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We investigate the energetic ground states of a model two-phase system with 1/r® dipolar in-
teractions in two dimensions. The model exhibits spontaneous formation of two kinds of periodic
domain structures. A striped domain structure is stable near half-filling, but as the area fraction is
changed, a transition to a hexagonal lattice of almost-circular droplets occurs. The stability of the
equilibrium striped domain structure against distortions of the boundary is demonstrated, and the
importance of hexagonal distortions of the droplets is quantified. The relevance of the theory for
physical surface systems with elastic, electrostatic, or magnetostatic 1/r? interactions is discussed.

I. INTRODUCTION

There are a variety of interesting circumstances under
which the spontaneous formation of domain structures
has been observed or predicted in two-dimensional (2D)
systems, as a result of long-range electrostatic, magnetic,
or elastic interactions. For example, several works have
shown that electrostatic dipole-dipole interactions are re-
sponsible for stabilizing the domain patterns observed in
Langmuir monolayers at the water/air interface.l™ Sim-
ilarly, it has been suggested®” that work-function varia-
tions could lead to the stabilization of periodic domain
structures on metal surfaces, such as those observed for
partial coverages of oxygen on Cu(110).® Closely anal-
ogous is the case of thin ferromagnetic films for which
the magnetization is normal to the plane of the film.9 16
Similar effects arise for surface segregation into phases
which are not inherently dipolar, but which have dif-
ferent electric or magnetic susceptibilities, in an ap-
plied field. For example, dramatic effects have been
observed in planar-confined ferrofluid/water mixtures in
magnetic fields.!” 2% Finally, it has been understood for
some time that surface stress discontinuities at domain
boundaries can stabilize domain structures.?! This effect
explains the formation of the herringbone reconstruc-
tion of Au(111),2? provides an alternate explanation of
the Cu(110):0 domain structures,®” and has far-reaching
consequences for Si(100) surfaces.2324 A review of some
of these effects appears in Ref. 25.

In the above cases, most of the essential physics can
be captured in a model with two distinct phases A and
B, sharp A-B boundaries having energy per unit length
vp independent of orientation, and 1/r3 interactions of
strength Ky between a “dipole density” ¥4 or ¥p in do-
mains of type A or B, respectively. A model of this form,
or a closely related form, has been considered previously
by many authors.45:13:15:16,19 Eor example, for the case
of Langmuir films, if ¢4 and ¥p are the screened elec-
tric dipole density normal to the water/air interface in
the absence and presence of the Langmuir layer, respec-
tively, then K is just 2¢/(e+1) (Gaussian units),* where
€ is the dielectric constant of the substrate (water). For
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the case of metal surfaces, € & oo so that K4 = 2, and
4 is just the work function.® The magnetic case is anal-
ogous to the electric one. For surface stress effects, 9 is
just the surface stress, and Ky is related to a bulk elastic
compliance. (In this case, ¥ and K4/r3 have extra ten-
sorial indices and the details become more complicated,
but the scaling behavior is the same.?1:23)

Given the wide range of interesting phenomena that
fall within the scope of this model, it is remarkable how
little is known theoretically about its behavior. Even
the ground-state structure as a function of area fraction
f = fa = 1 — fp has not been convincingly established.
The case of the simple striped domain structure is well
understood.5:6:13:15:19,21,23 Nymerical calculations of the
relative energy of droplet and striped phases indicated®
that droplets would order in a triangular lattice, and pre-
dicted a phase transition sequence droplet — striped —
inverted droplet as a function of area fraction f, with
transitions at f ~ 0.28 and 0.72. These phases are illus-
trated in Figs. 1(d), (a), and (f), respectively. However,
neither the stability of the striped phase to sinuous dis-

(a) (b) (©)

FIG. 1. Striped domain phase: (a) unperturbed, (b) with
in-phase, and (c) with out-of-phase boundary displacement,
Eq. (15). Droplet phase: (d) unperturbed; (e) with hexagonal
boundary displacement, Eq. (25). (f) Inverted droplet phase.
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tortions such as those shown in Figs. 1(b) and (c), nor
the effects of deviations of the droplet shape from per-
fect circularity shown in Fig. 1(e), were assessed in Ref.
6. The question of the stability of the stripe structure to
oscillatory domain-boundary fluctuations, in particular,
has been controversial. The demonstration by Tsebers
of an instability for a single isolated stripe of nonop-
timal width'® does not necessarily imply instability of
the equilibrium periodic lattice of stripes as considered
here. Marchenko considered the stability of a lattice of
striped domains against the sinuous distortion of a sin-
gle domain wall, claimed to find an instability for a wide
range of wave vectors, and speculated that it might lead
to an ordered droplet phase.'® However, recent work of
Kashuba and Pokrovsky!® and Abanov et al.'® does not
appear consistent with such an instability, suggesting the
presence of an error in Marchenko’s calculation.

The purpose of this paper is to establish firmly the
correct equilibrium phase sequence as a function of area
fraction within this model. We first develop the formal-
ism to describe the model in Sec. II. Then in Sec. III,
we carefully locate the transition from the striped to the
hexagonal-droplet-lattice geometry, and study the coex-
istence of these two domain structures. In Sec. IV, we
present numerical calculations that demonstrate that the
equilibrium striped phase is stable against undulations
of the domain walls at all area fractions, and in Sec. V,
we show that the expected hexagonal distortions of the
droplets in the droplet phase are negligible. Thus, we
confirm the basic phase sequence suggested previously.®
We discuss the limitations and implications of the work
in Sec. VI, and summarize our conclusions in Sec. VII.

II. DIPOLAR MODEL
A. Formulation

The energy in this model takes the form

EZ’)’bLb—F%/dZT/dzlz’b()(), (1)

[r—r'|3

where Lj is the boundary length, and the boundary en-
ergy s is assumed to be independent of orientation. As
noted above, Ky is the dipolar coupling constant, and
¥ (r) takes constant values ¥4 or g when r lies in an
A or B domain, respectively. (We work here at fixed
area fraction f; one can just as easily work at fixed
chemical potential p by introducing the grand potential
Q=F — ufA, where A is the system area and u reflects
the free energy difference per unit area between the two
phases.)

If desired, the second term above can be converted
into a double line integral over the boundaries,*316:19 and
the energy relative to that of uniform phases A and B

becomes
dl-dl
s=mio- 3 [ [ 5 e
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Here v4 = Ka(¢¥a — ¥B)2%, which has units of energy
per unit length like ;. When multiple boundaries are
present, a double sum over boundaries is understood, and
the sense of the line integrals is to be kept uniform (e.g.,
domain A on the right).

For periodic domain structures, it is convenient to con-
vert to reciprocal space, in which case Eq. (1) or Eq. (2)
becomes®

AF = yynp — Ya Z TG |O(G)|* . (3)
el

We use F', as opposed to E, to represent an energy density
(energy per unit area), and ny is the domain-boundary
density (length per unit area). The G are the reciprocal
lattice vectors of the periodic domain structure under
consideration, and ©(G) is the Fourier transform of the
function, which takes values 0 or 1 inside domains A or B,
respectively (or vice versa). Both v, and 4 are assumed
to be positive, so that that the first term in Eq. (2) or
Eq. (3) suppresses domain formation, while the second
promotes it.

In each of Egs. (1)—(3), logarithmic divergences occur
at small length scales. These may be removed by intro-
ducing a microscopic cutoff a, which may have the in-
terpretation of an atomic lattice spacing, a domain wall
width, or a film thickness, depending on the physical con-
text. It can be shown to be equivalent to introduce a
into Eq. (1) (for sufficiently small a) in the form of a
Lorentzian broadening (z2 + a2)~! of the domain walls,
or into Eq. (2) in the form of a cutoff that omits |I-1'| < a
from the integrals, or into Eq. (3) in the form of a damp-
ing factor exp(—2Ga).

If an appropriate value of a is not known a priori, it
may be assigned an arbitrary value, as long as «; is then
fixed with respect to a known structure such as a single
isolated stripe or disk. From Eq. (2), the energy of a
single stripe of width w is, per unit length,

Y
! —_ — 3 v _
A‘E‘stripe =27 — 274 Yh—r>noo {/(;

dy
/0 Vy?+ wz}
= 2’yb -_— 2’)’,1 hl (;U—a) 3 (4)

and the energy of a single circular droplet of radius R is

™ cos@df
AFEgisx = 27 Ry, — TR —_—
disk LYy — TLYd /a/R sin(0/2)

— 2R [7,, — yaln (:—gﬂ . 5)

The boundary energy v, should be regarded as being de-
fined experimentally through Egs. (4) or (5) after a has
been chosen. There is no real arbitrariness in practice,
since a and v, enter all subsequent formulas only in the
particular combination v, + v41n(a).

For later reference, it is useful to note that if the energy
per unit minority-phase area is minimized for the isolated
stripe or disk, one obtains equilibrium sizes wo = 2lo/7
and Ry = e2lp/4m, where we have introduced a new
length scale,
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lo = maexp (13+1> . (6)
Yd

(As we will see in the next subsection, /o has the inter-
pretation of the stripe width in the equilibrium stripe
phase at half-filling.) The equilibrium energies per unit
minority-phase area are

Aﬁstripe = '—ﬂ'%g (7)
0
and
= 8T V4
o = — 538 8
AFam =~ 1 ®8)

The latter is ~8% lower in energy. Thus, circular droplets
are the favored structure in the dilute limit.

B. Periodic domain structures

We have found Eq. (3) to be most convenient for calcu-
lating the energy per unit area of periodic domain struc-
tures. In Ref. 6, it was shown that any given domain
structure can be characterized by a dimensionless and
scale-invariant constant I, such that

AE = yynp + yane [I + In(mnpa)] . (9)

I depends only on the geometry, and not the scale, of the
domain structure, and can be written

a—0

I=lim [—l’- S Gle(G)Pe2% — ln('rrnba)]
ny e}
(10)

The representation

I = lim [—1 Z G |G)((3'r)|2e'4G2“2 — In(mnpa) + ’7/2}
a—0 np G
(11)
is entirely equivalent, but has improved convergence
properties (y is Euler’s constant).® Minimizing Eq. (9)
with respect to np, and making use of Eq. (6), one finds
that the equilibrium value of n; is given by
ny ' =lpexp(I) , (12)
at which the energy density is

AF = —7_4— exp(—I) .
0

(13)

Thus, regardless of domain geometry, the uniform phase
is always unstable to the formation of a domain structure,
although the length scale n; ! of this domain structure
depends exponentially on the parameters of the model
through Egs. (6) and (13). Note that v4/lo in Eq. (13)
sets the energy scale, while [oAF/v4 = —exp(—1I) plays
the role of a dimensionless energy function.

It is clear from Egs. (12) and (13) that the domain
structure that minimizes I will have the lowest energy,
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and will thus be the physical equilibrium structure at
zero temperature. For a simple striped phase character-
ized by area fraction f, as illustrated in Fig. 1(a), one
finds I(f) = — Insin(nf).%2! This has an absolute min-
imum I = 0 at f = 1/2 for stripes of equal width; for
this case nb’1 is just lp, showing that [y is just the equilib-
rium stripe width. The principle problem to be addressed
next is whether other periodic domain structures, such
as wavy stripes or droplets, might have lower I than the
simple striped structure, at least in some range of f.

III. COMPETITION BETWEEN STRIPE
AND DROPLET PATTERNS

In Ref. 6, it was shown that a hexagonal lattice of cir-
cles of one phase on a background of the other phase,
shown in Fig. 1(d), becomes energetically favorable rela-
tive to the striped structure in the vicinity of f < 0.28.
[Of course, by symmetry, the inverted-droplet phase of
Fig. 1(f) is then favored for f > 0.72.] We have repeated
the calculation of I(f) for the droplet lattice, this time
using the analytic representation of the 2D Fourier trans-
form of a disk,

27R

O(q) = J1(¢R) (14)

(J1 is a Bessel function). The results are shown in Fig. 2,
where the scale-optimized energies of Eq. (13) of striped
and droplet structures are plotted in dimensionless form
vs area fraction f. It can be seen that the energies of the
droplet and striped domain patterns are very close over
most of the range 0 < f < 1/2, the deviation at f = 1/2
being no more that ~5%. The crossover between the two
curves is found to occur at f. = 0.286. The slopes of the
curves at f — 0 correspond to the critical values of chem-
ical potential p at which the minority phase disappears.
These are given by —m = —3.142 and —8m/e? = —3.401
as per Egs. (7) and (8) for striped and droplet domains,
respectively, and differ by only ~8%.

0.0
g 05
@ ™N
1.0 | ! [

FIG. 2. Comparison of dimensionless energy per unit area,
optimized with respect to scale, for striped (solid line), droplet
(long dashed), and inverted-droplet (short dashed line) do-
main structures, as a function of area fraction f. The inset
illustrates the common tangent construction that determines
the phase coexistence region.
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Very near the critical area fraction f., the system can
lower its energy by phase separating into superdomains
of striped and droplet phases having f slightly greater
and less than f., respectively. The coexistence region is
determined by the usual common tangent construction
applied to the energy function plotted in Fig. 2. The
result of this construction is shown in the inset, where an
irrelevant linear function has been added to aid visibility.
We find that the coexistence region is delineated by a
droplet phase at f.; = 0.273 in equilibrium with a striped
phase at f.o = 0.299 at u. = —1.855.

In the region of phase separation, fo; < f < fe2,
the superdomains themselves should, in principle, or-
der into a periodic domain superstructure, by virtue of
the fact that they have slightly different dipole den-
sities Ve = Ya + f(¥B — ¥4). The theory of Sec.
II A applies, now with v4 = K4(¢¥5 — ¥a)2Af2, where
Af = fea — fc1=0.026, and +, is interpreted as the en-
ergy per unit length of a superdomain boundary. Thus,
a striped superstructure is to be expected near the mid-
dle of the phase separation region, and droplet super-
structures might occur near f.; or f.2.2¢ (If so, it is
even conceivable that these superphases could phase sep-
arate near coexistence into periodic super-super struc-
tures, etc.) However, the energy scale for the superorder-
ing would be extremely weak (A f2? < 10~3), and it seems
doubtful whether these superdomain effects could be ob-
served experimentally.

IV. STABILITY OF STRIPED PHASES

We now wish to consider the stability of the striped
domain phase to perturbations of the boundaries. We
will consider both in-phase and out-of-phase fluctuations
of the boundary, as sketched in Figs. 1(c) and 1(d), re-
spectively. We let the stripes be propagating along the
z direction, with unit periodic repeat distance in the y
direction, and a boundary deviation of the form of

y = Asin(kz) . (15)

The problem is to compute I(f, k, A), where f is the area
fraction, and A is the amplitude and k& the wave vector
of variation. By symmetry, I(f,k, A) can be expanded
in even powers of A:

I(fakaA) = Io(f)+a(f,k)A2+O(A4) . (16)

This equation defines the stiffness a(f, k) of the domain
wall, with respect to sinuous displacements. If a negative
value of o were found, it would indicate instability of the
striped domain structure.

We first develop a method for calculating a(f,k) di-
rectly. The perturbed structure is periodic with lat-
tice vectors 2w /k and §, and reciprocal lattice vectors
G = km& + 27ng, so that the Fourier components ap-
pearing in Eq. (3) can be written ©(G) = ©(m,n). Ex-
panding in powers of A and keeping only terms up to
order A2, we find for the case of in-phase variation of the
domain boundaries,
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0(0,n) = € 1- 7r2n2A2)sin(7rnf) (17)

and
O(£1,n) = Fe ™" A sin(wnf) , (18)

with all other Fourier components vanishing. Equation
(10) then leads to

oo

o(f, k) = Z sin®(7nf) [6_4"’“‘ (; + 4nin — 27l'ak2)

n=1

—2m/(27n)2 + k2 72V (37n)? 44 “] . (19)

Introducing x = k/27 and taking the limit a — 0,

a(f,k) = i47r2 sin®(mnf) [; +n—+n?2+4 nz] ,

n=1

(20)

which can be proved by careful expansion of the expo-
nential factors in Eq. (19). The three terms appearing
in the bracket above result from the increase of n;, the
decrease of the ©(0,n) components, and the increase of
the ©(+1,n) components, respectively, with A. Since the
first two terms are always larger in magnitude than the
third term, we can see that « is always positive. The
results for a(x) are plotted for f = 1/2 in Fig. 3. In
the limit x — 0, a is directly proportional to k%, while
for very large k, a scales as k% In(x). These limiting be-
haviors are illustrated in Fig. 4. In particular, we find
that o ~ 0.5267%x* for k — 0, and o ~ 7%k?In(k) for
x large, at f = 1/2 (the former is of the form expected
from elasticity theory for a stripe crystal).1%16

We use a'(f,k) to denote the corresponding stiffness
for the case of out-of-phase variation, Fig.1(c). For this
case, the m = 0 elements of © are still given by Eq. (17),
while (18) becomes

35.0

30.0 |-
25.0 -
20.0 -

a(x)

16.0 -

10.0

FIG. 3. Stiffness a vs reduced wave vector « for striped
phase at filling f = 1/2. Solid and dashed lines denote
in-phase and out-of-phase boundary variations, as computed
from Eqgs. (20) and (22), respectively. Triangles and circles
indicate the corresponding results obtained numerically by fi-
nite differences from calculated values of I(f, k, A), using the
method of Egs. (23) and (24).
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FIG. 4. Stiffness vs wave vector for in-phase boundary vari-
ations, from Eq. (20), illustrating asymptotic form for large
and small k. Results are expressed as a/k? vs k? for three
values of area fraction f.

O(£1,n) = ie """ Acos(nnf) . (21)

We now find, as a — 0,

(ir) = 3t sin*(en) (- +m)

n=1

—cos?(mnf)v/n? + nz] . (22)

The series is conditionally convergent and has to be
summed carefully. The results for f = 1/2 are shown
as the dashed line in Fig. 3. It can be seen that o/ > «
(and thus o’ > 0) over the entire range of the wave vector;
this was also found to be the case at other area fractions
f. For f =1/2, the minimum occurs at about k = 4x/3.

Very recent work of Abanov et al.'® contains a similar
stability analysis, which appears to confirm these results
for the special case of half-filling. Our Egs. (20) and (22)
with f = 1/2 correspond to their Eq. (A23) with p, =0
and 7 /L, respectively.

We have further checked the above results numerically
by carrying out a direct numerical evaluation of Eq. (11).
For this we do not want to rely on an analytical Fourier
transform of ©(r), so we begin by specifying ©(r) directly
on a real-space mesh covering the unit cell of interest.
To avoid artifacts of the discreteness of the lattice, the
function ©’(r) that we actually evaluate on the mesh is
a Gaussian-smeared version of ©(r),

B(r) = % [1+erf (2\‘;5“)] , (23)

where erf(z) is the error function and |d| is the distance
from the domain boundary to r, the sign of d depending
on whether r is in domain A or B. Since this corresponds
to convoluting with a Gaussian function in real space, we
have in reciprocal space,

O(G) = O(G)e~26%" (24)

In practice, @)(G) is computed by fast Fourier transform.

Then the sum in Eq. (11) can be computed simply as
e G |©(G)|2. We found that good numerical accuracy
was obtained using ~1024-2048 grid points in the y direc-
tion, and an equal mesh density in the z direction. The
calculated values of I(A) were then fitted to a quartic
polynomial in A in order to determine « or o’. The val-
ues determined by this approach match very well with
those computed from Egs. (20) and (22), as shown in
(Fig. 3) for f = 1/2. The errors are typically ~3% or
less. Moreover, by using this approach, we confirm that
the surface energy change per unit area increases mono-
tonically with A in all cases considered. This provides ad-
ditional evidence, above and beyond the linear-response
O(A?) analysis, that the equilibrium in-phase and out-of-
phase striped domain structures are always stable, with
respect to domain-boundary variations.

V. HEXAGONAL DISTORTION OF DROPLETS

We now consider in more detail the domain phase con-
sisting of a hexagonal lattice of droplets. There is no rea-
son to expect the droplets in this phase to be exactly cir-
cular; the interactions with neighboring droplets should
give rise to some amount of hexagonal distortion, not
considered in the previous section, as shown in Fig. 1(e).
Are these distortions important? For example, do they
lower the energy of the droplet phase significantly with
respect to the striped phase, perhaps even eliminating the
striped phase from the phase diagram altogether? On the
contrary, we show here that the effects of the distortion
are insignificant.

We thus consider boundary distortions of the form

r =rg + Acos(66) , (25)

where r and 0 are polar coordinated measured from the
center of the droplet, r¢ is its unperturbed radius, and
A is the amplitude of variation. Unlike the case of the
striped phase, there is no symmetry that requires I(f, A)
to be an even function of 4, so we expect its Taylor ex-
pansion in 4 will contain linear as well as higher-order
terms. Because there is no simple analytic method to cal-
culate ©(G) for given f and A4, we again specify O(r) first
on a real-space mesh, fast Fourier transform to reciprocal
space, and evaluate Eq. (11) in G space. We find that
a 2048x2048 mesh in the parallelogram unit cell gives
sufficient numerical accuracy to calculate I(f, A). Lin-
ear and quadratic coefficients in A are obtained from a
simple fit to a series of calculations using different values
of A, and used to locate the equilibrium distortion A,
and the corresponding energy change Al = I, — Ip at
Amin-

We have carried out such calculations at many values
of f, but it is sufficient to report the results at f = 1/2
(where the striped phase has maximum stability) and at
f = 0.28 (near the crossover between the droplet and
striped phase). For the cases of f = 0.5 and f = 0.28, we
find Amin/70 = ~ —3 x 1073 and ~ —2 x 1073, and AT
= —1.3 x 10~* and —2.6 x 1074, respectively. We find
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Amin < 0 for all f, which with our conventions indicates
that the boundaries try to avoid each other. This causes
the portions of the droplet boundary that directly face
other droplets to become flattened, as indicated (in ex-
aggerated fashion) in Fig. 1(e). In principle, higher har-
monics such as cos(126) should be considered in Eq. (25),
but given the smallness of the fundamental 66 distortion,
these are virtually certain to be negligible as well.

The effect of this Al on the relative stability of the
striped and droplet domain phases is miniscule. We esti-
mate that the critical filling fraction f., which separates
the droplet and striped phases, is shifted by only ~ 1074,
due to the distortion of the droplets. Thus, the exact val-
ues of f., fc1, and fco of Sec. III are only very slightly
shifted, and the description of the transition is virtually
unchanged.

VI. DISCUSSION

While the model that we have studied is motivated by
the experimental work summarized in the Introduction,
it should be emphasized that extensions of various kinds
would probably be needed to make real contact with ex-
periment in most cases. Perhaps the closest experimen-
tal realization of the model can be found in the case of
Langmuir layers at the air-water interface. Experimental
work on this system has shown indications of the pres-
ence of both droplet and striped phases, although it is
not clear that the transition between them is connected
experimentally with a change in area fraction.!™

Probably the most serious limitation of the model is
the assumption that the boundary energy <; is inde-
pendent of orientation. This is clearly correct for the
case of Langmuir layers at the air-water interface, and
for ferrofluid mixtures. But it is clearly not correct at
crystal surfaces. For example, the striped domains ob-
served on the Cu(110):0 surfaces always run along the
[001] direction,® presumably because [110] boundaries
are much lower in energy than [110] ones. Anisotropy
in v, will always favor striped domains over droplet
or inverted-droplet domains, so the effect of a weak
anisotropy will be to shift the critical area fractions for
droplets closer to f = 0 and f = 1. A strong anisotropy
will eliminate the droplet and inverted-droplet phases
from the phase diagram altogether.

Another limitation is that in some of the physical
situations discussed, the idealization of a pure two-
dimensional model is not quite appropriate. For exam-
ple, for the work on confined ferrofluids and epitaxial
ferromagnetic films, the film thickness plays a definite
role, giving rise to specific forms of the effective interac-
tion between A and B domains and eliminating the need
to introduce an ad hoc real-space cutoff a. In the case
of Coulomb interactions in an electrolytic background,??
screening can convert the r~2 interaction into a short-
ranged form, while for the elastic case, the surface stress
4 and the elastic interaction Kg/r3 carry extra tensorial
indices.?1:23

Also, we have assumed that the dipole density 1 always
takes on two discrete values 94 and 1¥g. In some cases,
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we may prefer to think in terms of a model in which
there is an intrinsic energy density F'(v) having local
minima at ¥ = 14 and g, but for which variations
of ¢ from these minima are allowed. For the case of
Langmuir layers at the air-water interface, for example,
the molecular density in the Langmuir layer is sure to be
somewhat compressible.

Moreover, in some cases our characterization of the do-
main boundary as infinitely sharp may be inappropriate.
For example, in the case where phases A and B arise from
phase segregation, the boundary is expected to become
broad near the phase-separation critical temperature. In
such cases also, it is appropriate to treat 1 (r) as a con-
tinuous field, using a Landau-type expansion to describe
the energy of the system and the appearance of domain
structures.*

For atomic-scale magnetic systems, it might be ap-
propriate to go over to a description in terms of lattice
spin models, instead of insisting on a continuous r space.
The simplest such model would be an Ising model on a
square 2D lattice, with ferromagnetic nearest-neighbor
and antiferromagnetic 7~3 long-range exchange interac-
tions. (Unless a specially tuned second-neighbor inter-
action is introduced into such a model, the anisotropy
of the boundary energy is again likely to favor striped
phases aligned along the Cartesian directions.) We are
not aware of previous studies of such a model.

Even assuming the formulation of the model is cor-
rect for the system of interest, it would be very desirable
to generalize the above zero-temperature theory to finite
temperature. The energy scale for defects in the domain
structures (e.g., vacancies or interstitials in the droplet
phase, stripe terminations in the striped phase) is v4lo,
so it is natural to introduce a dimensionless tempera-
ture t = kT /vaqlo. Thus, the problem reduces to map-
ping out the phase diagram in the f —t (area-fraction—
temperature) plane. This remains an ambitious program
for future work. However, we can make the following
speculations. We certainly expect a solid-to-liquid melt-
ing transition in the droplet phases, quite possibly via
the Kosterlitz-Thouless mechanism, with a narrow hex-
atic phase interposed. The melting temperatures should
vanish at f — 0 or 1, since the interactions between
droplets becomes very weak in those limits. Theoretical
considerations suggest that the striped domain structure
will melt at any nonzero temperature, giving rise to a 2D
nematic phase characterized by an orientational correla-
tion length and having exponential and algebraic decay
of positional and orientational order, respectively.31%:30
(Further discussion for the case of anisotropic v, appears
in Refs. 15 and 16.) The nature of the low-temperature
part of the phase diagram near f. is especially unclear.

Finally, even assuming that the model is correct and
that we know its equilibrium behavior, there may be
many circumstances under which the kinetic behavior is
more important that the thermodynamics. In fact, we
may expect sizable energy barriers to the coalescence or
pinching off of droplets, or the formation and annihila-
tion of stripe crosslinks. Some studies of the dynamics
of phase separation?”"2° and fingering!9:2? in dipolar sys-
tems have already appeared. Nevertheless, even in cases
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where kinetic effects dominate, it may be of interest to
understand the equilibrium phase diagram first, in order
to understand the driving forces for the dynamic effects
observed.

VII. SUMMARY AND CONCLUSIONS

In summary, we have carried out a theoretical study of
the stability of periodic striped and droplet domain struc-
tures for a simple two-dimensional dipolar model at zero
temperature. It is confirmed that the striped structure
is stable near area fraction f = 0.5, with transitions to
droplet and inverted-droplet structures at f = 0.286 and
f = 0.714, respectively. A small phase-separation region
near the striped-to-droplet transition was identified. The
stability of the striped structure against sinuous displace-
ments of the domain boundaries was confirmed, and the
hexagonal distortion of the droplets in the droplet phase
was quantified and found to be negligible.

The characterization of the finite-temperature phase
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diagram of the model, and its kinetic evolution, remain
as challenging problems for future study. Furthermore,
application to some experimental systems may require
refinements of the model, such as an orientation depen-
dence of the domain-wall energy, a finite film thickness,
a finite domain-wall thickness, a compressibility of the
dipole density, or addition of tensorial indices for the elas-
tic case. Nevertheless, it is hoped that the present work
will provide a firm foundation for future developments.

Note added in proof. We have recently become aware
of related work [R. de Koker, W. Jiang, and H. M. Mc-
Connell, J. Phys. Chem. 99, 6251 (1995)] which pro-
vides additional confirmation of the stability of the stripe
phase.
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