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Nonlinear photomagnetism of metals: Theory of nonlinear photoinduced dc current
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Photoinduced magnetic Aux has recently been observed in normal metals exposed to light. This effect
is partly due to the fact that the light reflected from a metal surface transfers to the conduction electrons
some of its quasimomentum. This creates a dc surface current which, for an appropriate geometry,
brings about the photomagnetic effect. There is another contribution to the current that is due to anisot-

ropy of the probabilities of electron transitions induced by the light, in combination with diffuse

reflection of the electrons at the surface. We present here a theory of the dependence of the photoin-
duced current on the intensity of light Q. We assume that the light intensity is either constant or the
time scale of its variation is much larger than the inverse Rabi frequency corresponding to the interband
electron transition. At comparatively low intensities the current is proportional to Q. At higher intensi-
ties it varies as Q'~2. The physical origin of such behavior is analyzed. Various factors that allow a
lowering of the critical intensity for the onset of the nonlinear behavior are discussed.

I. INTRODUCTION

In a recent paper' observation of the photomagnetism
of metals was reported. In a sample of metal of such a
form that a circular dc current can exist, a buildup of
magnetization under illumination was observed. In Ref.
2 a microscopic theory of the photoinduced surface
current bringing about the photomagnetism was worked
out. A case where the current is due to the light-excited
interband transitions of the electrons was considered. It
was pointed out that there is a transfer of quasimomen-
tum from the light partly absorbed at the metal surface to
the conduction electrons which is one of the sources of
the dc surface current. It was indicated that there is
another contribution to the current due to anisotropy of
the probabilities of electron transitions induced by the
light, in combination with diffuse reAection of the elec-
trons at the surface.

In Ref. 3 yet another possible source of photomagne-
tism was demonstrated, i.e., photoinduced bulk current.
It can also be excited by light absorbed at a metal surface,
in particular, by light propagating perpendicularly to the
surface. The magnetic Aux associated with this current is
expected to be much larger than the magnetic Aux associ-
ated with the surface current.

In all these papers only linear dependence of the pho-
toinduced magnetic Aux was considered theoretically and
observed in experiment. The present paper is devoted to
the case where the magnetic Aux is a nonlinear function
of the light intensity Q. We work out a theory of such
dependence. We have some experimental evidence of a
nonlinear dependence of the observed magnetic Aux
which could be hopefully increased along with the in-
crease of the pumping power. Therefore, in our opinion,
a theoretical understanding of the nonlinear behavior of

the photocurrent is called for.
The physics of the nonlinear behavior of the light-

induced magnetic fIux may be described as follows. The
quasimomentum conservation in the interaction of light
with the Bloch electrons of a metal establishes correspon-
dence between pairs of states. One of the states of such a
pair belongs to the lower band (band 1) while another one
belongs to the upper band (band 2). As an example, we
mill consider the case where before the illumination has
started the state in the lower band is occupied while the
state in the upper band is empty. Under the inhuence of
an ac electric field of coherent light the occupation prob-
abilities of the states belonging to such a pair begin to os-
cillate with time. The frequency of oscillation is the Rabi
frequency Qz which is given by

where E is the amplitude of electric field inside the metal
while T2& is the corresponding transition matrix element
[see Eq. (6)j. Qz is proportional to the amplitude of elec-
tric field or, in other words, to Q'~ . If the intensity of
light, Q, is so low that this frequency is smaller than the
average collision rate I /w given below by Eq. (12) then
the Rabi oscillation does not actually happen. If, on the
other hand, Qz~&) 1 the Rabi oscillation takes place and
the dc current should be a nonlinear function of Q. We
wish to emphasize that in our paper by dc current we ac-
tually mean such current whose variation is slow on the
time scale of Qz . This means, in particular, that the
laser pulse duration should be larger than the smaller of
the two quantities Q~ ' and ~.

Reasoning of this sort was applied for investigation of
saturation of intervalence band transitions in semicon-
ductors by James and Smith in Refs. 4 and 5 (see also
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we are actually interested in the big dimensionless param-
eter determining the onset of the nonlinear intensity
dependence is

4(Qi, r) m5
(2)

where m is the average (over both bands) value of the
electron effective mass and p is the average value of the
quasimomentum of the electrons excited by light. The
appearance of parameter Qz~ seems natural for non-
linear problems of this sort (see Refs. 4 and 5) while 5/l
is, in fact, the ratio of the volume where the light
penetr ates to the volume where the photomagnetic
current flows [see derivation of Eq. (39)]. After integra-
tion over all the electrons taking part in these transitions
we obtain the Q

' dependence for the photomagnetic
response. We wish to emphasize that to develop this
dependence the parameter y need not be particularly
large; it should just be somewhat bigger than unity.

One should discuss separately the case of small elec-
tron groups that can move almost parallel to the sample's
surface. These are, for instance, Fermi surface "necks"
in copper and gold or Aat parts of electron surfaces of
constant energy. In these groups the component of elec-
tron velocity perpendicular to the sample surface can be
so small that the electrons would remain within the sur-
face layer 6 during the time ~. Then the nonhomogeneity
of the electric field is of no importance and the nonlinear
parameter is the same as in semiconductors, namely,

y, =2(Qiir) (3)

It does not contain the small factor 5/l. As a result, the
critical intensities for such groups can be much smaller.
The phase volumes occupied by such groups are usually
also small. They, however, can bring about nonlinear in-
tensity dependence at comparatively low intensities in
metals where the ratio I/5 is not too big and the orienta-
tion of the sample's surface is chosen in the appropriate
way.

We do not consider in the present paper contribution
of the surface bands into the surface current (cf. with Ref.
8). We think, however, that it might be very interesting

Ref. 6). It was also used for investigation of linear-
circular dichroism of drag current due to nonlinear inter-
subband absorption of light in Ref. 7. The most impor-
tant difference between the cases considered in the quoted
papers and the present one is the already mentioned
essential spatial inhomogeneity of the problem.

This reasoning is good for semiconductors provided
the electric-field amplitude can be considered as coordi-
nate independent. In metals, however, the light intensity
falls off within the layer of the width 5 of the order of
10 —10 cm while the current excited by light exists
over the length about mean free path l. Under these cir-
cumstances the onset of nonlinearity demands much
higher intensities as the interband transitions take place
in a comparatively narrow layer near the metal surface.
It turns out that for the case

to investigate their role both theoretically and experimen-
tally, choosing for this purpose the crystallographic
orientation of a monocrystalline sample's surface as well
as the frequency of the light.

By measurement of nonlinear photomagnetism one can
obtain important information concerning the values of
the interband transition amplitudes induced by light.
This way one can also get the data about the relaxation
rates of the Bloch electrons in metals. One can also veri-
fy the assumptions concerning the distribution of the
conduction electrons perturbed by light and to check un-
der which circumstances its deviation from the equilibri-
um may still be considered as small. It seems that, unlike
the semiconductors where the electron distribution func-
tion may be strongly nonequilibrium, in metals one may
assume that the deviation is small up to rather high in-
tensities of light.

It is seen from Eq. (2) that the critical intensity for the
onset of nonlinearity, Q„goes down when the average
collision rate r goes up. Q, is also very sensitive to the
value of the matrix element T2&. In regard to the values
of the transition matrix elements that can speak for a
given frequency of light of two types of metals. In the
metals of the first type transitions are possible between a
band of well-localized states (such as d band) and the con-
duction band. For the frequency interval used in Ref. 1

such metals as copper belong to the first type. As in the
case of atomic photoeffect, the values of transition matrix
elements for these metals may be rather big. One can
come to the same conclusion by analysis of the experi-
ment ' and theory"' of light absorption in copper as
well as the linear photomagnetic response observed in
Ref. 1 (see above and Sec. V). For the metals of the
second type only transitions where the localized states are
not involved are possible. If an approximation of almost
free electrons is valid for calculation of the transition am-
plitudes they should be small, the smallness being deter-
mined by the ratio of the pseudopotential constant to
some characteristic energy of the order of Fermi energy.
Such a case was considered in Ref. 13 (where the part of
the current due to the quasimomentum transfer was cal-
culated in the almost-free-electron approximation and ex-
perimental evidence for this effect was presented in the
form of spatially asymmetric photoemission from rough
silver films). Gne should expect that in this case the criti-
cal intensity for the onset of the nonlinear behavior
should be (for the same values of r) much bigger than in
the first case. As so far most of the experimental data
have been obtained on copper we will make most numeri-
cal estimates for copper.

II. PROBABILITY OF INTERBAND ELECTRON
TRANSITIONS INDUCED BY LIGHT

The Hamiltonian of interaction of conduction electrons
with light has the form

(4)

%'=(ie/2como)e ' '[e "
( ifiE V)+( ifiE V)e——" ] .

(5)
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Here m is the frequency of light and mo is the free elec-
tron mass; E(z) denotes the amplitude of the electric field
that depends on coordinate z along the direction perpen-
dicular to the metal surface. We will consider the time-
averaged action of the field introducing a term describing
the interband transitions into the Boltzmann equation for
the electrons. To allow for the z dependence of the elec-
tron distribution function we can imagine that the sample
is divided into slabs, the thickness of each of them being
so small that the field in a slab can be considered as in-
dependent of z. This approach permits us to take into ac-
count the z dependence of the intensity of light.

The matrix element of the interband transition between
the Bloch states with quasimomentum p in the lower
band 1 and with quasimomentum p' in the upper band 2
is

light we will use an "intermediate" equation for the den-
sity matrix rather than a perturbation theory equation of
the type (9). Let us denote by ge ' ' the density matrix
between the states 2, p+A'k and l, p. We have (see Refs. 4
and 5)

p+ haik p
= i (F'" —))ice —s(")q

+ E(z).P21(p+&k p)(&p'+Ak &p )
mo~ 7.

where

1 1 1 1+-
(i)

—,
'

& 2p'l~l lp &
=

2&2 os
E P2le '"'5,

~x»x+ "kx
Here V" ' are the full distribution functions. They satis-
fy the following equations:

x5, 5,
Py ~By Pz Pz

where 5p p is the Kronecker
=(2moco/e )T2, is given by

symbol. Here P2l

()y ) gp(), &)

+U,"2' =+2n Req-
8t ' Bz Bt coll

(13)

A'Q~ = lE P2, (p+A'k, p)l,
2m oco

where Qz is the Rabi frequency.
In the linear theory the transition probability from

Bloch state 1, p, to state 2, p' =p+Ak, is given by

Gn(.,("+~~—.,"+',„),
2

G(p+irik, p) =
moto

lE(z).P (p+irk, p)l . (9)

We will see that in nonlinear theory the 5 function in this
equation will be replaced by a more complicated expres-
sion. This will appear to be the main modification of the
Boltzmann equation we used in the linear theory to cal-
culate the nonequilibrium parts of the distribution func-
tions.

The x component of the current density is given by the
usual equation

dj 2e P ( )
p

( ) + U
( )

p
( )

(2m)'
Here fp" ' are the nonequilibrium parts of the electron
distribution functions in the lower and upper bands, re-
spectively; U„" )(p) are the x components of the electron
velocities.

III. BOLTZMANN EQUATION

To work out the nonlinear equation for the variation of
the electron distribution function due to interaction with

P~, (p', p)= Id'r u p". *(r) iR —u"'(r),
0 Br

Vo being the volume of the primitive cell and u " '(r) be-
ing the Bloch amplitudes.

In what follows we will use the notation

The first term on the right-hand side originates from the
commutator between the oA'-diagonal part of the density
matrix and the Hamiltonian of interaction of the Bloch
electrons with the electromagnetic field [Eq. (5)]. The
last term on the right-hand side represents the intraband
transitions on conserving the electron quasimomentum
which may be due to collisions of the electrons with de-
fects (or phonons). Performing analysis of the equation
for the density matrix in the resonant approximation (i.e. ,
taking into account only two bands) one can see that on
the one hand Imp can be expressed through ReP2, . The
term proportional to ImP2, is not resonant and therefore
is beyond the approximation accepted throughout the pa-
per. On the other hand, far away from the threshold
where

1/2
~threshold

one can always find such a gauge transformation that P2l
would be real (up to the small terms proportional to k).
It is in this gauge that we have written Eq. (13). Natural-
ly, the final expressions for the observables, such as f" ',
do not depend of the gauge.

Here we consider quantum transitions of the electrons
while the electric field is treated classically. Frequency co

is assumed to be big enough so that the conditions for the
energy and quasimomentum conservation allow transi-
tions between the occupied states in the lower band and
empty states in the upper band (we do not consider here
the threshold effects due to the transitions to the immedi-
ate vicinity of the Fermi level). The amplitude of the
electric field, E(z), can be complex. It means that these
equations are valid for any polarization of the light, in-
cluding circular (or, in general, elliptical).

We assume that wave vector k has an x component k
along the metal surface. Strictly speaking, the spatial
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variation of function E(z) can describe not only its damp-
ing but also an oscillation along the z direction. This
means that the z component of the quasimomentum can
also be transferred to the electrons at the surface, thus
creating a dc current or voltage along the direction.
However, we shall disregard this effect as we do not con-
sider here in detail the z component of the current.

The distribution function of the electrons excited by a
laser light should have a part that is very sharp in the
quasimomentum space. This means that one can present
the full distribution functions as the sums of the smooth
parts F" ' and resonant (sharp) parts f" '. For the
latter the "out" term of the collision operator should be
much bigger than the "in" term. This means that to de-
scribe the collisional variation of a sharp part of the dis-
tribution function f" ' one may use the relaxation-time
approximation:

electrons Eqs. (16) and (18) give

(1,2)fP (1,2) P (1,2)
Vz Uz 7

X f 'dz'exp
0

[+2Q21 (z')Ref(z')],

(19)

while the contribution of the electrons with v, &0 is of
higher order in the small parameter 5/l and therefore we
will neglect it. The electrons with the positive z com-
ponent of velocity give the principal contribution to the
surface current (which falls off over the distances z of the
order of 1). For such distances taking into account that
g(z) falls off over the distances of the order of 5 one can
rewrite Eq. (19) as

pcs(1, 2) p(1,2) F(1,2)
P P P

Bt
(14)

200 zf (z)" '= + dz'e " Ref(z') .
P (1,2)

z

(20)

As for Fp below we consider these as the equilibrium
Fermi functions.

For a stationary case (or, to be more exact, in the case
where the time scale for the amplitude of light variation
is larger than Qi( ) where the time derivatives vanish we
have from Eq. (11)

In order to obtain a self-consistent equation for Re/(z)
we write solutions of Eqs. (16) for z ((I. For this pur-
pose it is convenient to introduce a new function

y(z)=e '/ Re/(z)

and

(15)

gf (1,2) f (1,2)

(1,2) (16)

IV. ROLE OF SPATIAL NONHOMOGENEITY

whereas for the nonequilibrium parts of the distribution
functions

A Qo&

(Ep+A'k/2 ~p —Rk/2 ~~) +(~/r)

Then one can present Eq. (15) in the form

(z)= N(F' ' F—'") N[f—' '(z) —f"'(z)] . —

Inserting in this definition Eq. (20) for the resonant distri-
bution functions we get the following integral equation:

4&ono
q(z)+ J' dz'exp( —Kz )p(z )

0
As the amplitude of the electric field falls off as a func-

tion of the distance z from the metal surface the Rabi fre-
quency is coordinate dependent. We assume that the real
part of the dielectric susceptibility of metal for the fre-
quency co is negative and the electric-field amplitude falls
off as e ' . Accordingly,

where

U

1 1

(1) (2)
U U

(21)

Qit (z)=Q()e (17) It is equivalent to the differential equation
where Qo is given by Eq. (8) with E=E(o). We have to
solve Eq. (16) allowing for the z dependence of Q11 (z).

We will use the boundary conditions of elastic and
completely diffuse electron scattering at the metal's sur-
face. They were discussed in detail in Refs. 2 and 3. For
the current parallel to the metal's surface (surface
current) we are going to calculate they can be used in the
following simplified form:

f" '(0)=0 for U" ')0.
P z

(()) N (y( ) F( ))

Its solution is given by

y(z) =N (E'" F' ' )exp . —4%000
[exp( —Kz ) —1 ]

KVZ

4N000+ + exp( —Kz )(p(z) =0,
dz

(22)

We will be interested in the case where the electron
mean free path I is much bigger than the light penetra-
tion depth, 5=1/K. Then the main contribution to the
current comes from the electrons with U, &0. For these

(23)

To obtain the singular part of the distribution function
let us make use of the fact that Rei)'j(z) has essentially
nonvanishing values only within the region z &~ ' &&I.
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It is only this region that contributes to the integral over
z' in Eq. (19) after we have inserted into it y(z') from Eq.
(23). As a result, the integral over z' is readily calculated
and we get

( &, 2) —— (&) (2)
U z= +
(1 2) (Fp p+fik ) xp —

(, ,) (, , )
2Uz U

' 7

term having the resonant factor in the exponent.
The energy difference in the equation for No up to the

first order in k is given by

1
Ep+A'k/2 Ep —Rk/2 ~~ (P + )k P)+Eg

2m

where

X 1 —exp
4N000

KUz
(24)

1 1 + 1
7

m teal ( m2

1 1

V. CALCULATION OF CURRENT

Now we embark on a discussion of the equation for the
surface current density that one can get from Eq. (10) by
integration over z:

g= f dz j(z) . (2&)
0

ri=m /m

Calculating the contribution to the surface current we are
interested in we can neglect the term proportional to g in
Eq. (29). For further calculation it will be convenient to
present the exponent as

For calculations and order-of-magnitude estimates of the
expected effects we will exploit here a simple model of the
electron spectrum. We assume the electron spectrum in
both bands to be isotropic and quadratic: where

KVz

U(p)
(p —p 0 i A/—i )(p —p 0+i fi/i )

(30)

e("(p)= —p /2m„c, ( '(p)=E +p /2m2 . (26)

As for the probabilities of the interband transitions, we
make one of the simplest assumptions compatible with
the isotropic model, namely,

pa=+2m(A'a) —e ),
I =r(p +po ) /2m,

and

P»(p', p) =a(p'+p), (27)

where a is a real dimensionless constant. In reality the
angular dependence of the matrix element may be mpch
more complicated. This, however, is of little consequence
as we are going to use this equation only for rough
order-of-magnitude estimates. Actually, for such esti-
mates any form of the matrix element is suitable (so far as
all the quasimomenta involved are of the order of pF) so
we take the simplest one. What is of importance, though,
are the numerical values of the coefficient a. They are
discussed at the end of this section.

Making use of Eqs. (24) and (10) and integrating over z
[see Eq. (25)] one calculates the current density which is a
sum of two terms:

16(RQO) m
U(p)=

7 KVz(p +pp )
(31)

Apart from po, U depends also on the direction of quasi-
momentum p. The inequality

Pol »A'

permits us to do the p integration in the pole approxima-
tion. The same condition permits us to take all the slow-
ly varying quantities [such as 1(p)] at p =pa. Thus we
are left with the integral

oo dp U(p() )J= . expI~ ~
0
~«I

0
~

0
I

0
—~ 2m i (p —po i A/lo )(p—po+i fi/lo )—

X 1 —exp
4Noo

KUz

3
(1,2) d p —pz x (1,2)

(2rrh)
' m" '

(28)

(32)

1 dx e
n! r 2+i ~"+' (33)

where lo =i(po). Now we expand the exponent and make
use of the identity

In what follows it will be convenient to assume that the
resonant transitions connect the state p —A'k/2 in the
lower band and the state p+fik/2 in the upper one. In
such a case the interband matrix element [Eq. (27)] de-
pends only on quasimomentum p which essentially
simplifies the calculations.

Let us begin with a calculation of the term proportion-
al to k in the parentheses in Eq. (28). The term propor-
tional to 1 in the square brackets cancels the first term in
the expansion of the exponent and does not contribute to
the current. Therefore further on we will discuss only the

where I is a loop encircling the point x =0. As a result,
we get

dx e dp 1

() r 2rri x"+1 c 2ni (p —
po —iQ/io)"

U(p() )
X — . . (34)

(p —pa+i A'/i() )

Here C is a loop around the pole p =pa+i%/lo
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One can easily sum the geometric progression in Eq.
(34). As a result, we get

dx „dp (p p—o) +(fijlo)J= . e"
r 2~ix c 2iri (p —po)i+(g/lo)2+ U'(po)/x

(35)

Let us deform the contour of integration I' into A. The
latter we define in such a way that the pole

p, =po+i+(A!lo) + U(po)/x

would remain within C and

Ipi po~ &&po

Then all the approximations formulated above will be
valid while on the contour b we have

ix i
» U(Po)/Poz .

g'""' is a value of a current for sufficiently small intensi-
ties where the linear approximation is valid.

Calculating the term proportional to p„ in the
parentheses in Eq. (28) we follow the same procedure
and, as a result, get the same condition for the onset of
the nonlinear dependence. However, the value of the nu-
merical coefficient P should be different in this case.

One should also consider a contribution due to expan-
sion of a resonant factor up to the terms linear in gk p.
If one takes this into account an extra factor

U(p() )[(p —
p() )'+ ()ri jlo )']

in Eq. (35) will appear. As a result, there will be two sim-
ple poles at p =po+ifi/lo and at p =p) within contour C.
The sum of the residues in these poles will result in extra
factor in the integrand of Eq. (36),

[1+2+1+U(p())(l()/A') /x ]

Thus

U(p() )1() /)ri" e"
Qx +xU(p )(1 /))i)

(36)

Thus a nonlinear current due to this term will be of the
order of

g (lin)g jg

g =g'""' if U(po)(lo/fi) «1,
g =Pg("")/Qg jg, if U(po)(lo/))'i) »1,

(37)

(38)

where P is a numerical factor of the order of unity. The
critical intensity Q, is determined by the condition

U(p())(lo/)ri) =1 . (39)

Making use of Eq. (31) at v, = v one can get Eq. (2). Here
f

One can see that there are no regions on contour 6
whose contribution would be anomalously big. Inserting
Eq. (36) into Eq. (28) one can check that the skipping
electron trajectories (corresponding to small values of v, )

give virtually no contribution to the current. Therefore

It will be intensity independent. We could not think of a
geometry of the experiment where such a contribution
would be predominant. In other words, it could be
difticult to discern it as compared to the contribution
given by Eq. (38).

Let us now discuss a contribution of a small electron
group moving almost parallel to the surface. For them
the approximations made at the derivation of Eq. (24) are
not valid. To be specific, we assume that the electron
effective mass in the conduction band is anisotropic (like
for the case of the "neck" of the Fermi surface of noble
metals) and its z component is very big. Then one can
neglect the term with the space derivative in Eq. (16). As
a result, one of the equations becomes algebraic and in
the main order in 5/1 one gets

Qo( 1 +7 zr) )exp( Kz )(Fv FrI )

[E'+)„),—)re) —s'"] +(fi /4)(r, '+rz ') +)ri Q()(1+rzr( ')exp( —)(z )
(40)

In the same approximation f"'=0. Equation (40) shows
that the condition for the onset of nonlinear behavior is

4Q()rid((r(+rz) '=1 . (41)

For r(=r2 this condition coincides with Eq. (3). Insert-
ing Eq. (40) into equations for the currents shows that an
electron belonging to a small group makes roughly the
same contribution to the current as an electron with
U, =v. Hence the contribution of the whole small group
into the full current has a small factor of the order of the
phase volume of the group. There are no other small fac-
tors. Thus this contribution is sensitive to much smaller
electric fields.

For ordinary electron groups the critical intensity of
light, Q„ is defined by Eq. (2). For Q «Q, one can use

the results of the linear theory —see Refs. 1 —3. For
Q »Q, we have

(lin)

g=P "i Q (42)
Vg jg.

where P is of the order of 1. Here we wish to emphasize
the point already mentioned in the Introduction. Be-
cause of the essential spatial nonhomogeneity of the elec-
tromagnetic field distribution within the metal (5« 1)

there is an important difference between the nonlinear
theories of photomagnetic current in metals and semicon-
ductors (see Refs. 4—6). It manifests itself in the first
place in the nonlinear parameter y, Eq. (2). The factor
5/I is, in fact, a ratio of the volume where the light is ab-
sorbed within the metal to the volume where the pho-
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tomagnetic current Aows. Let us mention that for the on-
set of nonlinear behavior one usually does not need a very
strong inequality y))1. Indeed, the exponential func-
tion in Eq. (24) rapidly reaches its asymptotical value.
One obtains the nonlinear parameter by equating the ex-
ponent in Eq. (24) to 1 for some typical value of U, corre-
sponding to the resonance condition

E,p+ gjI %co E,
p

=0(&) (&) (43)

Let us now make estimates of the nonlinearity parame-
ter given by Eq. (2). To do this we should express 0„
through the ac field within the metal, with regard of the
electrodynamical boundary conditions. As a result, we
get

87TQ
(44)

For &=3X10 ' sec y becomes of the order of 1 at the
intensity of the order of 50 kW/cm which, incidentally is
much smaller than the intensities used for the second har-
monic generation (see, for instance, Ref. 14).

The estimates look entirely different for small groups
of electrons. For this case we assume ~=10 " sec.
Then y, is of the order of unity for Q = 10 W/cm~.

Let us give an estimate for the surface current density
g for the light intensities of the order of Q, for normal
electron groups. The simplest way to do this is to use the
fact that at the edge of applicability of the linear theory
where Q =Q, the linear theory should still give a correct
order-of-magnitude estimate. Then we arrive at a con-
clusion that for the data given above for copper the sur-
face current density, g, should be of the order of 100
A/cm.

Finally, let us make estimates of the local heating of
the metal surface by the adsorbed light. To do this, let us
assume that all the intensity of the absorbed light turns
into the heat which is removed from the surface by an or-
dinary heat conduction. We also assume that the heat
conductivity is related to the conductivity cr by the
Wiedemann-Franz law. As a result, we get

I V TI 3e'Q
~'/ef T'o

For cr=10' 0 'cm ', T=4 K we have ~VT~/T= 1

cm '. This estimate seems to be acceptable for any
reasonable rate of laser pulse repetition.

Again having in mind the case of copper, we have taken
the value of ~e~ for %co=2.4 eV equal to 5 (see Ref. 9).
The main difhculty for an estimate of y is in the value of
the matrix element Pz&. In copper within the frequency
interval we are interested in it is determined by the tran-
sitions between the well localized d states and conduction
band. We assume it to be about 2pz, this value is in a
reasonable correspondence with the experimental data "
on copper. Then one can present the parameter of non-
linearity in the form

2

y=4IEI'
2m Am

' I

VI. CONCLUSION

In the Introduction we mentioned two main sources of
photomagnetism, i.e., the photoinduced surface current
and the photoinduced bulk current. In the present paper
we investigated the nonlinear behavior of the current of
the first type. According to theoretical considerations,
the bulk current should behave basically in the same way.
However, the photomagnetism associated with it, as well
as its nonlinear part, should be much bigger —see Ref. 3.
The linear photomagnetism associated with the bulk
current has been recently investigated by one of the au-
thors. ' Investigation of the nonlinear photomagnetism in
various metals and under various conditions (crystal sur-
face orientation, light polarization direction, temperature
interval, impurity contents, etc.) can be of considerable
interest for several reasons.

First, this is a way to study properties of a system of
electrons highly excited within conduction bands as well
as modes of relaxation of these electrons. Some processes
that are not typical for a more usual situation of electrons
slightly displaced from the equilibrium can be of much
more importance for the electrons highly above the Fer-
mi level and the holes well below it. Among these one
can name in the first place the electron-electron col-
lisions. Their investigation may provide a lot of useful in-
formation in the future.

Second, this is a powerful way to study interaction of
the electrons with the light. It should prove very in-
teresting to investigate this phenomenon together with
the intensity dependence of light refIection and absorp-
tion.

Third, this could provide a way to study various as-
pects of interaction of conduction electrons with the sur-
face of a metal. Again this effect can provide a unique
possibility to investigate this for high energy electrons.

In summary, we have worked out a theory of the non-
linear photomagnetic response. The theory predicts the
dependence for the threshold intensity for the onset of
the nonlinear behavior Q, on the matrix element of the
interband transition induced by light, the quasimomenta
of the electrons taking part in these transitions, electron
effective masses in both bands, electron mean free paths,
and the penetration depth of the light. For Q ))Q, the
theory predicts a Q'~ dependence of the photomagnetic
response.
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