect of the local-density correlation functional
observed so far, regardless of the system.

Remarkably little is known about the effect of post-
LDAxc functionals on the calculation of polarizabilities.
In particular, little is known about whether and how
knowledge gained for atoms”® and small main group
molecules*6:69:7! extends to metal clusters?:127214 (see
also Ref. 19, pp. 697-698). What is known is that po-
larizabilities are sensitive to the asymptotic behavior of
the effective potential and to “screening.” This can be
illustrated in terms of the well-known self-interaction er-
ror in the LDAxc. In the case of the atom, the self-
interaction error means that the asymptotic behavior of
the effective potential falls off exponentially fast rather
than correctly as 1/r — that is, that the LDAx is less
attractive than it should be at large r. This is consistent
with the observation that Perdew-Zunger self-interaction
corrections make the energies of occupied orbitals more
negative.”®> Along the same lines, one might also think
that self-interaction corrections would also lead to a less
diffuse charge density and hence to smaller polarizabili-
ties, and this too is consistent with previous observations
that Perdew-Zunger self-interaction corrections tend to
decrease polarizabilities.2%7°

However, “screening” has an opposing effect on po-
larizabilities. The idea of screening is that the self-
consistent field of electrons in a molecule reacts to an
applied field in such a way as to reduce the effective field
felt locally within the molecule. Since self-interaction er-
rors lead to a self-consistent field which is too large in
magnitude, they also lead to overscreening and hence
to an overly small local field with decreased polariz-
ing power. Thus, the effect of self-interaction errors
on screening alone would be expected to decrease po-
larizabilities, while the effect on the orbital energies and
asymptotic behavior of the effective potential should in-
crease polarizabilities.!> Which effect dominates in a

given class of systems is difficult to say a priori. In
the case of jellium spheres, at least some types of self-
interaction corrections'? and functionals with the correct
asymptotic behavior’>14 yield polarizabilities which are
larger than those obtained in the LDA.

Returning to the effect of the present GCF’s on cal-
culated polarizabilities, we note that the rough agree-
ment between the LDAx, B88x, and B88x+P86¢c mean
polarizabilities in Table VI, and between the PW86x and
PW86x+P86¢ in the same table, indicates, in the case of
sodium clusters, that the P86c GCF tends to increase the
mean polarizability in a manner which helps to compen-
sate for the decrease caused by the LDA correlation func-
tional. Thus the effect of the different GCF’s on the mean
polarizabilities of the sodium clusters can be largely ex-
plained in terms of just the exchange-only contributions
to the GCF. For these, we note that the exchange-only
GCEF correction to the LDAx polarizability is opposite in
sign for the PW86x and B88x GCF'’s.

There are remarkably few experimental measurements
and good ab initio calculations of sodium-cluster polar-
izabilities with which we can compare our results. The
available experimental measurements have been carried
out in molecular beam experiments with static fields via
either the E-H gradient balance method”2® or by di-
rect measurement of the beam deflection in an applied
electric field.”® 77* Although simple in principle, these
experiments require careful analysis in order to obtain
precise numbers.28:7%77 This analysis yields mean polar-
izabilities but not polarizability anisotropies. The most
reliable atomic measurement is the E-H gradient bal-
ance measurement of Molof et al.?2® Their number was
used by Knight et al.# to calibrate their measurement of
the mean polarizabilities of sodium clusters with up to
40 atoms. Reliable sodium-cluster polarizabilities from
ab initio calculations are even rarer than are the exper-
imental values. As mentioned in the Introduction, elec-
tron correlation effects have a significant impact on cal-
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culated sodium-cluster polarizabilities, but ECP calcula-
tions which freeze the K and the L shells and thereby
reduce sodium to what is effectively only a one-electron
atom are unsuitable for inclusion of electron correlation
effects. On the other hand, correlated calculations in
which the L shell is left unfrozen exist only at the atomic
level?” and at the diatomic level.3? In the case of the
dimer, Sadlej and Urban3? have completed calculations
through fourth order in Mgller-Plesset perturbation the-
ory in which only the innermost (K) shell is frozen. No
such calculations exist for clusters above the dimer.

Table VI shows our all-electron mean polarizabilities in
comparison with experiment. For the atom and dimer,
the LDAxc mean polarizabilities are about 12% too low
compared to experiment. This difference jumps to 21%
for the trimer, 16% for the tetramer, 23% for the pen-
tamer, and 26% for the hexamer. The best gradient-
corrected exchange-correlation functional to use for cal-
culating the polarizability appears to be the B88x+P86¢
functional with errors of only 3.5% and 5.3%, respec-
tively, for the atom and dimer. However, substantial
discrepancies between theory and experiment still per-
sist for the higher clusters: 16% for the trimer, 12%
for the tetramer, 20% for the pentamer, and 22% for
the hexamer. Our all-electron calculations can also be
compared with the ab initio calculations of Reinsch and
Meyer,2” who obtained a mean polarizability of 165.2
bohr® for the atom using the coupled-electron pair ap-
proximation (CEPA) and with the ab initio calculations
of Sadlej and Urban,32 who obtained a mean polarizabil-
ity for the dimer of 264 bohr® at the MP4 level. Since
there are no measurements of polarizability anisotropies
for sodium clusters, we can only compare our results for
the dimer against that the MP4 result of Sadlej and
Urban,3? who obtained a value of 167 bohr®. At first
glance, this is relatively different from our calculated po-
larizability anisotropy. However, if reanalyzed in terms
of the component along the bond and the component
perpendicular to the bond, it is seen that the perpendic-
ular component calculated at the B88x+P86¢ level (196
bohr?) is in relatively good agreement with the perpen-
dicular component of Sadlej and Urban (207 bohr?) but
that the B88x+P86c parallel component (335 bohr?) is in
less good agreement with that of Sadlej and Urban (375
bohr3). Given the present level of agreement between
theory and experiment, we have no idea whether this ob-
servation about parallel and perpendicular components
is significant or just a coincidence.

The ECP LDAxc polarizabilities of Moullet and co-
workers?! 724 have also been included in Tables VI and
VII. In contrast to the case of optimized geometries,
the LDAxc mean polarizabilities calculated using the ab
initio BHS ECP are in better agreement with our all-
electron LDAxc mean polarizabilities than are LDAxc
mean polarizabilities calculated using the semiempiri-
cal brd ECP. Differences between the all-electron and
BHS ECP mean polarizabilities range from about 1%
for the atom to about 5% for the pentamer. In con-
trast, the brd ECP mean polarizabilities are in better
agreement with experiment than are our B88x+P86¢ po-
larizabilities. Perhaps this is because the semiempirical
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brd ECP®" involves dipole and quadrupole polarizabil-
ity terms obtained from fitting the spectra of the atom.
But this hardly explains why the brd ECP optimized
geometries are in better agreement with our all-electron
LDAxc geometries than were the BHS ECP optimized
geometries.

Table VII shows that, unlike for the mean polariz-
abilities, the percent difference between our all-electron
LDAxc polarizability anisotropies and those calculated
with the ab initio BHS ECP is relatively large (5% for
the dimer, 8% for the trimer, 14% for the tetramer, 21%
for the pentamer, and 16% for the hexamer), as might
be expected for such a sensitive property.

Mean polarizabilities calculated using the simple spill-
out model have also been included in Table VI and are in
remarkably good agreement with our all-electron LDAxc
mean polarizabilities. We take this as more of a coinci-
dence than anything else since these small clusters are
hardly spherical.

C. Effect of small geometric distortions

One of the more remarkable things about the mean po-
larizabilities reported in the preceding subsection is the
sudden jump in the discrepancy between theory and ex-
periment in going from the dimer to the trimer. One
hypothesis for why this might occur is that the trimer is
the first cluster to have a floppy angular degree of free-
dom leading to somewhat larger errors in our optimized
geometries. In order to investigate this hypothesis, we
considered the effect of small geometric distortions on
the mean polarizability and polarizability anisotropy.

Our analysis is aided by a few simple observations. The
mean polarizability has units of volume and is, in fact,
proportional to the volume of the sphere in the case of a
classical metal sphere. An approximate relation between
mean polarizability and volume has also been noted for
molecules,”® and a heuristic derivation of why this should
be so is given in the Appendix. Thus some sort of “vol-
ume parameter” is a good choice when studying the ge-
ometry dependence of mean polarizabilities. In contrast,
the formula for the polarizability anisotropy in the coor-
dinate system which makes o diagonal,

Aa = \/(a“”’ = ayy)z + (azm — azz)z + (ayy - azz)z
2

(3.1)

makes it clear that it is a measure of the nonsphericity
of the molecule.

Figure 3 shows the dependence of the mean polarizabil-
ity and polarizability anisotropy of the dimer on its bond
length. The graphs are remarkably linear over the range
of these small distortions, so estimates of how these prop-
erties change with small distortions are easily made using
the derivatives given in Table VIII. As noted above, our
LDAxc bond length is 0.1 bohr too short in comparison
with experiment. This 0.1 bohr uncertainty in the bond
length corresponds to an uncertainty in the mean polar-
izability of 3.7 bohr® or about 1.4%, and an uncertainty
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FIG. 3. Dependence of dimer mean polarizability and po-
larizability anisotropy on small changes in bond length.

in the polarizability anisotropy of 5.7 bohr?® or about 4%.
These numbers help to explain the observed 5.3% differ-
ence between the B88x+P86¢c mean polarizability of the
dimer calculated at the LDAxc-optimized geometry and
the experimental value.

On the other hand, the situation for the trimer is rather
different. Figure 4 shows the dependence of the mean
polarizability and polarizability anisotropy of the trimer
on the area of the triangle formed by the three nuclei.
As might be supposed from the volume argument above,
the mean polarizability shows a remarkably linear de-
pendence on this area while the polarizability anisotropy
yields only a scatter plot when plotted against the trian-
gle area. As shown in Table IV, there is a 4% difference
between the area of our LDAxc-optimized structure and

TABLE VIII. Derivatives of polarizability with respect to
bond length and bond angle for sodium dimer and trimer
calculated at the LDAxc level.

Derivative Naz Najz
8a/8R (bohr?) 37.30 56.53
dAa/dR (bohr?) 57.45 45.89
8a/8¢ (bohr®/degree) 0.40
8Aa/d¢ (bohr?/degree) 1.60
8a/8A (bohr) 9.75

MEAN POLARIZABILITY (b o h @)

16.2 16.4 16.6 16.8

AREA (bohr')

16.0 17.0

280

275

270 A . N

265 a . a

260 . a .

255 1

POLARIZABILITY ANISOTROPY (b o h @)
»
»

250

15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0

AREA (bohr?)

FIG. 4. Dependence of trimer mean polarizability and po-
larizability anisotropy on small changes in the area of the tri-
angle formed by the three nuclei. C2, symmetry is assumed
and only the apex angle and the side length of the equilateral
triangle are varied. The subsets of five points which are espe-
cially apparent in the graph for the polarizability anisotropy
are an artifact of our sampling method. Each set corresponds
to a single apex angle and a range of side lengths. See text
for additional details.

the area of the experimental structure. Based on the
derivatives in Table VIII, this corresponds to an error in
the mean polarizability of 7.6 bohr3, or about 1.6%. That
is, the anticipated error in the mean polarizability of the
trimer is about the same as was the case for the dimer.
This is hardly enough to account for the observed 16%
discrepancy between the B88x+P86¢c mean polarizability
and the experimental value.

These results emphasize the relative insensitivity of
mean polarizabilities to small changes in geometry. At
first this may seem to run counter to the commonly held
belief that cluster polarizabilities yield information about
cluster geometries. In fact, there is no contradiction. It
is just that mean polarizabilities are sensitive to gross
changes in geometries such as topological transitions be-
tween planar and three-dimensional structures, rather
than the small differences likely to be encountered when
the same structure is optimized using different theoretical
methods.
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TABLE IX. Mean polarizabilities calculated at the B88x+P86c¢ level for different topological structures. Structures labeled
nA are the all-electron LDAxc-optimized structures of Na, from Fig. 1. The other structures are those taken from the literature
and shown in Fig. 5. The experimental mean polarizabilities are the same as those in Table VI.

Nags Nay Nas Nag
Structure & (bohr?) Structure & (bohr?) Structure & (bohr?) Strucuture & (bohr?®)
3A 394.47 4A 481.50 5A 584.50 6A 639.51
3B 546.13 4B 677.50 5B 763.32 6B 688.84
3C 385.69 4C 541.28 5C 809.48
4D 515.84 5D 606.60
Average 442.10 Average 554.03 Average 690.98 Average 664.18
Expt. 471.06 £16.20 Expt. 545.97 +£20.25 Expt. 726.16 +29.02 Expt. 823.89 +£30.36

D. Other topologies

The analysis so far seems to indicate that the electronic
polarizabilities of the clusters in their miniminum energy
geometries are insufficient to account for the experimen-
tal polarizabilities of the trimer and higher-order clus-
ters. Assuming that the measurements were performed
on clusters in a reasonably equilibrated beam, this sug-
gests that either zero-point motion is important or that

oo —@ {E
(3B)
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there is sufficient thermal motion to sample other cluster
configurations than the ones considered here so far. A
crude estimate of the possible effect of molecular motion
on the polarizability is made here by simply calculating
the polarizability of alternative structures taken from the
literature. These structures, not all of which are minima,
are shown in Fig. 5. The corresponding polarizabilities
are given in Table IX. A more rigorous study of the ef-
fects of molecular motion on the trimer polarizability is
in progress.”®

FIG. 5. Sodium cluster geometries used,
together with structures from Fig. 1, for
the calculations in Table IX. All struc-
tures are planar except for structures 4D
and 5D, which are, respectively, a butterfly
structure consisting of two equilateral trian-
gles with a common edge and a distorted
trigonal bipyramid. All internuclear dis-
tances are in bohr. Structures from Ref. 61

78 obtained from geometry optimizations us-

ing fourth-order Mgller-Plesset perturbation
theory: 3B (Doohr), 4B (Down), and 5B
(C24). Structure from Ref. 22 obtained at
the LDAxc level: 4C (C3,). Structures from
Ref. 59 obtained from Hartree-Fock approxi-
mation calculations: 4D (Cz.) and 5D (Cay).
Structure 5C (C2,) from Ref. 81 obtained
from the Hartree-Fock approximation plus
a density-functional correction for electron
correlation. Structure 3C (C2,) was opti-
mized for the present work at the all-electron
LDAxc/DZVP level and was found to be 1.8
mhartree higher than the corresponding ob-
tuse structure from Fig. 1 when treated at
the same level. Structure 6B (Ds,) was opti-
mized for the present work at the all-electron
LDAxc/DZVP level and was found to be 1.9
mhartree higher than the corresponding Cs,
structure from Fig. 1 when treated at the
same level.
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Our conclusions can be best illustrated by concentrat-
ing on the trimer for the moment. The sodium trimer
potential energy surface”® has minima corresponding to
the obtuse triangle of Fig. 1 and transition states cor-
responding to the acute triangle and linear structure of
Fig. 5. The calculated polarizabilities of the triangular
structures are each around 390 bohr3®, which is signifi-
cantly below the experimentally observed value of 471.06
bohr3. However, the calculated polarizability of the lin-
ear structure is 546 bohr3, which exceeds the experimen-
tal value. Since the linear transition state lies at the top
of a long low barrier,”® the measured polarizability might
be explained by the trimer spending a significant time in
a nearly linear structure as it interconverts between min-
ima. It is interesting to note, in this regard, that a strong
tendency towards sampling the linear configuration has
been found by Liu, Carter, and Carter in their recent ab
initio molecular dynamics calculations.®® In fact, assum-
ing that the clusters are fluxional under the conditions
at which the polarizability is measured allows us to make
a crude estimate (Table IX) of the experimental polariz-
ability simply by averaging the polarizabilities obtained
at several different cluster geometries. The agreement
with experiment is, in fact, remarkably good for all but
the hexamer, suggesting that molecular motion may be
an important factor in explaining the experimental polar-
izabilities, although a more rigorous treatment of molec-
ular motion effects is certainly desirable.”®

IV. CONCLUSION

All-electron local and gradient-corrected density-
functional calculations of geometries and polarizabilities
have been performed for sodium clusters through the hex-
amer. Such calculations are useful for the developing
and testing of effective core potentials with applications
to larger clusters in mind, and this use of all-electron
calculations has been illustrated here by comparing our
LDAxc results with LDAxc results from the literature
obtained using ECP’s. The results reported in this pa-
per are currently being used in our laboratory to assess
and improve new model core potentials for studying the
optical properties of much larger clusters.

However, a more fundamental use of our all-electron
results is in benchmarking density-functional theory. To
this end, calculations of polarizabilities have been per-
formed with both local and gradient-corrected function-
als and compared against the available data from experi-
mental measurements and high-quality ab initio calcula-
tions. Based on this comparison, we find that, of all the
functionals tested, the Becke 1988 exchange plus Perdew
1986 correlation gradient-corrected functionals give the
mean polarizabilities in best agreement with the exper-
imental quantities. In particular, discrepancies for the
atomic and diatomic mean polarizabilities are only 3.5%
and 5%, respectively. The discrepancy between theory
and experiment increases to between 11% and 22% for
the higher clusters.

A 20% discrepancy between sodium-cluster LDAxc
mean polarizabilities calculated with the jellium sphere
model and experimental sodium-cluster mean polariz-
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abilities has been remarked before.!?72 The existence of
a similar discrepancy between our molecular calculations
and experiment suggests that the problem may not be an
artifact of the jellium sphere model.

In fact, we find it difficult to explain the increased
discrepancy between theory and experiment for clusters
higher than the dimer in terms of errors in the calculated
electronic polarizability. Our basis sets (both orbital and
auxiliary) appear to be quite adequate for the properties
we are calculating. We have shown that the changes can-
not be explained from small errors in geometries. And
finally, it is difficult to understand why a functional which
works well for calculating the polarizability of the atom
and dimer should work significantly less well for higher-
order clusters.

To emphasize this point, we have reoptimized the ge-
ometries of the dimer and trimer using the best basis
set in Table II (basis H) and the B88x+P86c GCF and
then recalculated the polarizabilities at these geometries
with this basis and functional. The reoptimized geome-
tries (given in Tables III and IV) are essentially identi-
cal to those obtained at the B88x+P86¢c/DVZP+ level.
The resultant mean polarizabilities are 247.51 bohr® and
413.33 bohr3, respectively, for the dimer and trimer. As
expected, this level of calculation does reduce the dis-
crepancy between the experimental and calculated polar-
izabilities (to 3% for the dimer and 12% for the trimer),
but the large jump in the level of agreement between the-
ory and experiment in going from the dimer to the trimer
remains.

This leads us to suggest that some of the missing 20%
is likely to be a real difference between the static elec-
tronic polarizability at the minimum energy geometry
and the experimentally measured quantity. We suggest
that molecular motion effects may need to be taken into
account before a completely satisfactory explanation of
the experimental polarizabilities can be given. In partic-
ular, it is worthwhile remembering that the E-H gradi-
ent balance and beam deflection experiments are carried
out with static electric fields and in principle measure
a quantity with orientational and vibrational as well as
electronic components. The orientational component and
vibrational correction to the zero point average of the
electronic polarizability are not zero unless the dipole
moment of the molecule is zero””*?! and both act to in-
crease the polarizability. Although small, the dipoles are
not zero for the geometries of Naz, Nas, and Nag consid-
ered here. Finite temperature effects will lead to further
contributions from molecular motion. Some attempt has
been made to model these by simply averaging polar-
izabilities calculated at different geometries taken from
the literature. This crude but suggestive estimate gives
remarkably good agreement with the experimentally ob-
served polarizabilities. However, work is in progress” to
give a more rigorous estimate of the effects of molecular
motion on the polarizability.
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APPENDIX: AVERAGE ENERGY
AND INDEPENDENT PARTICLE
APPROXIMATION

A very rough approximation is derived here in which
the mean polarizability appears as the sum of orbital
terms which are functions of both the “size” of the or-
bital and an average excitation energy. We will focus on
calculating ag,, but extension to the other components
of a will be clear.

We begin by deriving an exact sum-over-states expres-
sion. Introducing an electric field term F'Y in the Hamil-
tonian, where

N
= "y(9), (A1)
=1
results in the N-electron wave function
Uo(F) = ¥y + F6¥o + O(F?), (A2)

where, by elementary Rayleigh-Schrédinger perturbation
theory,

I£0
(@1]Y[%o)
vy . A3
=2 Vg, g, (A3)
The electronic component of the dipole moment in the
presence of the field is

Ba(F) = —(¥o(F)| X[To(F)), (A4)

where

N

X = Z z(1) (A5)

Since
b (O

then

Oy = —2Re(¥o| X |0T,) . (A7)

Substituting in Eq. (A3) gives the sum-over-states ex-
pression
I#0
-2} Re ({(Wo| X|¥r)(¥1]Y|¥0))
Eo— Eg )

(A8)
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No approximations have been made up to this point
other than the usual Born-Oppenheimer separation of
electronic and nuclear degrees of freedom. However, in
the absence of accurate many-electron wave functions
V; and their corresponding energies Ej, approximate
wave functions and energies need to be introduced before
the sum-over-states formula can become computationally
useful. We do this by making the assumption that ¥ can
be approximated by a single determinant wave function
®, and that the ¥; can be approximated by singly ex-
cited determinants ®¢, doubly excited determiants @” s
etc. It is also convenient to relabel the correspondlng
energies with orbital indices (e.g., Ef — Eg ) Substi-
tuting these determinants into the sum—over—states ex-
pression and taking into account the vanishing of matrix
elements (®|X|®Z>) involving higher-than-single exci-
tations gives

occupied virtual a a
- Z S Re ((2|X|27){(2?[V|®))

A
Eo — E? (A9)

Evaluating the integrals gives the orbital expression

occupied vu‘tual

_ _2 Z Z 1/)1 lz'!:pz)ézﬁaly|¢l>) (A].O)
or
occupied p#i
where
[ E? — Ey; p virtual
AE} = { —AE;',;O p occupied. (A12)

This last definition is motivated by the independent par-
ticle picture where the excitation energy is a difference
of orbital energies,

AE? =€, — €;; (A13)
however, the exact definition of the
occupied orbital excitation energy”
these terms cancel out in Eq. (A11).

We now make one more approximation in addition to
the quasi-independent particle approximation made up
to this point. Specifically, we make the average energy
approximation, which consists of replacing the excitation
energies AE? with an average excitation energy AE;"E,
out of each orbltal i. (Admittedly, the choice of occupled—
to-occupied orbital exciation energy may be more impor-
tant here, but the approximations are rough and we can
always fall back on the difference of orbital energies.)
With this approximation, and using the completeness re-
lation,

“occupied-to-
is not critical since

p#i

Do) (el = 1= i) (wil, (A14)

Eq. (A11) becomes
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occupied

Olgy = 2 Z
i

where (); stand for the expectation value taken with re-
spect to the orbital ;. At this level of approximation,
the mean polarizability is just

(zy)i — (@)i(y)i

AEiavg ) (A15)
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occupied
2 %92 (712 = [(l°
3 AE}'® ’

a =

(A16)

which shows the relationship between the size of the or-
bital charge clouds and the mean polarizability.
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