
PHYSICAL REVIEW B VOLUME 52, NUMBER 3 15 JULY 1995-I

Dynamic-sealing exponents and the ronghening kinetics of gold electrodeposits
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The kinetics of gold electrodeposit roughening was studied at the nanometer level by scanning tunnel-

ing microscopy (STM) and by using dynamic-scaling theory. Gold electrodeposits were grown at 100 nm

s from the electroreduction of hydrous gold oxide layers. The following dynamic-scaling exponents
were obtained: a(I) =0.90+0.06 and P(I)=0.31+0.08 for L, &L„,and ct(II) =0.49+0.05 and

P(II) =0.51+0.08 for L, )L„,where L, is the scale length, and L„is a critical length closely related to
the average grain size of the electrodeposit measured from STM imaging. Results from dynamic-scaling
analysis are consistent with a grain surface smoothing mechanism involving surface di6'usion of gold
atoms.

INTRODUCTION

1/2
g(L, (h ) ) = 1/N g[h (x;)—(h ) ] (2)

and h (x; ) is the deposit height measured along the x
direction at the point x;, where f(x)= ( h ) /L ', with
z =a/P, P and a being the dynamic and static growth ex-
ponents, respectively. Furthermore, f (x) has the follow-
ing properties: f (x)=const for x ~~, and f (x)=x~ for
x~0. Equation (1) comprises two limiting situations,
namely

g((h )) ~ (h )~

for (h)~0, and

g(L) ~L

(3)

(4)

for (h)~~.
Nonequilibrium growth conditions can be produced

Aggregation processes involved in the growth of a solid
phase on a foreign Hat solid substrate play a key role in
the dynamics and stability of interfaces. In general, the
phase growth kinetics can be followed by means of the
dynamic-scaling theory applied to surface profiles on
different time scales. ' Thus, for a surface profile of length

consisting of X points, the theory predicts that
g(L, ( h ) ), the interface width, and ( h ), the average
profile thickness or height, scale as'

g(L, (h )) ~L f(x),
where g(L, ( h ) ) is defined by

mainly under the influence of local effects such as sto-
chastic noise, site-dependent growth, and surface relaxa-
tion. Growth models such as the Eden, ballistic deposi-
tion, and restricted solid-on-solid including this type of
contribution result in an object with a nonfractal mass
and a self-affine fractal surface. These models can be suc-
cessfully described by the Kardar, Parisi, and Zhang
(KPZ) equation for interface motion which leads to
P=0.25 and a=0.4 in 3d growth, and a+z =2 in all di-
mensions. Otherwise, those models incorporating surface
difFusion lead to either a=1.0 and P=0.25 (Ref. 6) or
a =0.66 and P=0.20, fulfilling the linear surface
diffusion equation prediction z =4.

Nonequilibrium growth conditions are also influenced
by nonlocal effects such as those resulting from a Lapla-
cian field. The object grown under these conditions in-
volves either a mass and a surface fractal, as is the case of
those objects formed by diffusion-limited aggregation and
dendritic growth, or a surface fractal as is the case of
dense radial patterns. In this case deposition occurs at
protrusions because of Mullins-Sekerka instabilities.

Metal electrodeposition under nonequilibrium condi-
tions has been taken as a modeel system for the develop-
ment of complex structures under the inhuence of local
and nonlocal effects. For this type of process at low
growth rates, growth should be dominated by local effects
leading to a deposit with a nonfractal mass and a self-
affine fractal surface obeying Eq. (1). ' In contrast, the
interface of 2d and 3d metal electrodeposits is character-
ized by a and P values which are far from those predicted
by the KPZ equation. " A qualitative interpretation of
this discrepancy was given in terms of nonlocal contribu-

0163-1829/95/52(3)/2032(6)/$06. 00 52 2032 Oc199S The American Physical Society



52 DYNAMIC-SCALING EXPONENTS AND THE ROUGHENING. . . 2033

tions to the interface growth, " and therefore further
work on the matter is clearly justified.

This work reports data on the kinetics of roughening
during the formation of gold electrodeposits under non-
equilibrium conditions, followed by scanning tunneling
microscopy (STM) imaging. For this purpose the dynam-
ic scaling theory is applied to the analysis of STM surface
profiles. Data reveal two different surface behaviors with
scale-length-dependent roughness exponents. For scale
lengths smaller than the average grain size of the deposit
(L (L„),the kinetics is definitely dominated by local
effects, and the characteristic roughness growth ex-
ponents are close to those expected for growth models in-
corporating surface diffusion. On the other hand, for
I & I.„,the object growth kinetics appears to be
influenced mainly by nonlocal effects.

60nm~
EXPERIMENT

Gold overlayer s were electrodeposited on gold
cathodes at a rate U —= 100 nm s ' in 0.5-M aqueous sul-
phuric acid from the electroreduction of hydrous gold ox-
ide layers previously accumulated in the same solution by
gold substrate electro-oxidation at 2.5 V vs the reversible
hydrogen electrode (RHE) at T=298 K. Details about
gold film preparation procedure have been reported else-
where. ' Gold overlayers exhibited a rough surface and a
porous mass with a uniform apparent density which was
close to that of gold oxide. ' The value of (h ), the aver-
age gold overlayer thickness, was directly proportional to
q, the electrodeposited charge density. The value of q
was referred to the geometric substrate area. ' Accord-
ingly,

60 nm
(h ) =Mq/zFp,

where M and p are the molecular weight and density of
the gold oxide overlayer, and zF is the charge per mole of
gold oxide. The value of (h ) was estimated from Eq. (5),
using M=440 gr mol ', p=11 gr cm, z=6, and mea-
sured q values. ' By changing q the value of (h ) could
be changed between 10 and 12000 nm.

The surface morphology of gold electrodeposits was
determined with a Nanoscope III STM operating in air
using the same working conditions already reported.
STM data were stored as digitized images with 512 X 512
pixels, and were analyzed after fitting the instrument
plane and applying a subtracting procedure. '

60 nm

FIG. 1. Constant current (1000X 1000 nm ) 3d STM images
of gold electrodeposits grown at v =—100 nm s ' on gold at
T=298 K. (a) (h ) =35 nm, (b) (h ) =175 nm, (c) (h) =318
nm, and (d) (h ) =406 nm. The bar indicates 60 nm in the z
direction.
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RESULTS AND DISCUSSION

STM images of surfaces of gold overlayers in the range
100 nm & (h ) &12000 nm [Figs. 1(a)—1(d)j reveal the
rounded top of columns forming the deposit structure.
As (h ) increases, the surface becomes rougher owing to

the stronger competition between growing columns [Fig.
2(a)], leading to a fluctuating growing deposit profile re-
sulting from the columnar height difFerences. For each
value of ( h ), the value of d„the average columnar size,
was obtained by measuring d, the size of each column tip,
from top-view zoom images in which the column tips are

&s (iv)

375

x(nm)

750

FIG. 2. (a) Typical 750-nm
STM scans of gold electrodepo-
sits with different values of (h ).
(i) (h) =20 nm, (ii) (h ) =60
nm, (iii) (h ) =175 nm, and
(iu) (h ) =406 nm. (b) Zoom
image cross section illustrating
the procedure used for grain size
evaluation. (c) log &0d, vs
log, o(h ) plot.
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FIG. 3. gsrM vs (h ) plot.

clearly defined [Fig. 2(b)]. Accordingly,

d, =(1/N)gd, (6)

where X is the number of columns observed in the STM
image. For this purpose the STM software was used.
Thus it is found that d, increases as d, 0- (h )'~' with
1/z=0. 34+0.06 [Fig. 2(c)]. The value of gsTM(L„(h ) ),
the interface width measured from the STM images in
the x direction, increases with (h ) up to 600 nm, and
then it reaches a saturation region for ( h ) )800 nm (Fig.
3).

The single-image dynamic-scaling method ' was used
to derive reliable values of a. In this method for a film in
the saturation roughness regime, a can be evaluated from
the equation

kSTM(L, (» ) "L. (7)
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FICx. 4. log&ogsrM vs log&OL, plot from gold electrodeposits
grown at v —= 100 nms ' and T=298 K. Saturation roughness
regime, ( h ) =886 nm.

where L, is the length of a segment of the STM scan of
size S measured in the fast scan direction (x). For each
scan 490 pairs of data points (L„gsTM) have been ob-
tained, L, being varied from S/128 to 0.96S. Finally, for

each L, the corresponding gsTM value represents the
average value resulting from 512 scans of the same image.

The log, ogsTM vs log&OL, plots from STM images of a
gold deposit with (h ) =886 nm (Fig. 4) exhibit two
linear regions with slopes a(I) =0.88+0.02 and
a(II) =0.56+0.02, and a crossing point at
log&OL„=1.75. Although the value of L„increases as
(h ) increases, a(I) and a(II) values remain nearly con-
stant with (h ). Values of a(I) and a(II) averaged from
15 different STM images for each value of ( h ), and
values of (h ) in the range 600 nm & (h ) & 12000 nm,
are (a(I)) =0.90+0.07 and (a(II)) =0 49+. 0 07.

The physical origin of the two regions in the log&ogsTM
vs log&OL, plots can be assigned to different domains in
the columnar structure which are revealed by changing
the scale length, i.e., the microscope resolution. The first
domain, which is restricted to a scale length in the order
of the column size, corresponds to scaling properties at
single-column surfaces. The second domain which ap-
pears at scale lengths larger than the average columnar
size, can be related to column height Auctuations. This
interpretation can be supported by scaling computer-
simulated surfaces resulting from an ensemble of columns
fiuctuating in height with known values of a, [Figs.
5(a) —5(b)]. The surface of each column is represented by
a smooth rounded cusp of diameter d, . For this surface
model the log, g vs log&OL plots exhibit one or two linear
regions depending on the L /d, ratio. For L /d, ))1 [low
resolution limit, Fig. 5(a)] only one region with slope a, is
observed [Fig. 5(c), plot A]. Otherwise, for L/d, &20
[Fig. 5(b)] two linear regions with a~ 1 for L &d„and
a=a, for L, )d, are observed [Fig. 5(c), plots B]. In ad-
dition, for a given L, the value of L„increases as d, is in-
creased [Fig. 5(d), plots B and C]. Finally, for L/d, ~ 1

(high resolution limit), only the region with a=-1 results
from the log, og vs log, oL plots. Note that a=-1 is con-
sistent with a smooth rounded cusp surface.

On the other hand, according to Eq. (3), the value of P
can be obtained from ( gsTM(L, ) ) and ( h ) data for
(h ) &L, . Thus, the log, ogsTM vs log, o(h ) plots from 15
STM images for each (h) covering the same range of
(h ) mentioned above lead to straight lines (Fig. 6) with
L,-dependent slopes (P). Accordingly, for ( h ) &L„
average values of (P) converge to (13(II))=0.51+0.08
(Fig. 7). Unfortunately, no reliable value of (P(I) ) could
be derived from these plots, as values of (h ) are either
close to or greater than d, —=L„.Nevertheless, this prob-
lem can be circumvented by estimating (P(I) ) from the
d, ~ (h )'~' relationship, " as the values of z and a(I)
are known. Hence, for I/z-=0. 34+0.06 [Fig. 2(a)] and
(a(I) ) =0.90+0.07 it results in (P(I) ) =0.31+0.08.
These values of a(I) and P(I) explain why P~ (P(I) ) for
log, oL, ~1.2, as the condition h &&L' is fulfilled in the
entire range of ( h ) .

It should be noted that, for computer-simulated frac-
tals, data covering four to five orders of magnitude are re-
quired for logarithmic fitting. For experimental systems,
however, this goal is less ambitious owing to the existence
of inner and outer cutoffs. Then, log, gsTM vs log, oL,
linear plots covering at least one order of magnitude or
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FIG. 5. 3D images of computer-simulated surfaces consisting of fluctuating height columns with a, =0.4 and d, =24.2 nm as de-
scribed in the text: (a) 9680X 9680 nm, L /d, =400 » 1; (b) 483.4 X 483.4 nm, L/d, =20; and (c) log, og vs log, oL plots resulting from
the scaling of simulated surfaces, with plot 3 ( ):L =9680 nm, d, =24.2 nm, and L/d, =400; and plot 8 (6): L =483.4 nm,
d, =24.2 nm, and L/d, =20. (d) log, g vs log, oL plots resulting from the scaling of simulated surfaces, with plot 8 (6 ): L =483.4
nm, d, =24. 2 nm, and L /d, =20; plot C ( o ): L =483.4 nm, d, = 120.9 nm, and L /d, =4.

thereabouts can be considered as acceptable. ' '
The dynamic-scaling theory applied to STM data re-

veals two distinguishable behaviors for the gold overlayer
surfaces with specific sets of scale-length-dependent
roughness exponents. Thus, for L &d„a(I)=0.9 and
P(I)=0.3, whereas for L & d, a(II) =0.5 and P(II) =0.5.

1.0

Similar domain-size-dependent scaling growth exponents
have been measured for vapor-deposited gold films grown
on smooth glass at U =0. 1 nm s and 298 K. In this
case, it resulted in a(I) =0.9 and p(I) =0.25, and
a(II)=0.4 and p(II)=0.4 for length scales smaller and
larger than the average grain size of the deposit, respec-
tively.

In both cases, for L, &d„values of a(I) and p(I) are
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FIG. 6. log, ogsTM vs log, o(h ) plots at difFerent values of L,
for gold electrodeposits with (h ) &500 nm, grown at V =100
nm s ' and T=298 K. (O ) L, =35 nm; (4 ) L, =398 nm.
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close to those predicted by the growth model incorporat-
ing surface diffusion proposed in Ref. 6, suggesting that
local effects prevail for L, ~ d, . In this case, the condition
z =—4 is fu1611ed, as expected for the linear surface
diffusion equation. ' Otherwise, for L )d„u+z-=1.5, a
6gure smaller than 2, as is predicted by the KPZ motion
equation. In fact, the value P=O. 5 reported in this work
is much greater than P=0.25, resulting from the theory
and in agreement with experimental data resulting from
other systems. "' This difference in the values of P can
be accounted for by considering a major contribution of
Laplacian fields during gold overlayer electrochemical
growth.

In conclusion, based on the analysis of STM images we
have demonstrated that there are local and nonlocal
effects in the process of roughness development, their rel-
ative contributions depending on the yardstick length
used for scaling the object.
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