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Correlation efFects in the impurity-limited mobility of quantum wires
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We study many-body eKects, introduced via the local-field corrections, on the mobility of quasi-
one-dimensional electron systems. The low-temperature mobility due to remote-impurity doping,
homogeneous-background doping, interface roughness, and alloy-disorder scattering is calculated
using the relaxation time approximation. We find that correlation efFects significantly reduce the
mobility at low density.

I. INTRODUCTION

With the recent advances in microfabrication tech-
niques such as molecular-beam epitaxy and lithographic
methods, it has been possible to realize quasi-one-
dimensional (QlD) electron systems in semiconductors.
In these structures, electrons are confined to a region with
dimensions of the order of the de Broglie wavelength, but
otherwise free to move in one space direction. Since only
a limited number of final states are available during the
scattering process, the mobility of QlD electron systems
are considerably enhanced, making them potentially im-
portant for high-speed device applications.

The ground-state properties and collective excita-
tions in Q1D systems attracted early attention, and
continues ' to be of interest as new applications such
as quantum wire lasers begin to emerge. Mobility lim-
its for charged-impurity scattering in Q1D systems have
been calculated by Sakaki, Fishman, I ee and Spector,
and Gold and Ghazali among others within various
approximations. Numerical results for the mobility of
Q1D systems also appeared. In particular, Gold and
Ghazali have developed analytical expressions for the
Coulomb and electron-impurity interaction potentials us-
ing a model of cylindrical quantum wires. Based on the
results of Gold and Ghazali, and extending their results,
the mobility in Q1D systems in an axial magnetic field
was calculated by Tanatar and Constantinou.

Screening effects have been known to play an impor-
tant role in the low-dimensional electronic structures.
They stem from the many-body interactions and are usu-
ally taken into account in the random-phase approxima-
tion (RPA). The main purpose of this paper is to study
the efFects of local-field corrections (which are neglected
in the RPA) on the mobility of quasi-one-dimensional
systems. We assume that the electrons in the quantum
wire are in their lowest subband, as evidenced in the ex-
penments of Goni et al. , ' and investigate the density
dependence of the mobility for difFerent scattering mech-
anisms such as remote-impurity doping, homogeneous-

background doping, interface-roughness scattering, and
alloy-disorder scattering. The dielectric function describ-
ing the screening of electrons is calculated at finite tem-
perature. Exchange and correlation effects beyond the
RPA are taken into account through the local-field cor-
rection. Many-body efFects in the mobility of Q1D sys-
tems were already considered by Gold and Ghazali in an
approximate way. It was argued that many-body efFects
reduce the mobility. However, in Ref. 7 only the exchange
effects were taken into account. In this paper, we incor-
porate exchange and correlation effects, and show that
correlation effects are very important.

The rest of this paper is organized as follows. In Sec. II
we introduce the formalism to calculate the mobility, and
we discuss its modifications in an approximation, which
goes beyond the RPA. The local-field correction is con-
sidered in various approximations. In Sec. III we show
the effects of the local-field correction on the impurity-
lirnited mobility of Q1D GaAs system. We conclude with
a brief summary in Sec. IV.

II. THEORY

Gold and Gotze have developed a self-consistent
current-relaxation theory to treat the electron dynam-
ics in low-dimensional semiconductor structures. In this
approach, the relaxation time 7 (w = 0), is given for one-
dimensional systems by

r((u = 0)
k~ (~V(2k~) ~')

e, (2k~) 2

from which the mobility may be calculated using p, =
er(0)/m. The averaged squared Fourier transform of
the random potential (~U(q)~ ), describing the electron-
impurity scattering, depends on the specific type of im-
purity, and will be discussed later et(q) is .a screening
function related to the static dielectric function e(q). It
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is expressed as sq(q) = 1 + V(q) [1 —G(q)]yp(q), where

yp is the Lindhard susceptibility, and G(q) is the local-
field factor. We note that the relaxation time is given in
terms of the susceptibility y(q), of the interacting elec-
tron gas, i viz. , y(q) = yp(q)/(1+ V(q) [1 —G(q)]yp(q)])
with )('p(q) the free-electron susceptibility. The term
(1 + V(q) [1 —G(q)]yp(q)) can be described as a factor
s&(q), however, sz(q) is not the real dielectric function
s(q), which is given by 1/s(q) = 1 —V(q)y(q). Therefore,
to indicate the dielectric function for transport proper-
ties, we used the symbol sq(q).

In Q1D systems gp, and consequently sq, diverges
at q = 2k~ for zero temperature, signaling the Peierls
instability. This would result in an unphysical infin-
ity for the mobility. To circumvent the divergence, the
temperature dependence of s'q(q) needs to be considered.
The temperature-dependent dielectric function may be
obtained by integrating over the chemical-potential-
dependent dielectric function at zero temperature. An
analytical expression for the temperature-dependent di-
electric function in the RPA valid for e~ )) T is given
by

2 Ep use& eF )
st(q = 2kF, T &( eF) = 1+ V(2kF)[1 —G(2kF)] ln

~xkpa~ 2e kRT) ' (2)

where p = 0.577215. . . is the Euler constant.
In the above formulation, the local-field factor G(q) accounts for the many-body correlations. Taking G = 0

amounts to the usual random-phase approximation. Disorder effects will also modify the dielectric function, but to
lowest order in the impurity density ¹,our expression, which is based on the Born approximation, remains valid.

For the model of the @ID system, we take a circular cylinder of radius R, and confine the motion of electrons within
the cylinder by an infinite potential barrier. Employing the effective mass approximation, the wave functions and
energy levels involving the Bessel functions J„(x) and their zeros are obtained in a straightforward manner. In order
to get analytical results for the Coulomb and electron-impurity scattering matrix elements, Gold and Ghazali have
proposed approximate expressions for the two lowest subbands in the infinite-barrier height model. The Coulomb
interaction between the charge carriers in the lowest subband, using the approximate analytic wave functions, is given
by

(2e21 36 1 2 32

( ep )~ (qR)' 10 3(qR)' 2(qR)4
64

Is (qR) Ks (qR) (3)

in which Is(z) and Ks(z) are the modified Bessel functions of the first and second kind, respectively. Similarly, the
electron-impurity interaction potential (for electrons in their lowest subband) is

(2e2'} 48 1 1 (R; ) + 1 (R, ) + 8 1 Io(qR;)K3(qR)
(q) ~

~, )&, s 4 (.) . (.) (qR). (qR). qR
ep ) (qR) K, (qR, )I, (qR)

qR 2

R;(B
(4)

In the above expression, B and B; denote the radius of
the wire and the position of impurity, respectively. We
shall use the Coulomb interaction in the calculation of
sq(2kF, T), and the electron-impurity interaction in var-
ious models of impurity scattering.

For illustrative purposes, we consider a @ID GaAs sys-
tem, with background dielectric constant ep ——12.9. The
length and energy scales are expressed in terms of the ef-
fective Bohr radius, aR = ep/me, and efFective rydberg
Ry=h /(2ma&), where m. is the efFective band mass of
electrons in GaAs.

The local-field factor G(q), involving the properties
of uniform electron gas, may be obtained within the ap-
proximation scheme of Singwi et al. is (STLS). In one
dimension, one finds

1 dk kV(k)
G(q) = —— — [~(q —k) —11N 2~ qV(q)

and if one uses SHF(q) in Eq. (5), one obtains the
local-field factor in the Hartree-Fock (HF) approxi-

I

mation. GHF(q) difFers somewhat from the Hubbard
approximation

1 V(gq2+. kF2)

V(q)

where the exchange effects are taken into account in a
certain way in order to get an analytical expression for
the local-field factor. Recently, Gold and Calmels have
developed a sum-rule version of the STLS approach in
the two-dimensional (2D) and 3D electron gas to obtain
analytical expressions for the local-field factor. A similar
analysisis applied to QlD systems yields the generalized
approximation (GA)

1 1 V(V q + qo/Cii)
2mNR C2i V(q. )

where Cii and C~i are tabulated parameters that de-
pend on the electron density N and wire radius B. Here
qp

——2/aR~r„where r, = 1/(2NaR). Correlation and
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FIG. 1. The local-field factor G(2k' ) in the generalized ap-

proximation (solid line), the HF approximation (dashed line),
and the Hubbard approximation (dotted line) as a function
of electron density ¹

exchange efFects are included in GGA(q). For r, = 1
and B = a~ the parameters C, i are Cii ——1.59 and
C2i ——0.452.

In Fig. 1 we compare various approximations to the
local-field factor at 2k~. The solid line represents
GG~(2k~), which is close to G = 1 for low densities.
We observe that GHF(2k') (dashed line) only difFers
from the approximate expression (dotted line) beyond
% = 10 cm . The difFerence between the exact and ap-
proximate forms of G~ reaches 10% for N 10 cm
The generalized approximation to the local-Geld factor
is markedly difFerent from the Hubbard approximation
leading to enhanced reduction of the mobility. This
indicates that correlation efFects are very important at
low densities, i.e. , N ( 5 x 10 cm . In the following
calculations of the impurity-limited mobility we use the
parametrized analytical expressions of the generalized
approximation Gc~(2k~) to study the effects of local-
field corrections, and compare our results with the RPA
(G = 0).

III. RESULTS AND DISCUSSION

We now employ the static dielectric function including
the local-Geld corrections in the calculation of impurity-
limited mobility. For the scattering by remote impurities,
we assuxne that the impurities are located randomly at
some distance R, from the axis of the quantum wire of ra-
dius B, with the random potential taken as (~U(q) ~RD) =
N;[V; ~] . Here N, is the (one-dimensional) impurity
density, and V; ~(q) has to be evaluated at the impurity
positions B. The mobility for remote doping takes the
form

(ea~~) vr N [eg(2k', T)]2
)I 16 N [~. p(2k~)]2

where we used V; z
——(2e /eo)E; z. In. order to assess

the importance of local-Geld corrections, we display in
Fig. 2 the mobility due to remote-impurity doping for a
wire radius B = a~ and impurities located on the wire
axis (A; = 0). Shown by solid, dashed, and dot-dashed
lines are the mobility results calculated with GG~, G = 0
(which corresponds to the RPA), and G~, respectively.

The dotted line represents the unscreened limit of pRD
for which ez ——1. We observe that the mobility calcu-
lated with G~~(q) approaches the unscreened limit as
the electron density N decreases. This is a consequence
of the fact that the strong correlation regime corresponds
to the unscreened liinit in QlD electron systems.

In Fig. 3 we show' the mobility due to remote-impurity
doping with (solid lines) and without (dashed lines) the
local-field correction (GG~) for various impurity loca-
tions. The parameters used are N; = 10 cm, B = a~,
and T = 0.02Ry. The striking observation is that the
local-field corrections decrease the mobility substantially
in the low density region (viz. , N ( 5 x 10 cm i). As N
increases, the eKects of local-field corrections subside and
the mobility approaches the RPA limit. For the dotted
lines in Fig. 2 we have included the the local-field correc-
tions in the HF approximation. The difFerence between
the solid lines and the dotted lines is because of correla-
tion eKects. We conclude that not only exchange eKects
reduce the mobility, but also correlation efFects consid-
erably reduce the mobility in one-dimensional systems at
low density. In Fig. 4 we study the mobility for remote
doping for different wire radii and B; = 2B. With in-
creasing wire radius the mobility increases strongly and
many-body efFects are stronger in thinner wires.
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FIG. 3. Mobility for remote doping as a function of electron
density. The solid and dashed lines represent calculations
with and without local-field corrections, respectively. Curves
from bottom to top are for A, = 0, 1, 2, and 4B. The dotted
lines correspond to the HF approximation.

N (cm ')

FIG. 2. Mobility for remote doping as a function of electron
density for R = a& and B, = 0. Solid, dashed, and dot-dashed
lines are calculated with the local-field factors GC,A, G = 0
(RPA), and G~, respectively. The dotted line represents the
unscreened limit (e~ ——1).
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FIG. 4. Mobility for remote doping as a function of electron
density and R, = 2R. The solid and dashed lines represent
calculations with and without local-field corrections, respec-
tively. Curves from bottom to top are for R = az, 2a&, and
4a&. The impurity density is N; = 10 cm

FIG. 6. Mobility for interface-roughness scattering as a
function of electron density. The solid and dashed lines rep-
resent calculations with and without local-field corrections,
respectively. Top and bottom curves are for g = 20 and 60
A, respectively.

In order to describe impurities introduced by
homogeneous-background doping, we assume the im-
purities are homogeneously distributed within the wire
(0 & R, & R). The random potential in this case is
defined as

the roughness fluctuations, and following the example
of 2D systems, the random potential is obtained as

([U(q)~ ) = (dEoq/dR) gb vr ~ e " ~, where b and q
are the height and range parameters. One gets for the
interface-roughness mobility"

R

(IU(q) I') = N~ «r Il'-&(q) I',
0

Pea l m ~ R Ne"&"
piR =

( ~ I 4 ~, 2 [s~(2k~ T)]'.
i, n ) 4,',gSa~ (l.o)

where N~ is the 3D impurity density. Defining
(~U(q)~ ) = N~R (2e /eo) F~, where the explicit form
of F~(q) is given by Gold and Ghazali, r the mobility for
homogeneous-background doping becomes

r' ea2~ ) mN[sg (2k~. , T)]'
h ) N~R2 F~(2k')

We show the mobility for the above model as a function
of electron density in Fig. 5. For charge neutrality in
uncompensated semiconductors, we take N~R /2 = N.
Shown in Fig. 5 is the mobility for wire radii R = a~,
2ag, and 4a~ (from bottom to top) with and without
the local-Beld corrections, indicated by solid and dashed
curves, respectively.

Interface-roughness scattering is known to be the dom-
inant scattering mechanism for 2D electron gas in thin
quantum wells. Assuming a Gaussian-like decay of

The mobility for interface-roughness scattering as a func-
tion of the electron density for a GaAs quantum wire of
radius R = a~ and average roughness size h = 3A. are
shown in Fig. 6. Solid and dashed lines indicate calcu-
lations with and without local-field corrections, respec-
tively, for two different values of the range parameter

20k. and 60%. (upper and lower curves, respec-
tively). The mobility for interface-roughness scattering
is strongly reduced for N ( 3 x 10 cm when the local-
field correction is included.

The random potential describing the alloy-disorder
scattering is (~U(q)~ ) = [(bV) a /4a~]x(& —*)FAD) ln
which bV is the root-mean-square spatial average of the
Quctuating alloy potential over the alloy unit cell, and
a is the unit-cell volume. PAD is the form factor for the
lowest subband, defined as FJI D = a& f d r ~p(r) ~, which
yields FJID = Qa&/(5+R ) when the approximate wave
function for the lowest subband. is used. The mobility
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FIG. 5. Mobility for homogeneous-background doping as
a function of electron density. The solid and dashed lines
represent calculations with and without local-field corrections,
respectively. Curves from bottom to top are for R = 1, 2, and
4agy.

FIG. 7. Mobility for alloy-disorder scattering as a function
of electron density for x = 0.3. The solid and dashed lines
represent calculations with and without local-field corrections,
respectively. Lower and upper curves correspond to R = cz
and 2a&, respectively.
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due to alloy-disorder scattering takes the form

ea2~ ) a~ s
Leg (2k~, T)]2

(11)

in which bV is expressed in rydbergs. In Fig. 7 we show
the dependence of the mobility due to alloy-disorder scat-
tering on the electron density. Solid and dashed lines
indicate calculations with and without local-field correc-
tions, respectively, at T = 0.02Ry, x = 0.3, a = 5.66k,
and bV leV. Lower and upper curves correspond to
B = a~ and 2a~, respectively, illustrating the B depen-
dence of the mobility.

local-field corrections significantly reduce the mobility
at low densities. This general trend is found in the
calculations of remote doping, homogeneous-background
doping, interface-roughness scattering, and alloy-disorder
scattering. In this paper, we have mainly focused on
the density dependence of the mobility. More systematic
studies of the dependence on the wire radius could be un-
dertaken as new experimental results become available.
The results presented in this paper are for low temper-
atures, but extension to higher temperatures and a sys-
tematic study of the temperature dependence of the mo-
bility is also possible. Our results indicate that transport
calculations neglecting many-body eKects cannot predict
the order of magnitude of the mobility.

IV. CONCLUSION

We have studied the inQuence of many-body eKects
on the impurity-limited mobility of a Q1D electron sys-
tem. The local-Geld correction is used in the general-
ized approximation taking into account exchange and
correlation. In contrast to the usually employed RPA,
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