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Coupling between surface-polariton and edge-plasmon excitations
in coupled finite half-plane superlattices
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A hydrodynamic model has been used to calculate the coupling between surface-polariton and
edge-plasmon excitations in coupled finite half-plane superlattices. The numerical calculation finds
the condition under which the surface-polariton mode can exist and be free from Landau damping.
The strong coupling between two half-plane superlattices can destroy the surface-polariton mode
and soften the edge-plasmon mode at the same time. The phase diagram separating the charge-
density-wave ground state and Fermi-liquid ground state is displayed. The reduction in the number
of electron layers in 6nite superlattices can suppress the softening of edge-plasmon mode.

The plasmon excitation of two-dimensional (2D) elec-
tron gases has received a lot of attention both theoreti-
cally and experimentally. The edge-magnetoplasmon ex-
citation, which exists only close to the boundary of the
2D electron fluid, has been predicted. ' The kequency
of this edge mode varies inversely with the magnetic field
as the Geld becomes strong. The research on the super-
lattice surface plasmon-polariton modes have been re-
viewed by Albuquerque and Cottam (also see references
therein). In their paper, surface plasmon-polariton ex-
citations at zero and finite magnetic fields in superlat-
tices with semi-infinite or finite numbers of layers were
studied.

Recently, edge-plasmon excitations on a lateral surface
of an inGnite half-plane superlattice and on two coupled
half planes have been studied. ' These excitations are of
great interest because they are &ee from Landau damping
and might be useful in surface-wave devices.

The model considered contains two coupled finite half-
plane semiconductor superlattices, which are embedded
in a background with different dielectric constant. This
arrangement supports the surface-polariton excitation
near surfaces between superlattices and background. For
simplicity, I assume that periodic arrays of 2D electron-
Quid layers are placed in the z direction. The electron-
Quid layers occupy the spaces x & 0 and x ) a of dis-
tance a separated by a barrier layer. The existence of
two lateral surfaces (edges) of half-plane superlattices
will support the coupled edge-plasmon modes in the re-
gions around edges. The coupled edge-plasmon modes
are greatly softened as the edge coupling becomes strong.

My main interest includes the strong coupling between
edge-plasmon and surface-polariton modes, the phase di-
agram separating the charge-density-wave ground state
and Fermi-liquid ground state, and the finite-size effect
on the stability of the Fermi-liquid ground state. Let
me consider a rigid positive background with uniform
number density no and a compressible electron fluid with
number density no + n. I denote the small Quctuation in
the number density and velocity Geld inside the plane of
the jth layer by n~(r~~, t) and vs(r~~, t). The electrostatic

potential is represented by P(r~i, z, t), where r~~ is a 2D
planar vector. Since the system is translationally invari-
ant in the y direction, a plane-wave form exp(ik„y —iut)
can be assigned to n~ , v~, and P. with their amplitudes
depending on x and z. Consequently, the continuity, Eu-
ler, and Poisson equations can be written as
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where 0(z) is the step function, K + 1 is the number of
electron-Quid layers situated at z = 0, d, . . . , Nd in Gnite
superlattices, d is the superlattice period, e, = 4vreoeg
with e~ denoting the dielectric constant of superlattices,
s is an effective compressional wave speed, and i/r is the
phenomenological damping term.

By doing a Fourier transform in 2; of Poisson's equation
in Eq. (4) and making use of the ansatz

n,.(k, k„, (u) = 2A(k, k„,~) cos(q, jd), (5)

where q d = 2upilV with p being an integer, I am left
with

0163-1829/95/52(3)/2020(5)/$06. 00 52 2020 1995 The American Physical Society



52 COUPLING BETWEEN SURFACE-POLARITON AND EDGE-. . . 2021

P(k, ky, z~, a)) =—
s

K(k, ky, q, )A(k, ky, ur), S(k, ky, q, )K
II

(7)

which is independent of z~. Here, the spectral kernel
K(k~, ky, q, ) is found to be with k)

~

—— k2 + k2, and

sinh(k
I I
d)

aq(k~~, q, ) + a2(k~~, q, )([Q + Q exp( —k~~Nd)]/[1 —Q exp( —2k[~Nd)])
2 [cosh(k~~d) —.o.(q, d)

where Q = (6[, —ey)/(es + Ey) w'ith eq being the dielectric constant of background, and

ai(k~~, q, ) = 1+exp( —k~~Nd) exp( —k~~d) —cos(q, d)

az(k((, q, ) = a) (k((, q, ) exp( —k((Nd) + 1+exp( —k((Nd) exp(k()d) —cos(q, d) j (io)

By approximating the spectral kernel in Eq. (7) to be a localized one, which has the same first two terms in a
power series about k = 0 and is found to work well in similar cases, ' ' I get

K(k, k„,q, ) = K()(k, k„,q, ) =

where f (k„,q, ) = S(k = 0, k„,q, ), and

g(k„, q, ) = 1— ky

f(ky q. )

Bf(ky, q, )
Bky

In Eq. (11),g(k„, q, ) ) 0 characterizes the screening correction to edge plasmons. The inverse Pourier transform in k
of the equation containing Ko(k, k„,q, ) in Eq. (6) gives the approximate kernel in x, and then the Poisson equation
in Eq. (4) is reduced to a localized one:

4~eky f (ky, q, ) ) n, (x, k„, (u) [8(-x) + 8(x —a)] .
Ez g kyt qz

In the following, I set ~ ~ oo for simplicity. I also take the long-wavelength limit and let 8 = 0. The rem. aining
steps include using the boundary conditions that P and 0$/(9x are continuous and that v vanishes there, together
with the proper boundary behavior as ~x~ m oo. This yields

[k (k„,q. , ra')]' —qT(k„, q, ) cath ( [q/q(k„, q, )]k„a)k (kc, q. , rc') + [T(k„,q, )]*= tt,

where

(14)

F(ky, q, (v ) = [D(ky, q, (u )] C(ky, q, cu )+ 2/g(ky, q )

T(ky, q, ) = 2~„ f(ky q. )
g ky, qz

2/g(ky, q, ),

[D(k„,q„~')]' = 2u)'„
g kyt qz).

(18)

where u& ——(2vre no/e, m*)ky is the 2D plasma frequency. [C(k„,q„w )]2 ) 0 and [D(ky, q„w2)]2 ) 0 &om the
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requirement for the existence of edge-plasmon mode.
The analytical solutions to Eq. (14) is obtained as

f(k q. ) 4~i [f("w q. )/g(ky q. )] coth'[kwn//2g(k„q. )]
g(kyi qz) 2 —g(ky, q, ) —4coth[kya//2g(ky, q, ) ]

f(k„q.) ~w, „[f(kw q-)lg(kw q-)] tanh [k,~/+2g(k„, q. )]u)'(ky, q, ) = 2ur„'
g(kw q ) 2 —g(kw„i q, ) —4tanh[k„a/+2g(ky, q, )]

(20)

and u+(k„, q, ) = 0 defines the critical aspect ratio
{a/d), . The mode splitting is due to the coupling be-
tween two edges when a is Gnite. From solutions in
Eqs. (19) and (20), it is easy to find the results in several
limiting cases.

(1) When a —+ oo, I obtain the result for an uncoupled
finite half-plane superlattice

2

2+ g(k„, )

(2) For a —+ 0, I have the result for a finite complete
superlattice by setting g(k„, q, ) = 2,

= (u„ f(ky, q ),
from which the critical wave vector k„* for the existence
of Landau-damping-free surface-plasmon mode in a semi-
infinite complete superlattice (N —+ co) is estimated as
k„*d = —ln

f Q f.

(3) As d i oo, I find f(k„,q, ) ~ 1 and g(k„, q, ) ~
1. This reduces to the problem of electron gases in two
coupled half planes.

(4) If I first let N ~ oo and then take d —+ 0,
I get w& f (kw, q, ) + (1 + Q)B„/2 and g(k„, q, ) ~ 2

for two coupled semi-infinite half-bulks, where 0„
(4vre2no/e, m'd) is the 3D plasma frequency.

Figure 1 shows the dispersion of strongly coupled
surface-polariton modes {solid line) as a function of k„d
when 0,/d = 0.6. Two shaded regions are for coupled
edge-plasmon excitations. The surface-polariton modes
are free kom Landau damping if their energies lie outside
of these shaded regions. There is only a small range of
k„d inside the gap of edge-plasmon excitation energies,
where one of surface-polariton modes at q, d = vr can
exist. The strong coupling between two edges of finite
half-plane superlattices greatly suppresses the surface-
polariton excitation in this case.

I display in Fig. 2 the k„d dispersion of surface-
polariton modes (solid lines) in the medium coupling
regime (a/d = 1.0). The decrease of the edge coupling
between two finite half-plane superlattices slightly fa-
vors the existence of another surface-polariton mode at
q d = m inside the gap of edge-plasmon excitation en-
ergies. The edge-plasmon gap becomes narrower due to
smaller edge coupling. The edge-plasmon excitations are
seen more localized as k„d )& 1.

When the edge coupling between two finite half-plane
superlattices is further reduced (a/d = 2.0), I find in Fig.
3 that the coupled surface-polariton modes at q d = 0 are
developed and free from Landau damping in a large range
of k&d. The favored surface-polariton modes change from
ones at q d = a to those at q d = 0. Two edge-plasmon
modes at q d = a only show invisible difFerence in their
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FIG. 1. The excitation energies (w/0„) as a function

of wave vector k„d for surface-polariton and edge-plasmon
modes. The parameters used in the calculation are eb = 13.0,
ei ——3.25, N = 15, and a/d = 0.6. The solid line is for the en-
ergy of the surface-polariton mode, while the shaded regions
are for the excitation of edge-plasmon modes.
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FIG. 2. The excitation energies (&u/O~) as a function

of wave vector k„d for surface-polariton and edge-plasrnon
modes. The parameters used in the calculation are the same
as those in Fig. 1 except that a/d = 1.0. The solid lines are
for the energies of surface-polariton modes, while the shaded
regions are for the excitation of edge-plasmon modes.
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FlG. 3. The excitation energies (&u/O~) as a function
of wave vector k„d for surface-polariton and edge-plasmon
modes. The parameters used in the calculation are the same
as those in Fig. l except that a/d = 2.0. The solid lines are
for the energies of surface-polariton modes, while the shaded
regions are for the excitation of edge-plasmon modes.

FIG. 5. The critical aspect ratio (a/d), as a function of
wave vector k„d for two values of ¹ The parameters used in
the calculation are eb ——13.0 and eq ——3.25. Above the curve
is the phase of the Fermi-liquid ground state, and below the
curve is the phase of the charge-density-wave ground state.
The solid line (left scale) is for N = 10, and the dashed line
(right scale) is for N = 2.
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FIG. 4. The critical aspect ratio (a/d), as a function of
the number of electron-Quid layers N for two values of k„d.
The parameters used in the calculation are eb = 13.0 and
ci ——3.25. The solid line (left scale) is for k„d = 0.5, and the
dashed line (right scale) is for k„d = 2.0.

energies. Both the edge-plasmon and surface-polariton
modes become quite localized when k„d )) 1. Comparing
Figs. 1—3, I can see the instability of Fermi-liquid ground
state when the energy of the edge-plasmon mode at q d =
0 first touches zero from large values to small values of
k„d. This defines the critical aspect ratio (a/d)„which
separates the charge-density-wave ground state and the
Fermi-liquid ground state.

To show the fi.nite-size effect on the softening of cou-
pled edge-plasmon modes, I present in Fig. 4 the crit-
ical aspect ratio (a/d), as a function of the number of
electron-Quid layers N in two coupled finite half-plane
superlattices. When k„d = 2.0 (right scale, dashed line),

(a/d), decreases rapidly with K and becomes indepen-
dent of N when N & 6. This implies that the edge-
plasmon excitation becomes very localized for large val-
ues of k„d. The whole (a/d), curve is pushed up when
k„d = 0.5 (left scale, solid line). In this case, (a/d), de-
creases smoothly with % in the whole range displayed
because the edge-plasmon excitation is quite extended
for small values of k„d.

Finally, I show the phase diagrams of (a/d), as a func-
tion of k„d for two values of N in Fig. 5. The (a/d), curve
separates two phases of the charge-density-wave ground
state (below the curve) and Fermi-liquid ground state
(above the curve). When N = 10 (left scale, solid line),
the value of (a/d), is very small, ranging from 0.5 to
2.5. This means that a slightly strong edge coupling be-
tween two fi.nite half-plane superlattices can destroy the
stability of Fermi-liquid ground state and switch to the
charge-density-wave ground state due to gapless excita-
tions. When K = 2 (right scale, dashed. line), the (a/d),
value is greatly increased ranging from 2.0 to 8.0. From
this I know that the increase in the number of electron-
Buid layers in two coupled finite half-plane superlattices
can enhance the coupling between the edges, and then
soften the edge-plasmon modes more easily.

In conclusion, by using a hydrodynamic model I study
the coupling between the surface-polariton and edge-
plasmon excitations in two coupled finite half-plane su-
perlattices. From it I find the condition for the exis-
tence of Landau-damping-free surface-polariton modes. I
also show the phase diagram between the charge-density-
wave ground state and Fermi-liquid ground state. The
decrease in the number of electron-Quid layers in finite
superlattices is found to suppress the softening of edge-
plasmon modes.



2024 DANHONG HUANG 52

D.B. Mast, A.J. Dahm, and A.L. Fetter, Phys. Rev. Lett.
54, 1706 (1985).
A.L. Fetter, Phys. Rev. B $2, 7676 (1985); 33, 5221 (1986);
33, 3717 (1986).
E. L. Albuquerque and M. G. Cottam, Phys. Rep. 233, 69
(1993)
R.E. Gamely and D.L. Mills, Phys. Rev. B 29, 1695 (1984).
B.L. Johnson, J.T. veiler, and R.E. Camley, Phys. Rev. 32,

6544 (1985).
Y'. Zhu, X. Xiong, and S. Zhou, J. Phys. C 21, 1081 (1988).
Y. Zhu, S. Hu, F. Huang, and S. Zhou, Phys. Lett. A 128,
207 (1988).
G.F. Giuliani and 3.3. Quinn, Phys. Rev. Lett. 51, 919
(1983).
D.H. Huang, Y. Zhu, and S. Zhou, J. Phys. Condens. Matter
1, 7627 (1989).


