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Persistent currents in a quantum ring: Effects of impurities and interactions
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We have studied the persistent current in a quantum ring in the presence of a Gaussian impurity
and/or with Coulomb interactions included. The impurity potential mixes the states, lifts the
degeneracies in the energy spectrum, and reduces the persistent current from its impurity-free value.
The role of interactions in the absence or presence of an impurity was found to be insignificant. We
also present the results for the charge density of the system in the presence of the impurity with or

without the Coulomb interactions.

Recent studies of quantum confined systems (e.g.,
quantum dots and quantum rings) have made it increas-
ingly clear that electron correlations play a major role in
these mesoscopic systems.*? Experimental observation
of the persistent current in a single mesoscopic ring®4 in
contrast to such studies in an ensemble of 107 rings,® has
opened up possibilities for exploring unambiguously sev-
eral outstanding problems in this field. One such problem
is how and to what extent the interelectron interactions
influence the persistent current. Similarly, an unambigu-
ous picture of the interplay between the impurity and
interelectron interactions is not yet available. While the
single-electron results are fairly well established,® no re-
liable quantitative theory exists, as yet, in the case of
many-electron systems. A very interesting intuitive ar-
gument on the effect of interacting electrons on the per-
sistent current was presented some time ago by Leggett.”
Based on variational arguments and two important prop-
erties of the many-particle wave function in a mesoscopic
ring, viz., the antisymmetry and the single valuedness,
Leggett conjectured that, for arbitary electron-electron
interactions and an arbitary external potential, the max-
ima and minima of the energy curves for even and odd
numbers of electrons would be the same as for the non-
interacting systems.

Our approach to the quantum ring, where we intro-
duced the Coulomb interactions explicitly (in the ab-
sence of any impurity), supports this conjecture.® In our
model,?1% the electron is confined to a parabolic poten-
tial and subjected to a perpendicular magnetic field. The
single-electron Hamiltonian is written as

where the vector potential is A = }(—By, Bz,0) (sym-
metric gauge). As we have demonstrated earlier,® our
model in the appropriate limit, correctly reproduces the
behavior of an ideal one-dimensional ring® and that of
a two-dimensional electron gas. The energy spectrum
for the noninteracting electrons,’® magnetization, and
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susceptibility'® were also calculated in that model.

In order to introduce the interelectron interaction,
we evaluated the two-body matrix element numerically,
where we employed the Coulomb interaction. Those cal-
culations indicated that, in the lowest Landau level, the
Coulomb interaction simply shifts the noninteracting en-
ergy spectrum to higher energies. There is no discernible
effect of interaction on the magnetization. We found that
this is due to conservation of angular momentum in the
system: all close-lying states in the lowest Landau level
belong to different angular momentum and the Coulomb
force cannot couple them.

Similar conclusions were reached independently by
Weidenmiiller et al.,'! who found that, in the absence
of impurities, rotational invariance causes the many-
electron Hamiltonian H and the z component of the an-
gular momentum L, to commute. The position of the
minima of the energy parabolas, as a function of the
magnetic lux ®, is however, determined solely by the
eigenvalues M of L, and is independent of interelectron
interactions. As a result, persistent current is exactly
the same with and without interactions added to the
Hamiltonian. On the other hand, the impurity poten-
tial destroys this rotational invariance. The persistent
current is expected to reduce monotonically with increas-
ing strength of Vi™P(r). Using level-density arguments
and numerical simulations, these authors showed that the
interelectron interaction very effectively counteracts the
tendency of Vi™P(r) to drastically reduce the persistent
current below the “ideal” (no impurity scattering and no
Coulomb interaction) case.

At this point, we would like to contrast these results
with those obtained from the one-dimensional (1D) disor-
dered discrete-lattice ring model.}?'3 In this model, ex-
act results from numerical diagonalization of the Hamil-
tonian are available for small ring sizes. In the case of
long-range Coulomb interactions,'? it was found that de-
pending on the disorder, interaction can increase or de-
crease (mostly decrease) the current. There are also re-
ports on the 1D rings of spinless fermions with short-
range (nearest neighbor)!® interaction on a lattice for
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various band fillings. At half filling, the interaction was
shown to induce a metal-insulator transition. Away from
half filling and in the presence of impurity scattering, in-
teraction was found to decrease the current.!3 The differ-
ent conclusions reached from the two approaches (Refs.
11 and 12) were explained as due to two very different
models adopted, viz., lattice and continuum models.

Obviously, the influence of the impurity interactions
and/or Coulomb interactions on the persistent current is
quite intricate. It is also clear that, although the work
of Leggett” and others!! ' provides a rather qualita-
tive picture, for a better understanding of the underlying
physics, we need to study how the energy spectrum of
a quantum ring will evolve when the impurities and/or
interelectron interactions are introduced. Such a study
is now reported in this paper, where we have analyzed
the effect of a Gaussian impurity interaction with and
without the electron-electron interaction on the energy
spectrum and persistent current. In a quantum ring, the
wave functions are of the form

¥a = Ru(r)e?®, n=0,1,2,...,

1=0,+1,+2,...,

and A represents the quantum number pair {n,l}. The
impurity interaction is chosen to be of the form

Vimp(,r) — 'VO e—-(r-—R)z/dz’

where V is the potential strength and d is the width.
The impurity matrix element can then be written as

T,\,)‘l = 27I'V0 eimo" /RA (T)R/\l(’l') 8_(R2+T2)/d2

g (%@) rdr,
where m = l' -1, (R, o) is the impurity position, and I,
is the modified Bessel function. The two-body interaction
matrix element has been already described earlier.® Let
ro be the radius of the ring and A = nr? its area. The
length is measured in units of 7o and the energy in units

of h?/2m*rA.° In these units the confinement potential
and the Coulomb interaction are

1
U(r) = Em*wg(r —719)? = 4a®(z — 1),

2

& 9.45m*Re,

er €T

where a = wom*A/h, x = r/re, Ry = 10 is the radius
of the ring in nanometers, ¢ = 12.9 is the background di-
electric constant, and the effective mass was chosen to be
m* = 0.067 appropriate for GaAs. In the impurity po-
tential given above, the strength V, is expressed in this
energy unit. For a = 20, the single-electron energy spec-
trum closely resembles that of an ideal 1D ring, while

for a = 5, it has the characteristics of a two-dimensional
electron gas.® In what follows, we present the numerical
results for these two values of a. The noninteracting ba-
sis used in the diagonalization of the Hamiltonian was
formed from the single-particle states R,;(r)e®'®, where
the radial wave functions R,;(r) were obtained by numer-
ically solving the single-particle Schrédinger equation for
the parabolic confinement potential.® The cutoff in the
single-particle energies and correspondingly the number
of the single particle states to be included into the basis
was determined so that the total energies of the inter-
acting impurity system were accurate up to six decimal
places.

The results for the single-electron energy spectrum is
presented in Fig. 1 for a = 20,5 and various values of
Vo and d. The choice of the impurity-potential parame-
ters was made such that the spectrum is modified either
very weakly or very strongly. The effect of the impu-
rity potential, in general, is to couple all single-electron
states and thereby cause level repulsion. Even for a weak
impurity potential (Vo = 0.5,d = 0.2) for o = 5, the de-
generacies in the spectrum are lifted and the amplitude
of the oscillations in magnetization is reduced [Fig. 1(c)].
In the case of the strongest impurity potential considered
here (Vo = 4.0,d = 0.5) for a = 20, the structures in the
energy and magnetization curves are completely washed
out [Fig. 1(b)].
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FIG. 1. Single-electron energy spectrum and magnetiza-
tion (in units of energy defined in the text) vs ®/®o for (a)
a=20, Vo=1.0, d=0.2; (b) a =20, Vo = 4.0, d = 0.5; (c)
a=5, Vo=0.5,d=0.2;and (d) =5, Vo =1.0, d = 0.5.
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The effect of the impurity potential for the noninter-
acting and interacting systems on the energy and per-
sistent current of a four-electron system is displayed in
Fig. 2 for ¢« = 20 and in Fig. 3 for « = 5. In these
figures, we plot energy (left panel) and magnetization
(right panel) of the (a) noninteracting and impurity-free
electron systems, which are then compared with results
for two different values of impurity-potential parameters
Vo and d without [(b) and (d)] and with [(c) and (e)]
Coulomb interactions included. For @ = 20 and moder-
ate impurity strength [inferred from the small degeneracy
gap, as in Fig. 1(a)] Vo = 1.0,d = 0.2, the energy spec-
trum shifts up slightly after impurity and interactions are
added [Figs. 2(b) and 2(c)]. The amplitude of oscillations
in magnetization also decreases slightly when impurity is
added in the system and there is an almost insignificant
further decrease when interactions are also included. For
the strong impurity case, i.e., Vo = 4.0,d = 0.5, the trend
is the same: In a noninteracting system, but with impu-
rity potential included, the degeneracy gap is quite large
[Fig. 2(d)] and there is a rapid decrease in magnetization.
Again, there is also a very minor further decrease, when
the interaction is added in the presence of the impurity
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FIG. 2. The lowest two energy values and magnetization vs
® /P, for a four-electron system at a = 20. (a) Noninteract-
ing and impurity-free, (b) noninteracting, but with impurity
potential (Vo = 1.0,d = 0.2), (c) interaction and impurity
included (Vo = 1.0,d = 0.2), (d) noninteracting, but with im-
purity included (Vo = 4.0,d = 0.5), and (e) interaction and
impurity included (Vo = 4.0,d = 0.5).
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FIG. 3. Same as in Fig. 2, but for « = 5, and Vy, = 0.5,
d = 0.2 [(b) and (c)] and Vo = 1.0, d = 0.5 [(d) and (e)].
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FIG. 4. The charge density for a = 20,V, = 4.0,d = 0.5,
with (a) noninteracting but impurity included and (b) impu-
rity and interactions included.
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[Fig. 2(e)]. The interaction simply shifts the energy spec-
trum to higher energies. For a = 5, the results are qual-
itatively similar, except that the effects described above
are somewhat weaker. We have already mentioned in the
introduction that in the absence of any impurity poten-
tial, interaction has no effect on the persistent current.
From these results, one can conclude that, while the per-
sistent current is dramatically reduced in the presence
of strong disorder, the role of Coulomb interactions is
almost insignificant. Finally, to explore the features of
the quantum ring described above somewhat further, we
have presented the effect of the impurity to the electron
density,

p(r,0) = Z e Ry (r) R (7) a}\a,\: ,
SWY

in the ground state. As expected, the impurity breaks
the rotational symmetry by localizing the electrons (to
some extent) to positions that are mirror symmetric with
respect to the axis passing through the impurity and
the center of the ring [Fig. 4(a)]. This localization is
slightly enhanced by the repulsive Coulomb interaction

[Fig. 4(b)].

In conclusion, we calculated the effect of impurities
and interactions on the persistent current in a quantum
ring. We found that the persistent current is reduced
when the impurity is included in the system. But even
for the strongest impurity case, there was no significant
effect of interaction on the persistent current. The only
effect of interaction was to shift the energy spectrum to
higher energies. The advantage of the present scheme is
that we can investigate many other physical properties
of a quantum ring, like the pair-correlation functions of
the interacting systems in the presence of an impurity
and the magnetoplasmon resonances, recently observed
in quantum rings.'® Such studies will be reported else-
where.
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