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A theoretical study of the dynamics of free photogenerated carriers in resonance-biased asym-
metric GaAs-Al:Ga;_.As double wells is presented. We consider a situation where photogeneration
takes place on a subpicosecond time scale and, initially, produces a coherent ensemble of free electron-
hole pairs in the wide well. The simultaneous thermalization and tunneling of electrons between
the two wells is analyzed within the density matrix approach. The interplay between tunneling and
Coulomb scattering is explored at several levels of approximation regarding free-carrier screening.
We find that the Coulomb interaction represents an effective agent to destroy phase coherence and
to damp out coherent charge oscillations in the system. Our calculations predict that, if the free-
carrier Coulomb interaction provides the dominant dephasing mechanism in the system, coherent
charge density oscillations associated with free carriers should persist up to electron sheet densities
of about 3 x 10'° cm™2. It is shown that, under present conditions, dynamic screening within the
plasmon-pole approximation and static screening give virtually identical results.

I. INTRODUCTION

A variety of optical techniques, such as four-wave mix-
ing and ultrafast pump-probe techniques, have been de-
veloped to monitor subpicosecond transport phenom-
ena and thermalization of hot photogenerated carriers in
semiconductors, including bulk materials, quantum-well
heterostructures, and superlattices.!’> Radiation emitted
by accelerated charges has given indirect evidence for
the presence of Bloch oscillations in superlattices, as well
as coherent charge oscillations in semiconductor double
wells.3~¢ The latter have been reported for resonantly
laser-generated excitons in asymmetric quantum wells,
in which an applied electric field was used to tune elec-
tronic subband levels into resonance.®* In their function
as generators of electromagnetic radiation in the THz
regime, asymmetric semiconductor double wells may be
developed into useful nanostructure devices based on the
quantum-interference principle.” We would also like to
point out that in piezoelectric systems, sound generation
in the same frequency range should be possible.

To our knowledge, only exciton-related coherent charge
oscillations have been reported to date and no experimen-
tal evidence has been reported for the presence of co-
herent free-carrier oscillations in double wells. One may
be tempted to give qualitative arguments why excitons
display coherent oscillations more readily than free car-
riers. The exciton has a localized nature and any imper-
fections in the structure tend to detune affected exciton
levels. Therefore, excitons are excited somewhat selec-
tively, whereas free carriers are given different excess en-
ergies when created near structural imperfections. More-
over, carriers bound in excitons are less reactive than
free carriers, leading to longer phase coherence times, at
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least for low exciton densities, where the exciton radius is
small compared to the average exciton-exciton distance.
Finally, excitons are generally easier to monitor than
free carriers.® On the other hand, a careful analysis of
modulations of the absorption coefficient has recently re-
vealed evidence for free-carrier oscillations in biased bulk
semiconductors.®

In the present work, we perform a theoretical inves-
tigation of the simultaneous generation, tunneling, and
thermalization of photogenerated free electron-hole pairs
in asymmetric double wells, addressing the question of
whether the charge oscillations observed for excitons can
also exist in the free-particle regime at higher excitation
energies. Our study focuses on the interplay between the
coherent process of tunneling between wells and dissipa-
tion provided by the Coulomb interaction. Details of the
laser-excitation process of free carriers are not considered
here.'® Moreover, we consider experimental situations in
which only the two lowest electron subband levels are at
resonance, so that hole tunneling may be neglected.

A study of thermalization in a nonequilibrium
Coulomb system necessarily leads to the notorious prob-
lem of screening of the interaction. In three-dimensional
(3D) systems, it has been found that dynamic screening
within the plasmon-pole approximation (PPA) leads to
Coulomb scattering rates, which are significantly differ-
ent (larger according to Ref. 11, smaller according to Ref.
12) from those obtained within static screening. For our
study, it is imperative not to underestimate the effective
strength of the Coulomb interaction. Therefore, we used
and compared several versions of free-carrier screening,
including dynamic screening within the PPA.

Our paper is organized as follows. The theoretical ap-
proach based on the density matrix approach is outlined
in Sec. IT A. The screening models that are used in the
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present study are summarized in Sec. II B, with a more
detailed discussion of the PPA added in the Appendix.
Sec. III contains results of a numerical study of coherent
charge oscillations in double wells and their dependence
on excitation conditions, structure parameters, and the
screening model employed. Summary and conclusions
are given in Section IV.

II. THEORY
A. Density matrix approach

Our model is based on the density matrix
approach.!®* Tt is well suited for situations where
(quasi-)particle-particle interactions are weak to moder-
ate and phase coherence plays an important role in the
system. It represents a direct generalization of Boltz-
mann transport theory into the quantum regime and
combines the virtues of flexibility, simplicity, and phys-
ical transparency. It should be mentioned that a com-
plete dynamic description of a nonequilibrium system
should be based on two-time Green’s functions, rather
than a single-time density matrix. The former approach
is too complex to be solved without substantial simpli-
fying assumptions.!® However, based on Dyson’s equa-
tion, it provides more systematic approximation schemes.
A detailed study of the relation between nonequilibrium
Green’s function approaches and the density matrix ap-
proach will be published elsewhere.®

Here, we apply the density matrix approach to a situ-
ation in which a subpicosecond laser pulse generates free
electron-hole pairs of low to moderate densities in asym-
metric GaAs-Al,Ga;_,As double wells. An external elec-
tric field is used to vary the relative position of the low-
est electronic subbands associated with the two isolated
wells. The peak energy and bandwidth of the laser are
such that electron-hole pairs are created in the wide well,
only, and such that the two lowest electronic subbands of
the double well can be accessed. In our study, the typical
pulse duration lies around 0.5 ps and the initial electron
kinetic energy ranges from 12 to 20 meV. Hole subbands,
which are involved in the excitation process, are far off
resonance, so that hole tunneling between the two wells
may be neglected and one may concentrate on electron
motion. Holes are merely treated as a positive charge
background to ensure that the total charge of the sys-
tem remains zero. Due to the small initial excess energy
per electron-hole pair, optical phonon emission, which
generally plays an important role for carrier cooling on
the pico- and subpicosecond time scale, is unimportant.
The formation of excitons via LO phonon emission is ne-
glected.

With these basic simplifying assumptions, one may re-
duce the problem to a study of the time evolution of an
electronic one-particle density matrix,

( fro(k,t) = (bLbra)(t) frr(k,t) = (bL,brr) () )
Fro(k,t) = (bhubra) (@) frr(k,t) = (bl bri)(t) )

(1)

where

(4) = Tr{pA}(t) (2)

denotes the statistical average of an electron observable
A over the full density operator p and b, and b} are
the single-particle operators for state a. The diagonal
elements frz(k,t) and frr(k,t) are the electron distri-
bution functions associated with left and right well, re-
spectively, and k denotes the magnitude of the k-vector
associated with in-plane motion. Inclusion of off-diagonal
elements frr(k,t) (“polarizations”) allows a theoretical
account of coherence in the system. The fact that one
subband per quantum well is involved renders the den-
sity matrix a 2 X 2 matrix for given k. The spin de-
gree of freedom is not accounted for in our notation, but
is simply incorporated in the electron density of states.
The basis states |Lk) and |Rk) are linear combinations
of the two lowest eigenstates of the double well, |+, k)

and |—, k) with eigenvalues €4 ; and e_ j, respectively.
2
Here, €q,r = €0 + %’%)r,a = =+, L, R, assuming quasifree

motion with effective mass m* in the in-plane directions.
The choice of a “left-right” basis |L, k), |R, k) is advanta-
geous over the eigenkets |+,k),|—, k) of the double well
in view of further simplifications that will be made below.

Structurally, perfect double wells are assumed through-
out our calculations. Therefore, k is a good quantum
number and the coupling between wells may be described
by a single effective interwell coupling matrix element V.
Different effective masses in well and barrier material give
V a dependence on k. Due to the narrow energy regime,
which is relevant here, this effect is ignored. The assump-
tion of spatial uniformity parallel to the interfaces pro-
vides a major reduction in complexity of the problem, but
may be somewhat unrealistic in real structures as struc-
tural imperfections may well provide a major source of
dephasing in the system.!”

The time-evolution of the density matrix is governed
essentially by three physical processes. First, electron-
hole pair generation by the light field changes the electron
distribution functions. By suitable design of the double
well and tuning of the properties of the laser pulse, car-
riers are initially generated in the wide well, only. Here,
the carrier excitation process is accounted for by a Fermi-
Golden-rule-type generation term,

d
EfLL (ky t)llaser (3)

with a Gaussian-shaped envelope of the pulse. As we
are not concerned with ultrashort pulses (below 0.2 ps),
high carrier densities, or the possibility of density fluc-
tuations due to coherence induced additional generation
and recombination processes,!® this Markovian expres-
sion should be adequate for the present study.

Second, tunneling occurs between the left and right
well, due to the fact that carriers are photoexcited into
a coherent superposition of (approximately) symmetric
and antisymmetric double-well states. The electronic
structure is taken into account within a two-subband ap-
proximation for which the Hamiltonian reads,
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Hy = Z{eLkb},kbLk + ERkbLkbRk
%

+V[b},kbRk + bzzkbLk]}- (4)

H, may be interpreted as the Hamilton operator of a sys-
tem of (identical) noninteracting two-level systems, dis-
tinguished by their k£ vector, which are populated asym-
metrically due to the action of the light field. In this
structurally perfect system, no dephasing occurs due to
H, and phase coherence is maintained even on a macro-
scopic level in the form of periodic charge oscillations.
Based on Hj, such oscillations are induced if the dura-
tion of the laser pulse, which generates free electrons in
the wide well, is small compared to the characteristic
frequency of Hp. In other words, the phase relation be-
tween wave functions associated with different two-level
systems is dictated by the creation process and remains
unmodified under Hg. The time evolution of the density
matrix under the influence of Hy is fully coherent and
reads

ih%fLL(k,tHHo =VIfro(k,t) — fro(k,t)] ,  (5)
ih%fﬂa(k,t)lyo = Vlifre(k,t) — fro(k, )], (6)

ih%fRL(k,t)lHo = (erk — €rk)frL(k,t)
+V(frr(k,t) — frr(k,t)]. (7)

Third, the appropriately screened (see Sec. IIB below)
Coulomb interaction between free electrons,

1
v=g >

a,B,7,8,9,k,k'

'Uaﬂ’y&(q)blk+qb;kl_qb6k'b'yka (8)

where vagys , @, 3,7,6 = L, R, is the matrix element for
the intercarrier Coulomb interaction, introduces a cou-
pling between the two-level systems for each k.'® Any ini-
tial phase coherence between electrons, which may have
been established during the excitation process, decays as
a consequence of this electron-electron interaction. As al-
ready known from similar studies of highly laser-excited
bulk semiconductors, this first happens in second order
in v, i.e., in its lowest-order scattering contribution.!®-1®

The Heisenberg equations of motion for (blkba:k),
a,a’ = L,R in the presence of the Coulomb inter-
action leads to the celebrated Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy, coupling the one-
particle density matrix with all higher N-particle corre-
lation functions.2® Using b for either bt or b and dropping
single particle labels, for brevity, this coupling is of the
structure

d(b?)
dt

= 0((b)) + O(v(b*)), (9)

where O() indicates orders in v and b. The first term
on the right-hand side (rhs) arises from Ho and carrier

generation due to the laser. The second term on the
rhs arises from the Coulomb interaction. One is, in gen-
eral, forced to find an approximation for this term. The
simplest approach consists in self-consistent truncation
procedures. Such a truncation may be performed at sev-
eral levels. The simplest decomposition, which correctly
accounts for terms up to order v on the rhs is of the
structure (b*)(¢) ~ (b*)|mr () < O(((b?)(t))?) and leads
to the mean-field (MF) approximation. For the Coulomb
interaction, it merely leads to a (time-dependent) renor-
malization of the two—level parameters, which does not
provide loss of phase coherence in the system. For the
present study, which focuses on the damping aspect, one
is thus forced to go at least one order higher and evaluate
equations of motion of the general structure,

o d e _ (1A
ih— (6%)(t) = ([b%, H])(?)- (10)

In the present basis, a significant reduction in complex-
ity may be achieved if the right-hand side is replaced
by ([b*, H(V = 0)])(¢). This corresponds to neglecting
quantum-interference terms between tunneling and the
Coulomb interaction in the equations of motion.

The equations of motion then have the structure

z'%(134)(0 = wa(b*)(t) + O(v(b%) (1)), (11)

with wy equal to the sum of the negative (for each b)
and positive (for each b) free-particle energies associated
with the respective 5. The first term on the rhs arises
from Ho(V = 0), and the second term is due to the inter-
carrier Coulomb interaction. Truncation of the hierarchy
can now be performed by manipulation of the integral
expression in the exact solution to the initial-value prob-
lem,

&) () = ¢ (®)ao
t—to . , _
—i/ dt' et O(v(b®))(t — t'). (12)
0
Within order v, one may retain the time evolution of

<I~)6), with respect to Hyp, i.e. that of frequency we (defined
in an analogous way as w4 above), leading to

B (1) ~ B (1), — i0(o (%) (1)) / apemwt ) (13)

with w’ = wy—wg. Second, in the integral on the rhs, one
replaces w’ by w’ —in, with n — 0%, and takes o — —oo.
These two steps correspond to a phenomenological build
in of dissipation (“memory loss”) arising from unspecified
interactions and/or higher-order terms, which eliminates
the non-Markovian nature of the equation of motion. It
ensures a causal response of the system. This gives

#O ~ ()0, — [P, + ()| 00O,
(14)

In a third step, (b)(t) is factorized into one-particle den-
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sity matrix elements (b2)(t), guided by Wick’s theorem
for noninteracting systems. This factorization leaves us
with such combinations of state indices to yield w’ = wy
in equation (16). The resulting contribution to the
time evolution of the densities recovers thereby the free-
energy-conserving 6 functions of semiclassical Boltzmann
transport. Only terms of order (b?)2(t) need to be re-
tained in our low density regime. Finally, renormalizing
principal value terms P are neglected and (b*)(t)|s, is
approximated by its mean-field expression (b*)(t)|mr o
O([(?)(t)]?). Comparison with the Keldysh approach
shows that this truncation procedure corresponds essen-
tially to the screened Hartree-Fock approximation to the
Coulomb self-energy.®

Two further assumptions were made in the derivation
of the particle-particle interaction contribution used for
this study. Exchange terms were neglected. While this
can be rigorously justified in certain situations, such as
a degenerate electron gas close to thermal equilibrium,
this step here is made for simplicity. Finally, only vagag
contributions are considered. This means that Coulomb
scattering-induced tunneling is neglected. This effect
should be insignificant as long as the overlap (V) be-
tween wave functions of different wells is small. With-
out this simplification, using {|+,k),|—,k)} for a basis
set would be advantageous because, at the same level
of complexity, Coulomb-tunneling quantum-interference
terms can readily be included. However, this would lead
to more complex connections between the densities in
the left and right wells as the basic experimental “ob-
servables;” in particular, these quantities would contain
polarization contributions. It should be added that the

distinction between distribution functions and polariza-
J

d d —e
‘dzfab(ks t)|scat = a(blkbbk> scat

Il

m*
v,q,k’
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tions is solely based on the choice of the independent-
particle basis. The latter, of course, is guided by the
physical situation and characteristic observables of the
system.

In summary, this procedure leads to an inclusion of the
carrier-carrier interaction within the (screened) mean-
field approximation,

d d e—e d e—h
;i"t‘fab(k, t)|mF = Efab(ky t) e +Efab(ks t)| 3w

. .
G fan (s )50 = = Fan (ks 1) D7 Ny vy (0) = vyara(0)]
vy
—5 2 [vrara(lF — F))
v,k

X fp(k, t).fa'y(kli t)
‘k”b‘vbv(llz - Ell)fav(ka t) fro (K, t)]

d o
afaa(kat)lMFh =0
d o
EfRL(kat)IMF}‘L

= “%(NL + Nr) [verrr(0) — vrrrr(0)] frL(K, 1),

(15)

where NV, is the total number of electrons in well v, and
within the scattering approximation,

% Z J ( " (Z(E— El)) {2U7a7a(q)"’7b'7b(q)f'w(kl’t)fab(IE - ‘ﬂ:t)

—[Uva‘ra(Q)z + ”7bvb(Q)2]fab(ka t)f'w(ll_c” -4, t)} (16)

The equation of motion of the system is a generalized
Boltzmann equation in the density matrix elements and
contains a tunneling contribution, a scattering contribu-
tion and an electron generation term. Owing to simplifi-
cations made above, quantum-interference terms between
optical excitation, tunneling, and the Coulomb interac-
tion are not accounted for. A clean inclusion of the latter
would lead to a significant complication of matters, in
particular, the simple scattering approximation (6 func-
tion in free-particle energies) would break down.

B. Free-carrier screening

Any assessment of the role of the electron-electron in-
teraction in the dephasing and cooling process of the
electron-hole system calls for a careful implementation of
free-carrier screening. A clean implementation of screen-
ing in far-from-equilibrium situations is a highly compli-
cated and rather controversial matter. For the present

[
study, it is important not to underestimate the strength
of the Coulomb interaction. Static screening, which is
very appealing for its numerical simplicity, has been
claimed to overestimate screening in non—equilibrium sit-
uations in 3D, although differences at densities below
about 1 x 10'® cm~3 seem to be of minor importance.!!
The Coulomb matrix elements v,gys are evaluated for
wave functions associated with infinitely deep wells. Con-
sequently, we consider only matrix elements of the form
VaBap. The unscreened Coulomb matrix elements are

_ _ qLo 2
Vaaaa(q) = Vaa(q) = ve(q) [W t e

B (2)2 2
2 (qLa[(Laq)z n (27r)2])
x (1 — e—qLa)] (17)



52 TUNNELING OF LASER-GENERATED FREE ELECTRONS IN . . .

and

(1 — e Le9)(1 — e~ L09)

Vapap(q) = Vap(q) = ve(q)e

Laquz
§ (2m)*
[(¢La)? + (2m)%][(qLp)? + (2)?)’
(18)
where
2me?
'Uc(q) = c0q ) (19)

d is the barrier thickness, €o the background dielec-
tric constant, and L, the width of well a. For gL,
gd € 1, vaa(q) = vap(q) = ve(q). The second-order
Coulomb singularities require implementation of free-
carrier screening, corresponding to the well-established
screened-Hartree-Fock approaches for the (equilibrium)
electron gas. As our truncation procedure amounts to
a termination of the BBGKY hierarchy at second or-
der in v, screening has to be put in by hand. Our fi-
nal result may be justified by a more complex truncation
method or an alternative approach based on the Keldysh
formalism.!6

Screening for ultrafast carrier dynamics should be
treated in the real time domain, rather than in the fre-
quency domain using a single frequency. The latter ver-
sion is only valid in steady-state situations, but ques-
tionable if significant modifications in the carrier dis-

RPA

Vaa(q) + [vLr(9)vrL(9) — vL(9)vrR(9)]D(g,w)

1963
L/R L/R L/R L/R L/R L/R L/R L/R
L R
ol =L sy =<
L/R R/L L/R R/L L/R R/L

[N S L SRR

FIG. 1. Diagrammatic representation of screening in a
two-component carrier system (left L, right R) within the
random-phase approximation. Thick dashed line: screened
Coulomb interaction; thin dashed line: bare Coulomb inter-
action.

tributions occur on the time scale which characterizes
the particle-particle interactions, which may be the case
during ultrafast laser excitation of carriers.?? Moreover,
the Coulomb interaction is a two-particle interaction and,
thus, requires an inspection of the vertex function in the
Bethe Salpeter equation,?® rather than standard linear-
response theory with respect to an external perturbation.

Here, we adopt a commonly used shortcut and
treat screening within the random-phase approximation
(RPA). This corresponds to inserting electron-hole bub-
bles into the photon line of the bare vertex. A diagram-
matic representation of the resulting Dyson-type equa-
tion for a two-component plasma is given in Fig. 1. Con-
sidering only two types of carriers, i.e., electrons in the
left and right well, one obtains a simple 2 X 2 matrix
problem, which gives the screened potentials,

Vaa (qaw) = [

vap (g, w) =

a=L,R,B=R,L, a#p.

=022 (@ DY@, )1 — vrr(@) DY (e, )] — vir(@)vrz (@) DY) DY (g, )’ 20
_ Vap(9) (21)
[ = o22(@ DY@, DT = vrr @) D4, )] = vzr(@orz(@ DY@, ) DE(@ @)’
o _ 2 2 faa(k) _faa(‘k+q|)

is the retarded density fluctuation correlation function
for noninteracting carriers of type a, known as the Lind-
hard function. Thus, screening by free carriers in a two-
component plasma is not strictly additive, in general.
This is, however, the case for the analogous situation of
bulk electron-hole systems, owing to vee(q) = vnhn(q) =
—ven(g). Moreover, it can be seen that the screened in-
teraction has acquired an w dependence. This is an arti-
fact of making a steady-state assumption, in which both
the past and future of the system are known. Then it
is easily verified that %w is equal to the energy, which is
exchanged in the collision process to be screened.

For interactions, which favor small wave-vector ex-
change, the plasmon-pole approximation (PPA) of-
fers a simple approximation to the density correlation

hw + €a(k) — €a(lk + q|) +in ’

[
function.'® In 2D, it is of the form

1 w?io(a)
ve(q) (w +in)? — Lw? (q)’

Dg(g,w) = DgP (g, w) =

(23)

where w2, (¢) = (2me?na)/(eom*)q is the square of the
plasma frequency at sheet charge demsity no, Ko =
;;%faa(ﬁ) the ¢ — 0, i.e., the long-wavelength static
(LWS RPA) screening wave vector in two dimensions,
and a} the effective Bohr radius. DEFA(q,w) is con-
structed in such a way that its ¢ — 0 limits for both
w = 0 and w # 0 agree with those of the Lindhard ex-
pression. Setting Aw equal to the energy transfer in the
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collision, one obtains

q—0 o

h
lim DEFPA (q,w =5 (a— 2k))

Ka

1- [faa(o)/(ﬂ'na)]kz cos? (9)

= —¢go/(2me?)

(24)

for « = L, R.
The general expression when [fao(0)/(47na)](g —
2kcos )2 #1is

(23

A
DEPA (q,w =5 —a-(a- 2k))

Ko

1 — [faa(0)/(47n4)](g — 2k cos )2’

= —eo/(2me?) (25)
for « = L, R.

Here, 6 is the angle between k and q. In the limit
[faa(0)/(4714)](g — 2k cos §)* < 1, the PPA reduces to
the LWS RPA expression. For a more detailed discussion
of the PPA in the present case versus the 3D situation,
we refer to Appendix A.

In the “static” screening approximation, w is simply set
equal to zero. If, in addition, the ¢ — 0 limit is taken,
one obtains the above mentioned LWS RPA screening,?!

im DO _ e
‘}I_I)I%, Da (q, 0) = ﬁ27r faa(o)' (26)

Equation (26) is not based on the assumption of thermal
equilibrium. The classical Debye-Hiickel (DH) method,
applicable to a nondegenerate electron gas in thermal
equilibrium, gives

_ 3ng
2(E)a’

lim D2¥(g,0) = (27)

where (F) is the average kinetic energy of an electron in
well « = L, R. Note that PPA and LWS RPA approx-
imations give an explicit dependence on the band edge
occupation fuq(0), while the DH approximation gives an
explicit dependence on average particle energy and total
number of particles. This has a certain influence on the
buildup of screening within the different approximations
and will be discussed below.

III. NUMERICAL RESULTS AND DISCUSSION

We have performed a systematic series of numerical
calculations to investigate whether short-pulse laser gen-
eration of free charge carriers can induce coherent charge
oscillations in structurally perfect asymmetric semicon-
ductor double wells. Calculations were performed for two
GaAs-Al,Ga;_,As double wells under various excitation

n /ng
S
O

-1000 0 1000 2000 3000 4000
Time (fs)

FIG. 2. Normalized electron density in the left (wide) well
as a function of time for structure A. Final electron densities
ny are 0.3 x 10'° cm™? (dot-dashed line), 1.0 x 10'® cm™2
(solid line), and 3.0 x 10'® cm™? (dashed line). The dotted
line gives the total normalized electron density. The laser
excess energy is 20 meV and the screening model is the LWS
RPA.

conditions. Structure A is a GaAs/Gag e5Alg.35As dou-
ble well with a 17 A barrier separating 170 A and 120 A
wells, corresponding to an interwell coupling V' ~ —1.5
meV. Structure B is a GaAs/Gag.goAlg.20As double well
with a 25 A barrier separating 150 A and 100 A wells,
corresponding to an interwell coupling V' ~ —2.5 meV.

A. Carrier dynamics

A typical set of numerical results is displayed in Figs.
2-9. The light field was given a Gaussian spectral pro-
file with a width of 4.2 meV, a duration of 0.5 ps, and
provided an average initial kinetic energy of 20 meV per
excited electron. Figures 2—4 and 5-7, respectively, were
obtained for structures A and B at resonance bias. In
all cases, time zero coincides with the peak of the laser
pulse. Figures 2 and 5 display the normalized total elec-
tron density in the left (wide) well as a function of time
for final electron densities ny of 0.3 x 10!° cm™2 (dot-
dashed line), 1.0 x 101° cm™2 (solid line), and 3.0 x 101°
cm™~? (dashed line). Figures 3 and 6 give the equivalent
information for the right (narrow) well, whereas Figs. 4
and 7 give the normalized total polarization as a function
of time. LWS RPA screening was used to obtain these

ng/ny
(=Y
(6]

-1000 ' 0 1000 2000 3000 4000
Time (fs)

FIG. 3. Normalized electron density in the right (narrow)
well as a function of time for structure A. Other parameters
as stated in Fig. 2.
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0.3+
0.2+
0.1r
0.0

Im(p) / n;

-0.1+

-0.2+

03 1000 0 1000 2000 3000 4000

Time (fs)

FIG. 4. Normalized total polarization as a function of time
for structure A. Other parameters as stated in Fig. 2.

data. In this density regime, damped charge oscillations
are obtained in all cases. At low electron densities, they
are more pronounced in structure A, due to a larger ratio
between tunneling period and pulse duration. The same
holds for the total polarization in Figs. 4 and 7. For both
A and B, the largest amplitude of the oscillations occurs
in the narrow well, rather than the wide well, in which
carriers are excited originally. This is a consequence of
the finite pulse duration, tunneling, and damping. Sim-
ple interpolation to shorter pulses predicts an increase of
the amplitude of the oscillations, with decreasing pulse
duration.

The damping of the coherent charge oscillations is
accompanied by a gradual thermalization of electrons,
which occurs on roughly the same time scale. The elec-
tron distribution fiot(k) = frr(k) + frr(k) is plotted in
Figs. 8 and 9, for structure A and B, respectively, for six
different times and a final electron density ny = 1 x 10°
cm™2. In the long-time limit and at resonance bias the
normalized electron densities per well approach the value
one half, while polarizations decay to zero. Other runs
performed at lower initial kinetic excess energy gave very
similar results. Figure 10 shows a comparison between
12 meV and 20 meV excess energy for structure A and
ny = 1 x 10'° cm™2. Just as the thermalization process
takes somewhat longer at higher excitation energies, so
does the damping of the charge oscillations.

Under present excitation conditions, the critical den-
sity at which the transition from weak to strong damping
occurs is about 1.0 x 101° cm™2. At these electron den-
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FIG. 5. Normalized electron density in the left (wide) well
as a function of time for structure B. Other parameters as
stated in Fig. 2.
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FIG. 6. Normalized electron density in the right (narrow)
well as a function of time for structure B. Other parameters
as stated in Fig. 2.

sities, MF-renormalization effects are still negligible for
the time evolution of the system. In Figs. 2-7, this is
apparent from the density independence of the oscillation
frequency. Numerical results which include MF correc-
tions are indistinguishable from those which omit MF
corrections when plotted in figures, such as Figs. 2-7.
Damping, on the other hand, is a sensitive function of
the electron density in both structures. Below 1.0 x 10°
cm~2 damping is very weak, while oscillations are sup-
pressed above about 5.0 x 101° cm~2. We have fitted the
time evolution of electrons in the wide well of the struc-
tures for instantaneous generation of all carriers, using
the ansatz np(t) = (ns/2) [1 + exp(—t/7) cos (wot)],
where 1/7 is a phenomenological damping constant fit-
ted to our numerical results. (277)/wp is plotted versus
ny in Fig. 11. It displays a strong dependence on the
electron density, but is virtually identical for structure A
(diamonds) and B (circles).

B. Free-carrier screening

According to Sec. IIB, several models were used for
free-carrier screening of the electron-electron Coulomb
interaction. We compared the results obtained within
different screening models, in particular, static screening
models to dynamic screening within the PPA. For all den-
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FIG. 7. Normalized total polarization as a function of time
for structure B. Other parameters as stated in Fig. 2.
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FIG. 9. Total electron distribution function fiot(k)

= frr(k)+ frr(k) for structure B at selected times and exci-

tation conditions as in Figs. 2 for the case of ny = 1.0 x 10*°
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FIG. 10. Normalized electron density in the left (wide) well
as a function of time for structure A. Final electron density
ny is 1.0 X 10'° cm ™2, laser excess energies are 20 meV (solid
line) and 12 meV (dashed line). The screening model is the
LWS RPA.
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FIG. 11. Normalized damping time versus final electron
density for instantaneous electron generation. Structure A:
diamonds; structure B: circles. The excess energy is 20 meV,
the screening model is DH.

sities at which charge density oscillations were obtained
in our calculations, the screening model turned out to
be rather immaterial, although some form of screening
was necessary to avoid the singularity of the Coulomb
potential at ¢ = 0. Within the accuracy of our fig-
ures, the dynamics of the system was not affected by
the particular screening version which was adopted. In
particular, no differences of any significance were found
in the dynamics of the system when dynamic screening
within the PPA was used instead of LWS RPA screen-
ing. DH screening provided somewhat stronger screen-
ing than LWS RPA screening and the PPA. A compari-
son between the screening wave vector within DH versus
that within LWS RPA is given in Fig. 12. The differ-
ent behavior is due to the fact that DH is an equilibrium

screening model, which relates the screening wave vec-

tor to the carrier density, whereas LWS RPA may also
be valid for nonequilibrium carrier distributions. In the
present case, DH predicts stronger screening than LWS
RPA. The buildup of DH screening is dictated by the
carrier generation rate only, while, for the LWS RPA, it
is primarily governed by the thermalization dynamics.
As discussed in the Appendix, dynamic screening
within the PPA does not modify the results obtained
within the LWS RPA, because the plasmon-pole contri-
bution is negligible for relevant k vectors and time scales.
On the time scale where it is decided whether charge os-
cillations may form, [fo(0)/(47nq)][g — 2 cos(8)k]? < 1.
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FIG. 12. Screening wave vectors within DH (thick lines)
and LWS RPA (thin lines) for left (solid lines) and right well
(dashed lines). Final electron density is 1.0 x 10*® cm ™2, laser
excess energy is 20 meV.
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FIG. 13. Ca = faa(0)(k?)/(27n4), a = L (solid lines),
a = R (dashed lines), versus time for structure A. Final
electron densities are n; = 0.3 x 10'° cm™? (lower lines) and
ns = 3 x 10'® cm™2 (upper lines). Laser excess energy is 20
meV.

The quantity [faa(0)/(27n4)]{k)?2, corresponding to ¢ =
0 and scattering at the average carrier energy, is plotted
as a function of time in Fig. 13 for the same parame-
ters as in Figs. 2—4 and a final carrier concentration of
1.0 x 10'° cm™2. As long as this quantity remains less
than one, the plasmon pole is ineffective and leaves the
PPA virtually identical to LWS RPA. At low carrier con-
centrations and initial carrier generation above the band
edge, the carrier thermalization process, which leads to a
population of the band edge is too slow to influence the
onset of the oscillations. As our results are independent
of the screening model used, we are rather confident that
we have provided a satisfactory picture of this aspect of
the electron-electron interaction in the double well for a
pulse duration around 0.5 ps and electron densities below
5 x 1019 cm™2.

IV. SUMMARY AND CONCLUSIONS

In summary, we have conducted a theoretical study of
the dynamics of photogenerated electrons in resonance-
biased asymmetric double wells. Our main objective
was to determine the role played by the electron-electron
Coulomb interaction in damping or suppressing coherent
free charge oscillations induced by selective subpicosec-
ond electron-hole pair generation in the wide well. Our
calculations are based on the density matrix approach,
which was developed for an interacting electron-hole sys-
tem in a double well. Whereas the electron-hole inter-
action was treated within the mean-field approximation,
the scattering approximation was used to account for the
electron-electron Coulomb interaction.

For structures which are typical for the investigation
of exciton-related oscillations, we find that charge oscilla-
tions due to free electron tunneling between the wide and
narrow well are permitted for electron densities of up to
about 5x 10'° cm ™2, in spite of the phase-destroying role
played by the Coulomb interaction. This result is virtu-
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ally independent from the screening models that we used
to account for free-carrier screening, i.e., Debye-Hiickel,
long-wavelength static RPA, and Lindhard within the
PPA. No noticeable difference was found between dy-
namic and static screening. While renormalization was
found to be negligible at relevant carrier densities, the
rate of dephasing caused by the Coulomb interaction was
found to be strongly density dependent.

It should be emphasized that the present study ig-
nores the possibility of dephasing processes caused by
structural imperfections. It is clear that the latter will
dominate at sufficiently low carrier concentrations. Sam-
ples of high structural uniformity are mandatory if the
electron-electron Coulomb interaction is to provide the
main mechanism to damp or suppress charge density os-
cillations.

At present, there seems to be no experimental evidence
for the existence of coherent free-carrier charge oscilla-
tions in double wells. It is not clear at present, whether
this is due to difficulties in observing their presence, the
dominance of other dephasing mechanisms, and/or an
underestimation of the strength of the Coulomb inter-
action in the (initial) stages of the time-evolution. Re-
cent experiments in bulk, which indicate the occurrence
of coherent free charge oscillations in an applied linear
electric field seem to point towards the first possibility.®
However, a critical assessment of our present approxima-
tions is called for in any case. We adopted a Markovian
source term to account for generation of free carriers,
with time-energy uncertainty put in by hand. It is valid
as long as the pulse duration is larger than approximately
0.1 ps and charge densities are low. Similarly, standard
dynamic screening should still be reasonably accurate
on the present time scale, as discussed in detail. The
electron-hole interaction beyond the simple mean-field
interaction has been neglected. This could modify our re-
sults somewhat. However, it is known that the electron-
hole interaction is less effective in the cooling process
than the electron-electron and hole-hole interaction. The
degree of inelasticity is frequently thought to influence
dephasing, with higher inelasticity leading to more rapid
dephasing.?%25 This trend is, in fact, confirmed by a dis-
cussion of the validity of the approximations which lead
from Eq. (12) to Eq. (14). In the worst case, we expect
a factor of two in the damping constant. Interference
terms between laser excitation, Coulomb scattering, and
tunneling have been neglected. It is difficult to quantita-
tively estimate the importance of these terms in the equa-
tions of motion, because the computational tractability
of the theory largely rests upon this simplification. Fi-
nally, the carrier-phonon interaction has been neglected
as a possible source for dephasing. This is justified by
low initial excess energies and the time scale on which
the charge oscillations build up. Nevertheless, further
improvements to our approach are desirable. More real-
istic wave functions than those associated with infinitely
deep wells should be used. Consequently, the influence
of Coulomb-induced tunneling and the effect of an effec-
tive mass discontinuity at the heterointerfaces should be
investigated. Finally, holes should be treated on equal
footing with electrons.
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APPENDIX: PLASMON-POLE
APPROXIMATION
VERSUS STATIC SCREENING

The purpose of this appendix is to discuss static screen-
ing versus dynamic screening within the PPA. The PPA
replaces the complicated pole structure of the retarded
density fluctuation correlation function for a noninteract-
ing gas of carriers by!4

1 “)21(‘1)
DPPA g w) = i P , Al
@)= @ wrm - i@ A
in two spatial dimensions, and
QZ
DPPA(qw) = = N (A2)

K

Ve(q) (w +1n)2 — ?—Zﬂfﬂ

with V.(g) = 4me?/(e0q?), Q% = 4me®n/(egm*), in three
spatial dimensions. The corresponding 2D expressions
are defined in Sec. II B. The specific form of the screen-
ing wave vectors < and g, in general, depends on assump-
tions made upon the carrier distribution functions. Both
expressions imply the limit n» — 04. For screening of
the matrix elements in the density matrix equations, one
sets w = #q(q — 2k cos 0), where k is the magnitude of
the wave vector associated with either the initial or final
one-particle state and 6 is the angle between q and k.

To begin with the 2D case, consider first the special
case ¢ = 2kcosf. This corresponds to zero energy ex-
change, in which case PPA and long-wavelength static
RPA (LWS RPA) screening are equivalent. Now con-
sider the general case, but for ¢ # 2kcosf. One may
write

DPPA (q’ w)

a/(2bcq — 2k cos §)
(cq — 2k cos0)/2 — a/(2¢ckqg — 2k cos 0) + in’

(A3)
where a,b,c are constants. In particular, W;ZA(‘I) = agq,
ve(q) = b/q, and ¢ = A/(2m*). A pole arises when

_ 2
(g — 2k cos )% f(0) 1 (A4)

4n

To consider the relevance of the pole, first consider a
system in thermal equilibrium at 7' = 0 K. In this case,

(g —2kcos0)?f(0) _ (g — 2kcos 0)?

4mn 2(kp)? ’ (A5)

where kp is the Fermi wave vector. For a nondegenerate
system at temperature 7T, one finds

(g — 2k cos )2 £(0) _ h%(q — 2k cos 0)? (A6)

4mn dm*kgT

where kp is the Boltzmann constant. In both cases, for
a typical collision process, this ratio will indeed be close
to order one. Therefore, the PPA expression differs from
the static result and a more detailed numerical investi-
gation is called for to compare predictions within static
and dynamic screening. Now consider the case of carrier
generation by a subpicosecond laser pulse into the band
at rather well-defined energy. During excitation and the
initial stage of the cooling process, the ratio on the left-
hand side is small for all wave vectors of interest, because
only a small fraction of carriers populates the band edge.
This means that the plasmon pole contributes little in
the initial stage of events, i.e., during the subpicosecond
excitation pulse and initial cooling of carriers. Therefore,
only the real part of DPP4(g,w) is relevant and one may
write

1
DFPA ,w ~ -0 .
@) bl—f—(o—)(q—chosﬂ)z

4mn

(A7)

It can be seen that, in 2D, the PPA for the screening of
the Coulomb interaction is close to the LWS RPA, as long
as the band edge occupation probability is sufficiently
small compared to the total number of carriers present
in the system. This condition is indeed fulfilled in the
present situation, as was discussed in Sec. IIIB. In the
present calculations, static and dynamic screening yield
practically identical results. Only when thermalization
progresses and the band edge becomes populated, does
the plasmon pole move into the relevant region of g and
k values.

The situation is somewhat different in 3D. First, the
plasma frequency is ¢ independent. More importantly,
the screening wave vector for the long-wavelength limit
is of the form &% = 2me’n(1/E) /ey, where () denotes
the average over the normalized single-particle distribu-
tion function and n is the 3D particle density. Again,
validity of the latter expression is not limited to thermal
equilibrium. A similar analysis as above shows that the
plasmon pole occurs when

2 2
R?(q — 2k cos 0) <l>=1’ (A8)
8m* E
a condition which is equally well met in and out of ther-
mal equilibrium. In case of a Maxwellian distribution, re-
sulting in the Debye-Hiickel form for the screening length,

- 2 . .-
2 = 4me’n  ,ne obtains the condition
kT’

lfiz(q —2kcosf)? 1

2 2m*kgT (AQ)

Thus, both real and imaginary part of DFPA(g,w) need
to be considered and dynamic screening within the PPA
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may produce different results than static screening. Al-
ternatively, consider a nonequilibrium distribution func-
tion f(k), which is sharply peaked around ko. Most
¢ =~ 0 Coulomb scattering processes occur between states

around ko and, again, the plasmon pole in Eq. (A2) will
contribute. However, numerical studies have shown that
the difference between the PPA and static screening is
negligible at low carrier concentrations.!?
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