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A hydrodynamic model has been used to calculate the coupling between surface-polariton and
edge-plasmon excitations in coupled finite half-plane superlattices. The numerical calculation finds
the condition under which the surface-polariton mode can exist and be free from Landau damping.
The strong coupling between two half-plane superlattices can destroy the surface-polariton mode
and soften the edge-plasmon mode at the same time. The phase diagram separating the charge-
density-wave ground state and Fermi-liquid ground state is displayed. The reduction in the number
of electron layers in finite superlattices can suppress the softening of edge-plasmon mode.

The plasmon excitation of two-dimensional (2D) elec-
tron gases has received a lot of attention both theoreti-
cally and experimentally. The edge-magnetoplasmon ex-
citation, which exists only close to the boundary of the
2D electron fluid, has been predicted.}’? The frequency
of this edge mode varies inversely with the magnetic field
as the field becomes strong. The research on the super-
lattice surface plasmon-polariton modes have been re-
viewed by Albuquerque and Cottam? (also see references
therein). In their paper, surface plasmon-polariton ex-
citations at zero and finite magnetic fields in superlat-
tices with semi-infinite or finite numbers of layers were
studied.3™®

Recently, edge-plasmon excitations on a lateral surface
of an infinite half-plane superlattice and on two coupled
half planes have been studied.®” These excitations are of
great interest because they are free from Landau damping
and might be useful in surface-wave devices.

The model considered contains two coupled finite half-
plane semiconductor superlattices, which are embedded
in a background with different dielectric constant. This
arrangement supports the surface-polariton excitation
near surfaces between superlattices and background.® For
simplicity, I assume that periodic arrays of 2D electron-
fluid layers are placed in the z direction. The electron-
fluid layers occupy the spaces z < 0 and = > a of dis-
tance a separated by a barrier layer. The existence of
two lateral surfaces (edges) of half-plane superlattices
will support the coupled edge-plasmon modes in the re-
gions around edges.® The coupled edge-plasmon modes
are greatly softened as the edge coupling becomes strong.

My main interest includes the strong coupling between
edge-plasmon and surface-polariton modes, the phase di-
agram separating the charge-density-wave ground state
and Fermi-liquid ground state, and the finite-size effect
on the stability of the Fermi-liquid ground state. Let
me consider a rigid positive background with uniform
number density ng and a compressible electron fluid with
number density ng + n. I denote the small fluctuation in
the number density and velocity field inside the plane of
the jth layer by n;(r||,t) and v;(r||,t). The electrostatic
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potential is represented by ¢(r, 2,t), where r|| is a 2D
planar vector. Since the system is translationally invari-
ant in the y direction, a plane-wave form exp(ik,y — iwt)
can be assigned to m;, v;, and ¢ with their amplitudes
depending on z and z. Consequently, the continuity, Eu-
ler, and Poisson equations can be written as

. a jx .
_’Llej + N (%;— + Zky’l)jy> = O 5 (1)

. i _ s? On; e\ 0
—1 (w+ ;) Vjz + (n_o) 3{; (m*) 9z =0 5 (2)
ilos ) oy i (M) ik, () 6=
z(w+T)v]y+zkys (no) zky(m*)qﬁ 0, (3)
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(@ + ‘8;2— - k;) ¢($,Z,ky,w)

4Tre N
= 2185 ny(a,ky )z — 2)
x [0(—z) + 8(z — a)] , (4)

where 0(z) is the step function, N + 1 is the number of
electron-fluid layers situated at z = 0, d,..., Nd in finite
superlattices, d is the superlattice period, €, = 4mepep
with €, denoting the dielectric constant of superlattices,
s is an effective compressional wave speed, and ¢/7 is the
phenomenological damping term.

By doing a Fourier transform in z of Poisson’s equation
in Eq. (4) and making use of the ansatz

n;(ke, ky,w) = 2A(ks, ky, w) cos(g.jd) , (5)
where g,d = 27p/N with p being an integer, I am left
with
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dme S(kaes ky, 4z
¢(km,ky,zj,w) = — . K(kz,ky,qz)A(kw,ky,UJ) 5 (6) K(ka:,kyvql) = (—2-kll‘|’—q) s (7)
which is independent of z;. Here, the spectral kernel
K (kz, ky, g.) is found to be with k)| = ,/kZ + k2, and
|

S(kzyky,q2) =

cosh(kyd) — cos(g.d)
o1k, a=) + az(ky), ¢:){[Q + QF exp(—ky Nd)]/[1 — Q? exp(—2k Nd)]}

8
2 [cosh(k)|d) — cos(q.d)] ®

where Q = (e, — €1)/(€p + €1) with €; being the dielectric constant of background, and
a1(kyj,qz) = [1 + exp(—k; Nd)] [exp(—k) d) — cos(q.d)] , (9)
az(k||,qz) = a1(k||,g:) exp(—kNd) + [1 + exp(—kj Nd)] [exp(k)d) — cos(g.d)] . (10)

By approximating the spectral kernel in Eq. (7) to be a localized one,? which has the same first two terms in a
power series about k2 = 0 and is found to work well in similar cases,®"? I get

kyf(ky,qz)

K(kz,ky,q.) = K, keyky,q.) = ) 11
( Yy ) 0( Yy ) 2k§ + k%g(ky,qz) ( )
where f(ky,q.) = S(ks = 0,ky,q.), and
k O0f(ky,q:)
ky,q;)=1-— L ] [ Y . 12
g( Y q ) [f(ky,qz) aky ( )

In Eq. (11), g(ky,q.) > 0 characterizes the screening correction to edge plasmons. The inverse Fourier transform in &,
of the equation containing Ko(kz, ky,q:) in Eq. (6) gives the approximate kernel in x, and then the Poisson equation
in Eq. (4) is reduced to a localized one:

£2_ - ———~——2k32’ z, 2 w) = dmeky [ f(ky,q:) 3 n;(x w)[0(—z zT—a
[aﬁ g(kw‘Iz)jl(ﬁ( Fokyw) = = [g(ky,qz)]jgg 1@ by ) P(=2) + 8z = a)] - (13)

In the following, I set 7 — oo for simplicity. I also take the long-wavelength limit and let s = 0. The remaining
steps” include using the boundary conditions that ¢ and O0¢/Ox are continuous and that v, vanishes there, together
with the proper boundary behavior as |z| — co. This yields

[F(ky’qz’wz)]z — 2T (ky, q.) coth {V [z/g(kya‘h)]kya'} F(ky’qz’wz) + [T'(ky, qZ)]z =0, (14)

where

F(ky, 42, 0%) = [D(ky, g5, )] [C(ky,qz,uﬂ) /2 9(0pra2) ] , (15)

T(ky,q:) = 2“’:,, [%] vV 2/9(ky,qz) , (16)

[D(ky, 4z, w?)]? = 202, [%] —u?, (17)

2{wi, (£ (ky: )/ 9(ky, )] = [w?/g(ky, 22)]}

[C(ky, gz, w?)]? = [D(ky, 4z, 0?2 ’

(18)

where w,zcy = (2me’no/e,m*)k, is the 2D plasma frequency. [C(ky,g.,w?)]?> > 0 and [D(ky,q:,w?)]? > 0 from the
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requirement for the existence of edge-plasmon mode.”
The analytical solutions to Eq. (14) is obtained as

4wi, (£ (ky, 4:)/9(ky, g:)] coth®[kya//2g(ky, ¢2)]
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f(kyaQZ)] N

wi(kyv‘h) = 2“’:,, [g(ky,qz)

2 — g(ky,q:) — 4cothlkya/\/2g(ky,q.) ]

4“12‘, [f(ky’ QZ)/g(ky, q:)] tanhz[kya/\/ 2g(kya q:)]

’

w2 (ky, 42) = 2w [f (ky,qz)]

g(ky: ‘12)

and w?(ky,q.) = O defines the critical aspect ratio
(a/d).° The mode splitting is due to the coupling be-
tween two edges when a is finite. From solutions in
Egs. (19) and (20), it is easy to find the results in several
limiting cases.

(1) When a — o0, I obtain the result for an uncoupled
finite half-plane superlattice

o? = [72
2+ g(ky,q2)

(2) For a — 0, I have the result for a finite complete
superlattice by setting g(ky,q.) = 2,

] “):yf(kyaqz) .

w? = Wl f(ky,d.) s

from which the critical wave vector kj, for the existence
of Landau-damping-free surface-plasmon mode in a semi-
infinite complete superlattice (N — oo) is estimated as
kyd = —In|Q)|.

(3) As d — oo, I find f(ky,q.) — 1 and g(ky,q.) —
1. This reduces to the problem of electron gases in two
coupled half planes.

(4) If I first let N — oo and then take d — 0,
I get w;‘:yf(ky,qz) = (14 Q)Q2/2 and g(ky,q.) — 2
for two coupled semi-infinite half-bulks, where sz, =
(4me®ng/esm*d) is the 3D plasma frequency.

~

FIG. 1. The excitation energies (w/€,)? as a function
of wave vector kyd for surface-polariton and edge-plasmon
modes. The parameters used in the calculation are €, = 13.0,
€1 = 3.25, N = 15, and a/d = 0.6. The solid line is for the en-
ergy of the surface-polariton mode, while the shaded regions
are for the excitation of edge-plasmon modes.

2 — g(ky,q.) — 4tanh[kya/+/2g(ky, q.)] ’

Figure 1 shows the dispersion of strongly coupled
surface-polariton modes (solid line) as a function of k,d
when a/d = 0.6. Two shaded regions are for coupled
edge-plasmon excitations. The surface-polariton modes
are free from Landau damping if their energies lie outside
of these shaded regions. There is only a small range of
kyd inside the gap of edge-plasmon excitation energies,
where one of surface-polariton modes at ¢,d = 7 can
exist. The strong coupling between two edges of finite
half-plane superlattices greatly suppresses the surface-
polariton excitation in this case.

I display in Fig. 2 the k,d dispersion of surface-
polariton modes (solid lines) in the medium coupling
regime (a/d = 1.0). The decrease of the edge coupling
between two finite half-plane superlattices slightly fa-
vors the existence of another surface-polariton mode at
g-d = 7 inside the gap of edge-plasmon excitation en-
ergies. The edge-plasmon gap becomes narrower due to
smaller edge coupling. The edge-plasmon excitations are
seen more localized as k,d > 1.

When the edge coupling between two finite half-plane
superlattices is further reduced (a/d = 2.0), I find in Fig.
3 that the coupled surface-polariton modes at ¢,d = 0 are
developed and free from Landau damping in a large range
of kyd. The favored surface-polariton modes change from
ones at g.d = 7 to those at ¢g,d = 0. Two edge-plasmon
modes at ¢,d = m only show invisible difference in their
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FIG. 2. The excitation energies (w/f,)? as a function
of wave vector kyd for surface-polariton and edge-plasmon
modes. The parameters used in the calculation are the same
as those in Fig. 1 except that a/d = 1.0. The solid lines are
for the energies of surface-polariton modes, while the shaded

regions are for the excitation of edge-plasmon modes.
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FIG. 3. The excitation energies (w/Q,)? as a function
of wave vector kyd for surface-polariton and edge-plasmon
modes. The parameters used in the calculation are the same
as those in Fig. 1 except that a/d = 2.0. The solid lines are
for the energies of surface-polariton modes, while the shaded
regions are for the excitation of edge-plasmon modes.

energies. Both the edge-plasmon and surface-polariton
modes become quite localized when kyd > 1. Comparing
Figs. 1-3, I can see the instability of Fermi-liquid ground
state when the energy of the edge-plasmon mode at q,d =
0 first touches zero from large values to small values of
kyd. This defines the critical aspect ratio (a/d)., which
separates the charge-density-wave ground state and the
Fermi-liquid ground state.

To show the finite-size effect on the softening of cou-
pled edge-plasmon modes, I present in Fig. 4 the crit-
ical aspect ratio (a/d). as a function of the number of
electron-fluid layers N in two coupled finite half-plane
superlattices. When k,d = 2.0 (right scale, dashed line),
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FIG. 4. The critical aspect ratio (a/d). as a function of
the number of electron-fluid layers N for two values of kyd.
The parameters used in the calculation are e, = 13.0 and
€1 = 3.25. The solid line (left scale) is for kyd = 0.5, and the
dashed line (right scale) is for k,d = 2.0.
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FIG. 5. The critical aspect ratio (a/d). as a function of
wave vector kyd for two values of N. The parameters used in
the calculation are €, = 13.0 and €¢; = 3.25. Above the curve
is the phase of the Fermi-liquid ground state, and below the
curve is the phase of the charge-density-wave ground state.
The solid line (left scale) is for N = 10, and the dashed line
(right scale) is for N = 2.

(a/d). decreases rapidly with N and becomes indepen-
dent of N when N > 6. This implies that the edge-
plasmon excitation becomes very localized for large val-
ues of kyd. The whole (a/d). curve is pushed up when
kyd = 0.5 (left scale, solid line). In this case, (a/d). de-
creases smoothly with IV in the whole range displayed
because the edge-plasmon excitation is quite extended
for small values of k,d.

Finally, I show the phase diagrams of (a/d). as a func-
tion of k,d for two values of N in Fig. 5. The (a/d). curve
separates two phases of the charge-density-wave ground
state (below the curve) and Fermi-liquid ground state
(above the curve). When N = 10 (left scale, solid line),
the value of (a/d). is very small, ranging from 0.5 to
2.5. This means that a slightly strong edge coupling be-
tween two finite half-plane superlattices can destroy the
stability of Fermi-liquid ground state and switch to the
charge-density-wave ground state due to gapless excita-
tions. When N = 2 (right scale, dashed line), the (a/d).
value is greatly increased ranging from 2.0 to 8.0. From
this I know that the increase in the number of electron-
fluid layers in two coupled finite half-plane superlattices
can enhance the coupling between the edges, and then
soften the edge-plasmon modes more easily.

In conclusion, by using a hydrodynamic model I study
the coupling between the surface-polariton and edge-
plasmon excitations in two coupled finite half-plane su-
perlattices. From it I find the condition for the exis-
tence of Landau-damping-free surface-polariton modes. I
also show the phase diagram between the charge-density-
wave ground state and Fermi-liquid ground state. The
decrease in the number of electron-fluid layers in finite
superlattices is found to suppress the softening of edge-
plasmon modes.
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