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Finite-difference approach to edge-state transport in quantum wires
and multiterminal devices
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We investigate multimode electronic transport in a quantum wire in the presence of a uniform
magnetic field. Using a finite-difference scheme for the evaluation of the free-electron Schrodinger
equation, we obtain Harper s equation, which is transformed into an eigenvalue problem. The
resulting scattering states of the wire are used to describe the magnetoconductance for free electrons
as well as for a periodic lattice potential. In the latter case we obtain a conductance pattern that
is related to the Hofstadter butterBy. The calculated current distribution in a disordered quantum
Hall device confirms the edge-state picture of the transport in the quantum Hall regime.

I. INTRODUCTION

Electronic transport in the presence of a magnetic field
exhibits many exciting phenomena that continue to at-
tract the interest of both experimentalists and theorists.
The basis of the understanding of dc transport in the
mesoscopic regime was provided by Landauer, ' who re-
lated the conductance of a system to its scattering prop-
erties. The generalization of the Landauer-conductance
formula to multiterminal systems by Buttiker can easily
be adapted to the different experimental situations, and
has been used with great success for the study of a large
variety of quantum-interference phenomena. In particu-
lar, it has lead to a profound understanding of the integer
quantum Hall efFect (I@HE). '

The scattering matrix for electrons near the Fermi en-
ergy E~ is the central quantity in the Landauer descrip-
tion of electronic dc transport. We, therefore, investi-
gate first the scattering states of a quantum wire of finite
width in the presence of a magnetic field. Each prop-
agating mode at E~ adds 2e2/h to the conductance of
the wire. This result was originally derived for a one-
dimensional waveguide. One might therefore wonder
whether it remains true in the presence of a magnetic
field. We prove its validity for an arbitrary Hamiltonian
with translational invariance in the transport direction.

In order to keep our approach as flexible as possible,
we use a finite-difference approach, which has already
been used for the study of the transport properties of
perturbed quantum wires in the absence of a magnetic
field. Starting from the Schrodinger equation and includ-
ing the magnetic field, we obtain the well-known Harper
equation. Choosing a suKciently high density of grid
points, we can accurately describe the case of a two-
dimensional free-electron gas (2DEG), which is usually
employed for the discussion of the quantum Hall effect.
Our approach can also be used to study the effects of a
lattice-periodic potential. In the latter case, the depen-
dence of the conductance on E~ and on the magnetic
field is described by a fractal and self-similar diagram,

which is closely related with the well-known Hofstadter
butterfly. This diagram may be used to study the in-
creasing influence of the lattice for increasing magnetic
field, or alternatively, to describe the effects of discretiza-
tion in the numerical modeling of the 2DEG.

Recently, Skjanes, Hauge, and Schon presented a sim-
ilar pattern for the conductance, using a surface Green's
function technique. However, while these authors as-
sumed a magnetic field extending over only a finite region
of the infinite quantum wires, we allow for a homogeneous
magnetic field over the whole system up to the contact
regions.

The existence of Hofstadter-like magnetotransport
spectra has been established theoretically for weak su-
perlattice potentials, for lattices of crossed quantum
wires, as well as for quantum dot arrays. For weak su-
perlattice potentials, an experimental and theoretical dis-
cussion of magnetoresistance oscillations has been given
in Ref. 13.

In Sec. II, we derive Harper's equation starting from
the free-electron Hamiltonian, while this equation is usu-
ally derived directly from a tight-binding or Anderson
Hamiltonian, or is taken itself as starting point. We
show that Harper's equation can be transformed into a
linear eigenvalue problem, which is very convenient for
numerical calculations.

In Sec. III we apply our approach to six-terminal
quantum Hall devices with and without disorder. The
calculated spatial current distributions demonstrate the
formation of edge states, thereby confirming the edge-
state picture of the quantum Hall effect developed by
But tiker. 5

II. EI.ECTB.ONIC TRANSPORT
IN A QUANTU'M WIKE

We consider a quantum wire of width I in the presence
of a perpendicular magnetic field B. The wire is confined
in the y direction, i.e. , 0 & y & L, and infinite in the
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direction (see Fig. 1). Using the Landau gauge, we obtain
for the vector potential A„=0, A~ = —By. In the
presence of a spatial potential v(x, y), the Hamiltonian
reads II =

2
(-".8 —eA )2 —h, 82 + v(x, y). With

the above choice for the vector potential we have 0 A
—t9 By = 0, which leads to

~

—8 +2i By8—+ —y B —8
~

+v(2:, y).
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+i = eM, (4)

In the following, we first consider perfect quantum
wires, which correspond to v = m~. The Hamilto-
nian then becomes invariant with respect to translations
in the 2: direction. According to the Bloch-Floquet theo-
rem, we can therefore write the solutions as

The Schrodinger equation is evaluated in a finite-
diKerence scheme, using discrete values to represent the
wave function Q, with stepsize a = I /(M + 1), i.e. ,

g(2:, y) ~ @(na, ma): = @„
Imposing hard-wall boundary conditions at the borders,
we put vP„p ——0 and @ I+i ——0. The Schrodinger
equation becomes

h2

, (4+v )@, —0 -i, —@+i,27Ao a
. e

+i+i Bma (@—„+i, —vP„ i )
2
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In the B term, we replace @„bythe average (Q„ i +
@ +i )/2 and use

1 + i —ma B — m a B = exp
~

2vrim —Ba ~, (1)24 ~

2h2

o. = —Ba .
e
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FIG. 1. A discretized quantum vrire. The arrows shorn the
local vector potential in the Landau gauge.

which is correct up to second order in ma . In the ex-
ponential we recognize the ratio of the Aux through one
grid cell, Ba2, and the flux quantum h/e. Following the
notation of Ref. 8, we denote this ratio by

The factor K accounts for the spatial translation along
the direction of the quantum wire. For

~

v
~

= 1 we have
propagating modes. In this case K can be expressed in
terms of the Bloch wave vector k as r = exp(i ka).

Introducing e = 4 —~, we obtain Harper's equation

p~ (e+iv~ e ~ e &) pm —i —+~+i = 0,

m=1, . . . , M. (5)

In Appendix A we show that this system of equations can
be transformed into a linear eigenvalue problem, yielding
the unknowns K and Pz. From the complex conjugate
system of equations, it follows immediately that, if K is
a solution, then (r') is also a solution. The two solu-
tions coincide for ~K~ = l. Only propagating modes with
~e~ = 1 contribute to the conductance of the infinite wire.
They may be distinguished by the direction of the corre-
sponding currents. In a perfect wire we have no backscat-
tering, and each propagating mode at the Fermi energy
contributes 2e2/6 to the conductance. In Appendix B
we show that this result, which was originally derived
for 1D waveguides, 2 remains valid for any system that is
translationally invariant in the direction of the propaga-
tion, and can therefore also be applied to our situation
of a waveguide in a perpendicular magnetic Beld. The
conductance G is then given by

2e2
G=n,

h

with n, being half the number of propagating solutions
~j) of Eq. (5) at the Fermi energy, the other half cor-
responding to modes that transport the current in the
opposite direction.

The numerical results for to = 0 are presented in
Fig. 2, where we show the calculated number of propa-
gating channels n,, [or the conductance, see Eq. (6)j as a
function of e and a. Apparently, the pattern for the con-
ductance follows closely the structure of the Hofstadter
butterQy. There is, however, an important difFerence,
which can be attributed to the difFerent choice of bound-
ary conditions: As already pointed out in Ref. 9, Hof-
stadter considers the case of an infinite lattice in a mag-
netic field with open boundaries, which is also infinite in
the y direction. He assumes periodicity of the eigenfunc-
tions in the index m, with al/ possible integer periods.
This leads to solutions for rationa/ values of the Aux o..
Therefore, the structures in the Hofstadter butterfIy con-
sist of isolated points that correspond to extended states
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The first three Landau levels are indicated in Fig. 2. It
is seen that for small e and a. , the Landau levels separate
between the difFerent plateaus. This parameter range
corresponds to the case of the free-electron gas. For
larger e or o, values, lattice scattering leads to a splitting
of the Landau levels into subbands, and the conductance
follows the complex pattern of the Hofstadter butterBy.

III. ELECTRONIC TRANSPORT
IN A QUANTUM HALL DEVICE

0-
0 0.5

FIG. 2. Number of propagating modes contributing to the
transport in one direction as a function of energy e and mag-
netic field parameter a. The width of the wire is M = 50.

or propagating modes in the absence of a confining po-
tential, while there are no solutions in the empty or white
regions. Our present case is different in one important
aspect: we discuss the solutions for a system that is con-
fined in the y direction. The re8ecting boundaries in the
quantum wire lead to a difFerent type of solutions, located
in the empty regions of the Hofstadter butter8y and re-
sponsible for the conductance in the plateau regions (see
Fig. 2). These new modes can therefore be identified
as "edge states. " The edge-state character of the wave
functions contributing to the plateaus in the conductance
becomes also evident, when looking at their spatial ex-
tension: These states are strongly localized near either
of the two boundaries m = 0 and m = M, depending on
the directions of the magnetic field and the current.

The dependence of the conductance pattern in Fig.
2 on the width L of the quantum wire can be studied
by changing the number of grid points M for fixed lat-
tice constant a. At zero magnetic field, the conductance
scales with L. For small magnetic fields, the number
of conductance plateaus and therefore the conductance
itself still increase with L. This behavior is readily ex-
plained by the respective increase of the number of avail-
able propagating modes. The situation becomes di8'erent
for large magnetic fields, where the conductance becomes
eventually independent of L or M. This corresponds to
the fact that in the high-field regime the only surviving
conducting channels are edge states, which are located at
the reHecting boundaries; therefore they do not depend
on the width of the quantum wire.

The separation of the conductance plateaus can be re-
lated with the Landau levels of a free-electron gas. The
energetic position. of the vth Landau level is

The above description of the conducting modes in a
single quantum wire provides the basis for the under-
standing of transport in a multiterminal device in the
presence of a magnetic field. In the following we concen-
trate on the example of the six-terminal quantum Hall
device shown in Fig. 3. The perpendicular magnetic field
extends over the whole sample, including the contact re-
gions. The sample is connected to six external electron
reservoirs with chemical potentials pq, . . . , p6. The cor-
responding leads are represented by semi-infinite perfect
waveguides. They act as "filters, " which prevent direct
tunneling from the electron reservoirs into the sample,
i.e. , only propagating modes can contribute to the cur-
rent. This system can be described using the Landauer-
Biittiker theory, which relates the transport properties of
the considered sample to its scattering properties. Denot-
ing the transmission probabilities for electrons entering
the sample by channel j and leaving the sample through
channel i by T;~, we obtain for the current in terminal i

The voltages at terminals i and j are related with the
corresponding chemical potentials p; and p~ by

U; —U. —:U, . = —(p; —p )/e.

The transmission probabilities T;~ are obtained from
the scattering amplitudes S;~ ~A, between the propagat-
ing modes A: and l in the waveguides at terminals j and
i, respectively, i.e. , we have

3

E = (v+ -')Ru, = (v+ -') h
eB
mo

From Eqs. (2) and (3), we obtain for the corresponding
value r

e„=4vr (v+ I/2) n. FIG. 3. A six-terminal Hall device.



20I6 FLORIAN GAGEL AND KLAUS MASCHKE

For later convenience, we rewrite Eq. (7) as an Onsager
equatioxi
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FIG. 4. Longitudinal resistance B and Hall resistance
B„.The dimensions of the sample and the width of the
waveguides are given by M = 30, the Fermi energy is
s = 0.5 (a) ordered sample (W = 0); (b) disordered sample
(W = 0.25).

with T,~
= T;~—, j g i, and T;; = Q.~,. T~;.

Current conservation follows from the unitarity of the
scattering matrix S. In order to calculate the scatter-
ing matrix, we first solve the Schrodinger equation in the
sample region for scattering boundary conditions, and
then match the obtained solutions at the sample bound-
aries to the propagating and evanescent modes in the
waveguides, which were discussed in the previous sec-
tion. We use an appropriate gauge that coincides with
the Landau gauge in the attached waveguides. In the fol-
lowing, we present the results for the situation of a Hall
experiment. The current is driven by the applied voltage
Ui 4 ———(pi —p4)/e between contacts 1 and 4. We put
p, q ——p and p,4

——0. Terminals 2, 3, 5, and 6 are used as
voltage probes, i.e., we impose the current conservation
conditions I2 ——I3 ——I5 ——I6 = 0. From the calcu-
lated scattering matrix S together with Eq. (10) we can
then calculate the longitudinal resistance B = U2s/Ii
as well as the Hall resistance R „=U2s/Ii. In Fig. 4(a)

we present the results for B „andB as a function of
the magnetic field. For intermediate magnetic fields we
obtain perfect quantum Hall plateaus in B „with van-
ishing longitudinal resistance B in the plateau regime.
The minimum magnetic field required for the formation
of the plateaus depends on the width M, i.e., for larger
M the plateaus are already found at smaller fields. This
can be attributed to the fact, that edge states can only
form when their localization length in direction across
the wire becomes small compared with the width of the
wire. It should be noted that Fig. 4(a) is closely re-
lated to Fig. 2, which describes the conductance of a
single quantum wire. In fact, in the plateau regime, the
Hall resistance R

„

in Fig. 4(a) corresponds precisely to
the horizontal cut in Fig. 2 at the chosen Fermi energy

= 0.5. In other words, in the quantum Hall regime the
Hall resistance R

„

is given by the resistance of a single
quantum wire.

The role of disorder on the quantum Hall eÃect has
been widely discussed in the literature. In our ap-
proach, disorder can be introduced in a straightforward
manner by choosing the potential values v [see Eq. (4)]
&om a uniform distribution of random numbers of width
2W, i.e. , v„E[

—W, W] for positions (n, m) within the
sample region (dashed squares in Fig. 3). W defines the
degree of disorder. The results for TV = 0.25 are shown
in Fig. 4(b), for the same parameters as in Fig. 4(a). We
see that the Hall plateaus remain nearly unchanged. The
influence of the disorder is, however, clearly seen in the
neighborhood of the steps in the Hall resistance, where
it leads to strong fluctuations of B „andB

The role of the edge states for the transport in the
quantum Hall regime can be illustrated by the local cur-
rent distributions, which are shown in Fig. 5 for the case
of the disordered saInple and for diferent magnetic fields.
At small magnetic fields [see Fig. 5(a)] the current dis-
tribution is rather uniform; the slight deviations of the
current are due to the presence of disorder. The situation
changes completely in the quantum Hall regime. This is
shown in Fig. 5(c), where we have chosen a magnetic field
corresponding to a plateau in A „[seeFig. 4(b)]. Now
the current distribution is strongly nonuniform, and fol-
lows closely the boundaries at one side of the sample. The
disorder has practically no influence on the conductance.

Disorder becomes, however, important in the region of
the steps between the plateaus. This is demonstrated in
Fig. 5(b). In this region the current distribution is rather
complicated: Backscattering by the impurities and by the
boundaries leads to vortexlike local currents and induces
coupling between the propagating modes or edge states,
which are close in energy. We note, that the fluctuations
of the Hall conductance are of the order of 2e /Ii, which
is also the order of the universal conductance fluctuations
in disordered quantum wires.

The above results are in full agreement with Buttiker's
edge-state picture. According to Eq. (7), currents and
potentials are described in terms of the total transmis-
sion probabilities between the contacts T; ~. The latter
may be expressed in terms of the transmission probabili-
ties ~S,& j&~ for the conducting modes l and k in quantum
wires i and j [Eq. (9)]. The plateau regimes are character-
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ized by the absence of backscattering in the propagating
modes [see Fig. 5(b)j, and therefore we have ~S,~ ~a~ = 1
for the n modes in the quantum wires, which contribute
to the current in forward direction. Thus, Eq. (9) yields
T,.z ——n, in the plateau regime for waveguides i and j
ordered in the direction of propagation of the conducting
modes, and T;~ = 0 between all other pairs of waveguides.
For example, the situation of Fig. 5(b) corresponds to
T6g ——T56 ——T45 ——T34 —T23 —T$2 —n, and all other

transmission probabilities equal to zero. With pz ——p, ,

p4 ——0, and imposing the current conservation condi-
tions I2 ——Is ——Is I——s ——0, we obtain from Eq. (10)
p2 p3 —0, ps, ps ——p, and Iz ——(2en, /h) p = I4—. This
corresponds to the well-known results for the I@HE:
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and

P2 P3
eIg

= 0.

APPENDIX A: SOLUTION
OF HARPER'S EQUATION

Defining p:—exp(2vrin), we write Eq. (5) as

IV. CONCLUSIONS
-~ =-- '~'-~ +(+- )~-~

m m'Pm-j. P Pm+])

We have presented an efIicient finite-difference scheme
that allows us to calculate the transport properties of
two-dimensional quantum wires and multiterminal de-
vices in a homogeneous magnetic field. The required
solution of Harper's equation has been reformulated as
an eigenvalue problem, thus avoiding the approximations
proposed in the literature. Our results for a single quan-
tum wire show that the present approach does not only
give an excellent description of the conductance of a con-
fined &ee-electron gas in a magnetic field, but that it
allows also us to study the inhuence of backscattering in
a wire with periodic lattice structure. The importance of
the boundary conditions leading to edge states has been
revealed by comparing the obtained conductance pattern
with the Hofstadter butterHy, which describes the eigen-
value spectrum of an infinite lattice without borders in
the presence of a perpendicular magnetic field. Using
our results for a single quantum wire, we have also calcu-
lated the electronic transport in a six-terminal quantum
Hall device, where we have demonstrated the stability of
the quantum Hall plateaus against disorder. The results
are in full agreement with the edge-state picture for the
I@HE of Biittiker.
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—1 mA:= —tc (A1)

This leads to the new system of equations

Am + (e + '+m) 'Y Pm 'Y Pm i —'Y pm+i, —

&~m = '7 Pm)

which can be written as an eigenvalue problem Ax = ex,
with x = (yi, . . . , (pM, Ai, . . . , AM)~, and A = ( D ),
where

where m = 0, . . . , M.
While it is an easy task to calculate the band struc-

ture of the propagating modes i(k) for given k [or givenr:—exp(i ka)j, it is not so obvious to solve the inverse
problem, i.e., to 6nd the values of k corresponding to
propagating modes for a given energy e. This is, how-
ever, the basic question to answer, since the number of
transport channels is determined by the number of avail-
able k values at the given Fermi energy. Recently, an
expansion method has been proposed for the continuum
case. Using a finite-element approach, Leng and Lent
have found the solutions in terms of a nonhnear eigen-
value problem. In the following we show that in the
finite-difference approach this problem can be solved in
a straightforward manner, which is numerically efIicient
and may also have theoretical applications. The simple
trick consists in introducing M new variables

,

t'( + )~
(e + iii2) p'

(E + Vis) Y

(&+ ~M —i) v
0 ~M (e+ ~ )~M j

D = (d;~), d;~ = 8,~p', and 0 is the M x M null matrix.
We note that this eigenvalue problem is equivalent to the
generalized eigenvalue problem of Ref. 18.

The wave functions corresponding to the 2M eigen-
values K~ are given by the first M components of the
eigenvectors. The second half of the eigenvectors con-
tains the A' s, which fulfill Eq. (Al); this may be verified
after the numerical solution for testing purposes. From
the numerical point of view, this method has proven to
be stable and can easily cope with system sizes M larger
than 100.

APPENDIX 8: CONDUCTANCE
FOR TRANSLATION-INVARIANT SYSTEMS

We consider a translation-invariant wire connected at
both ends to electron reservoirs with chemical poten-
tials p~ and p2. The corresponding voltage difference is
pq —p2 ———eU. The translational invariance of the sys-
tem implies that in our Landau gauge the Hamiltonian
commutes with the translation operator in x direction,
i.e., the eigenfunctions of the Hamiltonian are given by
Bloch waves

~
v, k ).
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The current is given by tation value of the current in x direction

&v
tat = ) I~ (p& p&)

E=EF

). On„Bk
v E=EF jk=jcv

(P, —Pz). (Bl)

I = vk i —H, —imp vA;

= —( v, k
i E(k)OI, —Bl, E(k)i v, k )

e OE= ——(v, k
i

v, k)I„is the current of a propagating mode v at E~, nor-
malized over a given normalization length, Bn„/BE is
the respective density of states. Taking the spin degen-
eracy into account, we obtain for the one-dimensional k
space density per normalization length On /Bk = I/vr.

The current-density operator can be expressed by the
commutator of the Hamiltonian with the position oper-
ator x:

j = eB, x = e —'[H, x].

1.e.)

Ok I„
BE (v, kiv, k)

= —e h.

2e
Igot = nc U

h

Inserting this in Eq. (Bl) and using Eq. (8), we obtain

We choose the A: representation and obtain for the expec- where n is the number of propagating states at E~.
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