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EfBcient scheme for G'R quasiparticle band-structure calculations with applications
to bulk Si and to the Si(QQl)-(2X1) surface
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We report an eKcient scheme for evaluating the quasiparticle corrections to local-density-
approximation (LDA) band structures within the GW approximation. In this scheme, the GW
self-energy corrections are evaluated in a sufBciently Bexible Gaussian orbital basis set instead of
using plane-wave Fourier representations of the relevant two-point functions. It turns out that this
set has to include orbitals up to f type-symmetry, when in the LDA calculations Gaussian orbitals
up to d-type symmetry are needed for convergence. For bulk Si, both schemes yield virtually iden-
tical quasiparticle band structures and the demand on computer time is roughly the same. For the
Si(001)-(2x1) surface, the GW Gaussian orbital scheme is a factor of 5 faster. In our calculations
for Si(001)-(2xl) the dynamic dielectric matrix is obtained by applying a plasmon-pole approxima-
tion. The static dielectric matrix of the Si(001) surface is fully calculated within the random-phase
approximation (RPA). In addition, we have performed quasiparticle surface band-structure calcu-
lations employing two model dielectric matrices. Our respective results are compared with those
obtained employing the full RPA dielectric matrix as well as with results of previous calculations
by other authors which were based on model dielectric matrices.

I. INTRODUCTION

It has been shown within the last decade that well-
known shortcomings of the local-density approximation
(LDA) for calculating band structures of semiconductors
and their surfaces can be surmounted by Brst-principles
quasiparticle calculations employing the many-body for-
malism presented by Hedin, and Hedin and Lundqvist.
The basic quantity of this theory is the nonlocal, non-
Hermitian, and energy-dependent self-energy operator
Z(r, r', E), a two-point function with respect to its spa-
tial degrees of freedom. In lowest approximation, Z is
given as a product of the Green's function G times the
screened Coulomb interaction W. This approximation is
usually referred to as the GW approximation (GWA). In
their landmark contribution to the Beld, Hybertsen and
Louie developed practicable schemes for evaluating the
many-body corrections within the GUAVA and they arrived
at theoretical results that showed excellent agreement
with a whole body of experimental data. One important
feature for the success of those calculations was the in-
clusion of local fields and dynamic eEects in the screened
Coulomb interaction TV. The required dielectric matrices
are calculated within the random-phase approximation '

(RPA) for the static case and are extended to finite fre-

quency using a generalized plasmon-pole model based on
sum rules. In the calculations, both the one-point wave
functions of the LDA and the two-point functions of the
GUAVA have to be represented by appropriate basis sets.
For example, Hybertsen and Louie, as well as, other
authors employed. plane-wave basis sets both for the
LDA and the GWA calculations.

A basis set of localized Gaussian orbitals can equally

well be used to represent the LDA wave functions. Small
LDA Gaussian orbital basis sets yield results that are in
excellent agreement with the results of respective plane-
wave calculations, as we have shown, e.g. , in a previ-
ous paper. In all previous GW calculations reported
so far, 3 the matrix elements of the self-energy op-
erator have been represented using plane waves, i.e., a
Fourier representation was used. Since the operators of
the GUAVA are two-point functions with respect to their
spatial degrees of freedom, their Fourier representation
in. the plane-wave approach is extremely demanding, in
particular when surfaces or bulk systems with occupied
d orbitals are consid. ered.

In this paper, we present an efBcient scheme for repre-
senting the operators entering the GW' quasiparticle cal-
culations in a Gaussian orbital basis set. To classify the
various possible approaches more clearly, we use the fol-
lowing abbreviations throughout this paper. They refer
to the LDA and to the GUAVA, respectively. Each method
can be evaluated using either a basis set of plane waves
(PW-LDA, PW-GWA) or a basis set of Gaussian orbitals
(GO-LDA, GO-GWA). Hybertsen and Louie, e.g. , com-
bined the PW-LDA with the PW-GWA in their calcu-
lations, while we combined the GO-LDA with the PW-
GWA in our previous work. In this paper, we present
and employ a combination of the GO-LDA with the GO-
GR'A. The size of the problem in this GO-GWA ap-
proach with respect to the necessary CPU size and com-
putation time is reduced drastically, as compared to the
P%'-GWA, in particular for surfaces and for bulk solids
with occupied d orbitals like II-VI semiconductors. Us-
ing the GO-GR"A approach, we have achieved the calcu-
lation of the quasiparticle band structure of the Si(001)-
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(2x 1) surface incorporating the full RPA static dielectric
matrix.

The paper is organized as follows. In Sec. II, we briefly
address the GWA in general and summarize the ba-
sic equations needed for the following discussions. In
Sec. III, we describe in detail the representation of the
relevant two-point functions of the GWA in the Gaussian
orbital representation and their evaluation. In Sec. IV,
we apply our scheme to bulk Si and to the Si(001)-(2x 1)
surface. Our results are presented and discussed in com-
parison with pertinent literature data. Both the full
static RPA matrix and two diR'erent model functions for
the static dielectric matrix are employed. The useful-
ness of these model functions is assessed by comparisons
with our full RPA results and results &om the literature
that are based on model functions. A short summary
concludes the paper in Sec. V.

II. THE GR' APPROXIMATION

For the calculation of the electronic band structure
of a semiconductor system from first principles, the ex-
change and correlation e8'ects of the interacting electrons
play a very important role. The major difFiculty stems
from an adequate treatment of the dynamical correla-
tions of the electrons in the solid with an energy gap
and a strongly inhomogeneous charge d.ensity. Within
the widely used density functional theory (DFT), these
eftects are described approximately by a local potential
V„,(r). This approximation enables a very reliable de-
termination of the ground-state properties of the system.
However, such an exchange-correlation potential is not
well suited to compute single-particle excitation energies.
For this task V„,(r) has to be replaced by a nonlocal,
energy-dependent self-energy operator Z(r, r', E), which
enters the quasiparticle equation '

h2 v'+ v. (r) + vm(r)I g„y(r)

+ ~(»r E ~)4' k(r )~ & = Enk4'nv(r) . (1)

As was pointed out by Hedin, and Hedin and
Lundqvist, the self-energy operator can be expanded
in a series containing the Green's function G and the
screened interaction W of the system. The first term of
this series constitutes the GW approximation:

The dynamically screened Coulomb interaction W
v is evaluated as follows. First, the polarization P

is calculated within the random-phase approximation. '

The result is convoluted with the Coulomb interaction v

yielding the dielectric function e = 1 —vP. Then the in-
verse dielectric function e is calculated and the result
is again convoluted with the Coulomb interaction. This
finally yields the screened interaction W.

Since the evaluation of the RPA expression of the po-
larization requires very much computation time, we per-
form it only for the static polarization, i.e., at frequency
su=0. The resulting static dielectric function is then ex-
tended to the dynamic one by use of a plasmon-pole
model, taking Johnson's sum rule into account.

After defining this GW self-energy operator, one has
to solve Eq. (1) self-consistently. We take as starting
values the results of a self-consistent DFT-LDA calcula-
tion. It turns out that for many systems the LDA wave
functions g"kD+(r) agree remarkably well with the final
GW wave functions. ' Therefore, the self-energy oper-
ator can be constructed using the results of the LDA
calculation (wave functions, energy spectrum, and elec-
tronic density) and an iterative evaluation of Eq. (1) is
not necessary. The quasiparticle energies are then simply
given by

(4)

The renormalization constant Z j, has been introduced
to take into account the energy dependence of the self-
energies Z g(E) to some extent. Equation (4) can be un-
derstood as the result of a perturbation approach that is
evaluated to first order. The second-order contributions
to the energy can also be calculated. We have tested this
for a number of systems like Si, GaAs, or diamond and
have found that these contributions nearly vanish. Since
the second-order contribution to the energy arises from
the first-order contributions to the wave functions, this
supports the assumption that g„k

As an alternative approach, the static dielectric func-
tion may be approximated by model functions (see Ref.
9 and references therein). By application of such model
functions in the GWA calculation of the quasiparticle
band structures of bulk semiconductors like diamond, Si,
Ge, GaAs, and SiC, we have obtained. results in good
agreement with our full RPA calculations.

Z(r, r', E) = — e ' G{r,r', E —~)W(r, r', ~)d~ .
27r

(2)

For the computation of the self-energy operator and the
evaluation of Eq. (1), we employ the scheme of Hybert-
sen and Louie. s The Green's function G(r, r', E) of the
system is calculated as

G(, , E) )- @-~-(r)@.*~.(r')
(3)- E —E„k + i0+sgn(E„g —p)

III. O'WA USINC I OCALIZED
BASIS FUNCTIONS

In this section we present our scheme for calculating
quasiparticle band structures within the GWA using lo-
calized Gaussian orbitals both in the underlying LDA
calculations as well as in the GWA calculations. Usually
the computer demand for the evaluation of the GWA
scales as O(N ) or O(K ) (depending on the respective
plasmon-pole model used), where K is the number of
electrons in the unit cell. Surface calculations are very
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demanding for this reason. The numerical size of the
problem also scales as O(M2) where M is the neces-
sary number of GR' basis functions per atom. There-
fore systems with strongly localized electronic states like
II-VI semiconductors with occupied d orbitals are very
demanding when plane waves are used as GW basis func-
tions. Our approach of using Gaussian orbitals instead
of plane waves as GW basis functions does not overcome
the bad scaling of the GWA with respect to the size N
of the problem. But the absolute demand for computer
size and computation time is very much reduced due to
the small number M of GW basis functions per atom
required both for surfaces and for systems with strongly
localized electronic states.

such systems is much more eKcient when localized basis
functions are used, since the required number of respec-
tive functions remains modest even for strongly localized
states. This has also been shown by Aryasetiawan and
Gunnarson for the calculation of the dielectric matrix of
Ni, as well as for the calculation of the electronic struc-
ture of NiO within the GWA.

A two-point function f(r, r') obtaining the transla-
tional invariance of the crystal can be represented by any
complete set of functions (yp(q, r)). Since a finite set is
never rigorously complete, at least a suKciently Hexible
basis set should be used. . In this work we use a basis set
of Gaussian orbitals of the same type as in the GO-LDA
calculations [see Eq. (5)]:

A. The GO-LDA basis set
f(r r') =).).~) (q r)(f)» (q)~j (q r')

PP'

To perform the LDA calculations, we use norm-
conserving ab initio pseudopotentials. Only the valence
electrons are considered. For the representation of the
respective wave functions, we use Gaussian orbitals that
are centered at the atomic positions in the unit cell. To
obtain suFicient flexibility of the basis set, we employ
several shells of Gaussians with di8'erent decay constants
for each atom. Each shell contains s, p, d, and s* or-
bitals. The following linear combination of atomic Gaus-
sians yields Bloch functions that can be used as basis
functions in the crystal:

Similar to the common Fourier transform, f is repre-
sented in Eq. (6) by a matrix with elements (f)»~(q),
but with respect to the localized basis. It should be noted
that the orbital types and decay constants of the GO's
in Eq. (6), in principle, are entirely independent from
those of the GO-LDA basis set in Eq. (5). In order to
obtain the representation matrix (f), the elements of the
following matrix [f] have to be calculated first. They are
de6ned as

Ifjpp (q) = f yj(g, r)f(r, r')yp (q, r')d v& r' . (&)

y (k, r)= ) e'"~ + -lP (r —R —7- ) . (5)
N

The two matrices [f] and (f) are related to each other in
the following way:

The index n specifies the orbital character (s, p
d „,...,) of the Gaussian functions P (r) and labels Gaus-
sians with different; decay constants. The atomic position
in the unit cell is v and R is a Bravais lattice vector.

It turns out that these basis sets yield results for the
structural and electronic properties of semiconductors
agreeing very well with those of converged plane-wave
calculations. (See Ref. 9 for that matter. ) The calculated
structural properties also agree well with experimental
results. Of course, the band structures suer from the
well-known gap problem that is typical of all DFT-LDA
calculations.

B. The GO-GWA basis set

So far, the space dependence of two-point functions
f(r, r') appearing in the GW approximation (e, v, W, ...)
has been expressed in terms of their Fourier transforms,
i.e. , by a matrix representation f~ ~i(q) with respect to
plane waves (see, e.g. , Refs. 3, 8, and 9). The number of
plane waves that is necessary to obtain sufBcient accuracy
depends very much on the system under consideration.
Typical values for standard bulk semicond. uctors range
&om about 100 to 200 plane waves. If strongly local-
ized wave functions are to be described, e.g. , the d elec-
trons of transition metal elements and their compounds,
many more plane waves are required. The description of

(f)(q) = ~ '(q)[f](q)~ '(q)

where S is the overlap matrix of the basis functions:

(8)

~~1 (~) = f ~t(~ )~1 (~ )~'" (9)

[~]»(q)=4). ). ).
k m&Val n&Con

Mp "(k, q) Mp, "(k,q)

Emk En, k+q

(10)

with

Mp "(k, t1) = f 4'' w(r)Xj(%, r)@„y+g(r)d r . (11)

The evaluation of the integrals Mg" (k, q) is described
below in more detail (see Sec. IIIC). By a convolution
of P with the Coulomb interaction e, one obtains the

For a plane-wave basis set, the overlap matrix would be
the unit matrix and the two matrices in Eqs. (7) and (8)
would be identical. For a Gaussian orbital basis set, how-
ever, the two matrices are di8'erent since the Gaussians
are nonorthogonal to each other. This has to be taken
into account throughout the calculations.

The matrix of the static polarization reads in RPA:
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dielectric function e = 1 —vP. In order to prevent di-
vergencies, we use the symmetrized form of the dielectric
function i = 1 —vPv. The double convolution of P with
the auxiliary function v(r, r') = err ~2/[r —r'~ replaces
its single convolution with the Coulomb interaction v (see
the Appendix). Using Gaussian orbitals, this convolution
is performed by matrix multiplications:

with

C'p(q) = ) Lpp &p (q)
Pl

The eigenvalues A«(u) are assumed to have the following
&equency dependence:

[e](q) = ~(q) —[u](q). ~ '(q) 9'](q) ~ '(q) [~](q) .

(»)

L '[ l(L ')'
pp. (q) =—. ).&p(q)~ ~ &p (q)

1

In order to obtain a dielectric function for nonzero &e-
quencies, one assumes that only the eigenvalues Aq~ in
Eq. (13) depend on frequency u while the eigenvectors
are taken to be &equency independent. Thus, the dy-
namic dielectric matrix becomes

Ielpp (q ~) = ).4'p(q)~«(~) C'p (q)
l

(i4)

In order to extend the static dielectric function to
nonzero frequencies, we introduce a plasmon-pole model
equivalent to that used in Refs. 6, 8, and 9. First we
perform a Choleski decomposition of the overlap matrix
S=LLt. After multiplication of [e] with the inverse of this
Choleski matrix, we calculate eigenvectors and eigenval-
ues

ld —((dcii —ZO+ )

u+ (~« —iO+) )
(16)

The parameters z«are chosen such that Eq. (14) repro-
duces the static dielectric function for u=o. The param-
eters cuq~ are determined by evaluating Johnson's sum
rule. '0

It should be mentioned that the &equency-independent
part of the eigenvalues (which equals one) would result
in [e ](q)=[1],i.e., this part describes the Hartree-Fock-
like exchange contribution to the self-energy. In contrast,
the frequency-dependent part of A

& (u) yields the corre-
lation contribution to the self-energy.

The inverse dielectric function is obtained easily &om
Eq. (14). Another convolution with 8 results in the dy-
namically screened interaction TV=vs v. Finally the
self-energy of an electronic state @ g is given as

(&-i I~(&)I&-i ) = ) ) . ) Mp "(»q) &p~( —q)
q n, l P

—1+ Z q7Q) q)

Z q)(d q)

E —E~

for n EVal
1

ELDA

1
for n &Con,

q)

with

& (q) = ).~ '
(q)[ ] -(q)c'p-(q)

PIP I I

(18)
(r —R —~ )pp(r —R —~p)p (r —R' —~,)d r.

(19)

C. Details of the method

The LDA wave functions vP i, enter the GW formalism
in the integrals Mp (k, q). These occur in the evaluation
of the RPA polarization [see Eq. (10)] as well as in the
final formula for the self-energy of a state vP i, [Eq. (17)).
Their evaluation requires most of the computation time
of our method. Since we express the wave functions in
terms of Gaussian orbitals y (k, r), the calculation of
MP (k, q) involves the evaluation of three-center overlap
integrals

We compute these integrals for all orbital types in an iter-
ative way following the prescription of Obara and Saiki.

The three-center overlap integrals in Eq. (19) tend to
zero if the atomic sites R+ v, R+ 7 p, and R'+ T
are far away &om each other. In slab calculations for
surfaces, many of the occurring integrals need not be
calculated for that reason.

As can be seen in Eq. (11), the GW basis functions
gp(q, r) must be suitable to represent products of wave
functions g' &(r) g I,+z(r). Since the wave functions
themselves contain contributions &om 8-, p-, and d-like
LDA basis functions, their products will consist of terms
with s, p, d, f, and g character (and even higher angu-
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[fbi (q) = ). &p (q) f~,~ (q) &p (q)
G,G'

(20)

where Kg(q) is the Fourier transform of a Gaussian
orbital, which is given analytically. With the help of
Eq. (20) the Fourier-represented quantities described
above can be transformed into the Gaussian represen-
tation in a very eKcient way.

The long-range behavior of the dielectric function is
difBcult to compute within RPA. In the Fourier repre-
sentation, the "head" of the dielectric matrix happ(q) (for
q ~ 0) contains most of the information about long-
range eKects. Its convergent calculation by a Brillouin-
zone integration requires many more k points than that
of the other matrix elements. As can be seen in Eq. (20),
the head of the Fourier representation of the dielectric
function contributes to all elements of the Gaussian or-
bital representation matrix [e]pp (q). In order to account
for the exact long-range behavior of the screening, we ex-
clude the head of the dielectric function &om the Gaus-
sian orbital matrix and calculate it in Fourier representa-
tion using a suKciently large number of k points. There-
after, the Fourier representation of the head is trans-
formed to the Gaussian orbital representation according
to Eq. (20) and is added to the dielectric matrix.

IV. RESULTS

We have applied our approach first to bulk Si in order
to test its accuracy in direct comparison with a conven-

lar momenta, since an orbital that has a defined angular
momentum with respect to its localization center has no
longer a single angular momentum when it is viewed &om
another lattice site). Therefore, the GW basis set must
contain functions of higher angular momenta than the
LDA basis set. We find that for Si the use of GTV basis
functions with angular momenta l=0, 1, 2, and 3 yields
sufficient accuracy (see below). Other systems may re-
quire even higher angular momentum functions in the
basis for the GR' calculations.

All two-point functions occurring in the GUAVA are rep-
resented using Gaussian orbitals. Some quantities, how-
ever, are set up in terms of their common Fourier repre-
sentation 6rst, before they are transformed into a matrix
representation with respect to the Gaussian basis (see be-
low). First, most model dielectric functions ec ~ (q) are
constructed in terms of plane waves. Second, the auxil-
iary function v that is used. to describe the Coulomb in-
teraction v is represented by a diagonal matrix in Fourier
space (see the Appendix). Its representation matrix with
respect to Gaussians is obtained very fast as described
below. [The direct calculation of [v]pp (q) according to
Eq. (7) would converge only very slowly with respect to
the number of neighboring cells K because of the long-
range behavior of v.] Third, the evaluation of Johnson's
sum rule usually is carried out in Fourier space, as well.

If the common Fourier transform fc, c, (q) of a two-
point function is known, it is easily transformed into the
representation matrix [f]pp (q) with respect to the Gaus-
sian orbital basis set by

tional GW calculation within the Fourier representation.
Next, we have studied the Si(001)-(2x 1) surface which,
to our knowledge, has not yet been treated by a full RPA
GW approach, so far.

A. Bulk Si

To calculate the wave functions and the band-structure
energies entering the GTV scheme, we perform a GO-
LDA calculation first. In this calculation, we use 20 ba-
sis functions for each atom with decay constants of 0.15
and 0.5 (in atomic units). The separable pseudopoten-
tial of Stumpf, Gonze, and ScheR.er is employed. The
exchange-correlation data are taken from Ceperley and
Alder as parametrized by Perdew and Zunger. Ten
special points are used in the Brillouin-zone summations.
We have shown in Ref. 9 that our LDA basis set consist-
ing of 40 Gaussian orbitals per unit cell leads to an LDA
band structure for bulk Si in excellent agreement with the
results of highly converged plane-wave calculations per-
formed with 450 plane waves. These LDA calculations
together with the GW computations within the Fourier
representation, as described in Ref. 9, were carried out for
the experimental lattice constant of 5.43 A. The theoret-
ical lattice constant of 5.37 A. , which we obtain by total
energy minimization using the Ceperley-Alder exchange-
correlation energy, is roughly 1% smaller than the exper-
imental value. This is in agreement with previous results
obtained with basis sets of localized orbitals, as well as
of plane waves. Here we present our results for bulk Si
calculated at the theoretica/ lattice constant for reasons
of consistency with the structure optimization in the case
of the Si(001)-(2x1) surface reported in the next section.
In consequence, the fundamental LDA gap of 0.46 eV
obtained in this work is a little bit smaller than that of
0.56 eV obtained for the experimental lattice constant,
as reported in Ref. 9.

Based on this GO-LDA calculation, two GTVA calcula-
tions have been performed. First, we use 60 Gaussian or-
bitals in a GO-GR'A calculation according to the method
described in Sec. III B. The dielectric matrix is calculated
within the RPA. We obtain a bulk dielectric constant
c =13.0, which is slightly larger than the value of 12.7
which we obtained for the experimental lattice constant,
previously.

As the most important efFect of the GTV calculations,
the LDA valence band energies are shifted to lower ener-
gies by —0.40 to —0.65 eV according to Eq. (4), depending
on the particular band and wave vector considered. The
quasiparticle shifts are displayed in Fig. 1 with respect
to the LDA energy of the respective state. The shape
and dispersion of the valence bands remain more or less
unchanged. The GR' valence band width amounts to
12.17 eV as compared. to the LDA value of 12.11 eV.
On the other hand, the LDA conduction band energies
are shifted to higher energies by about +0.25. . . + 1.0
eV with the largest shifts for the high-energy conduction
band states. The fundamental gap is increased by +0.77
eV and amounts to 1.23 eV in very good agreement with
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FIG. 1. Calculated quasiparticle shifts Ec~z —Ezz~ for
the Si bulk states (dots) and for the dangling-bond states of
the Si(001)-(2xl) surface (crosses).

the experimental value of 1.17 eV. This gap energy is
a little bit smaller than the value of 1.31 eV, which we
obtained in Ref. 9 for the experimental lattice constant.

Next we have performed a second GR' calculation for
the same system using the common PW-GR'A method
with Fourier transforms instead of the Gaussian orbital
representation. In that calculation we employ 113 plane
waves as GW basis functions (cf. Ref. 9). All other as-
pects of this PW-GUAVA calculation are identical to the
GO-GWA method described above. We again evaluate
the RPA expression for the static dielectric function em-
ploying the plasmon-pole model. Also for the plane-wave
basis, we obtain a bulk dielectric constant of e =13.0.

The quasiparticle shifts obtained by the PW-GUAVA

and the GO-GUAVA are the same within 0.03 eV for the
valence band states and 0.05 eV for the conduction band
states with few exceptions at high energies (e.g. , 0.08 eV
for L2,). The gap energy is 1.20 eV for the PW-GWA
and 1.23 eV for the GO-GWA, respectively. The valence
band width amounts to 12.18 eV (PW's) and 12.17 eV
(GO's), respectively. The two band structures are dis-
played in Fig. 2. Solid lines show the GO-GUAVA result
and dashed lines show the PW-GWA result, respectively.
The results are virtually identical. The figure thus proves
the equivalence of both approaches for calculating the
self-energy corrections to the Si bulk band structure.

As Gaussian GW basis functions we use 8, p, d, and
8 orbitals with decay constants of 0.15 and. 0.5 for each
atom in the unit cell as in our GO-I.DA basis set. But,
in addition, f orbitals with a decay constant of 0.5 had
to be employed to achieve good agreement with the PW-
GWA calculations mentioned above. Without f orbitals
in the GW basis set, the band-structure energies change
by up to 0.5 eV and disagree with the PW-GTVA re-
sults. The gap energy, e.g. , is reduced to 0.97 eV while
the valence band width is increased to 12.28 eV. There-
fore, we have included f orbitals in the GW basis set
in all calculations for the Si(001)-(2xl) surface, to be
reported below, in order to obtain accurate quasiparti-
cle band structures. It should be noted at this point that
higher angular momenta are included in plane-wave basis
sets automatically.

In Table I, we give some information on basis-set size
and necessary CPU time for the calculations in the dif-

FIG. 2. Calculated quasiparticle band structure for bulk
Si, obtained with Gaussian orbitals as GW basis functions
(GO-GWA, solid lines) and with plane waves as GW basis
functions (PW-GWA, dashed lines), respectively.

ferent schemes. Our GO-LDA basis set (containing 40
functions) is much smaller in size than an equivalent PW-
LDA basis set that requires some 400 functions (corre-
sponding to an energy cutofF of 15—20 Ry). At the same
time, a PW-GUAVA basis set requires much less functions
(about 113) than the PW-LDA basis, because the self-
energy operator has a smoother real-space structure than
the LDA wave functions. On the contrary, the number
of Gaussian functions required by the GO-GUAVA method
(about 60) is larger than that needed for the GO-LDA
because of the necessary inclusion of f orbitals in the for-
mer. Yet, in the case of bulk Si the number of required
plane waves for the GW approximation is about twice
as large as the number of Gaussian orbitals required for
the same accuracy. Therefore, all matrix operations are
faster to perform when using Gaussians. But the eval-

Bulk Si

~ min
Si(001)-(2x 1)

7 min

LDA
PW

400

3000

LDA
GO

40

400

GUAVA

PW

113
8

1000
500

GTVA
GO

60
8

520
110

TABLE I. Numbers of basis functions v, as required by cal-
culations using plane waves or Gaussian orbitals, respectively.
The CPU time r (given in minutes) refers to the calculation of
the self-energy of ten states (mk) at a given k point for bulk
Si or of one state (mkII) at a given kII point for the Si surface.
The calculations are carried out on an IBM RS/6000-580.



52 EFFICIENT SCHEME FOR GR' QUASIPARTICLE BAND-STRUCTURE. . .

uation of the RPA expression of the static polarization
[Eq. (10)], as well as the calculation of the self-energies
according to Eq. (17) involve the evaluation of the neces-
sary three-center overlap integrals M& "(k,q). This re-
quires considerable computation time. Nevertheless, we
find that both ways of evaluating the GTV approxima-
tion for bulk Si require about the same computation time,
namely about eight CPU minutes on an IBM RS/6000-
580 for the self-energies of ten states at one k point (not
counting for the calculation of the dielectric matrices).
If the studied system contains, however, more localized
wave functions the PW-GWA requires much more ba-
sis functions whereas the number of required Gaussian
orbitals in the GO-GWA will be roughly the same as
in bulk Si. In this case our GO-GWA method is much
faster than the PW-GWA approach. This holds for sys-
tems like diamond or SiC as well as for transition metal
elements containing strongly localized d electrons. We
note in passing, that related work on II-VI semiconduc-
tors including strongly localized, occupied d orbitals is
in progress. In that case the GO-GWA performs more
than an order of magnitude faster than the PW-GR'A.
Here we present applications of the GO-GWA method
to the Si(001) surface. Also in this case, the GO-GWA
performs much faster than the PW-GUAVA, as discussed
below.

B. The Si(001)-(2x1) surface

Since the (2x1)-reconstructed Si(001) surface has been
investigated very carefully both experimentally and the-
oretically, we consider it as a proper test system for our
new approach to the GWA. In particular, two GWA
calculations for the Si(001) surface have been reported
recently. ' However, they are both based on model di-
electric functions. Kress et at. investigated the (2x1)-
reconstructed surface while Northrup studied the low-
temperature c(4x 2) surface.

It is well known &om low-energy-electron-diKraction
experiments as well as from scanning tunneling mi-
croscopy (STM) studies2s that at room temperature
(RT) a nominal (2x1) reconstruction occurs. Formation
of dimers by pairing of neighboring surface atoms has
been identified as the main building block of the recon-
structed surface geometry. Empirical tight-binding cal-
culations by Chadi, as well as DFT calculations
carried out for a (2x1) unit cell show that the total en-
ergy of the surface is lowered if the dimers are asym-
metric, i.e. , if one atom is moved down (down atom)
while the other one is moved up (up atom) with re-
spect to the ideal surface plane. As a consequence of
this buckling, there are two diferent types of dangling
bonds. The occupied one (D„~)is mainly localized at
the up atom while the empty one (Dg „)is attributed
to the down atom. Both dangling-bond states are de-
tected in photoemission and inverse photoemission exper-
iments, respectively. The existence of asymmetric
dimers is also supported by the results of high-resolution
core-level spectroscopy studies. Detailed STM studies
have shown that the Si(001)-(2x1) surface is not well

ordered at RT. A high degree of defects and a coexis-
tence of asymmetric and symmetric dimers have been
observed in these experiments. This is not contradictory
to the theoretical result that asymmetric dimers are the
building blocks of the reconstruction. If a buckled dimer
switches between its left- and right-tilted configuration,
as suggested in Ref. 29, within a time period that is much
shorter than the time resolution of the experiment, the
experimental result will necessarily be a symmetric im-
age. This can be understood as a mean value of two
asymmetric dimers with opposite buckling directions.

At low temperatures or if dimer Gipping is suppressed
by neighboring defects, the interaction among the occu-
pied dangling bonds becomes important. It is energeti-
cally favorable when the occupied D„~states are as far
away from each other as possible. This can be achieved
by an alternating orientation of buckling along a row of
dimers and leads to a p(2x2) or to a c(4x2) reconstruc-
tion. Both patterns have been detected in LEED ex-
periments. This can be understood as an indirect proof
of the asymmetric buckling of the dimers. Recent STM
measurements carried out at temperatures below
200 K show that the major part of the Si(001) surface
consists of asymmetric dimers.

All our calculations are performed using a supercell
geometry containing eight layers of Si and six layers of
vacuum repeated periodically. Because of the finite thick-
ness of the Si slab in each unit cell, the dangling bonds
of its two surfaces will interact with each other and split.
(In our LDA calculations we get a splitting of up to 1
eV at the J' point of the surface Brillouin zone. ) This
problem is easily avoided by hydrogen saturation of one
surface of the slab. We keep the atoms of one-half of the
slab in their ideal positions. The dangling bonds of this
ideal surface are saturated with hydrogen atoms.

At the opposite, nonideal (2 x 1)-reconstructed sur-
face three layers of Si are relaxed. The geometry
optimization yields an asymmetric dimer configuration
with a dimer-bond length of 2.29 A and a buckling an-
gle of 20.2'. Our LDA calculations are carried out using
20 Gaussian basis functions at each atom (decay con-
stants of 0.15 and 0.5 for Si, 0.25 and 1.5 for H). We em-
ploy the separable Si pseudopotential of Stumpf, Gonze,
and ScheRer and the H pseudopotential reported by
Gygi. Two special points in the irreducible part of the
surface Brillouin zone are used.

Concernigg the surface band structure, we concentrate
on the dangling-bond states. They are displayed in Fig. 3
(LDA, dashed lines) together with the quasiparticle ener-
gies (full lines) as obtained by our GW correction scheme
(see below). All band-structure energies refer to the va-
lence band maximum of the bulk crystal. For this pur-
pose we have aligned the potential in the middle of the
slab with the bulk potential.

In LDA we obtain an occupied state D„pwith a band-
width of 0.95 eV. Its dispersion along the I'J line and
along KJ' is very weak because the dangling bonds are
separated by 7.60 A in the direction arthogonal to the
dimer rows. The dispersion along JK and J'I' is stronger
due to the smaller dangling-bond distance of 3.80 A. along
the dimer rows. The unoccupied state Dg „hasa larger
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bandwidth of 1.25 eV with its minimum value at J . We
And a weak dispersion orthogonal to the dimer rows and
a strong dispersion along the dimer rows for the same
reasons as discussed above.

In LDA we obtain an indirect fundamental surface
band gap of 0.20 eV. The direct energy gap between the
dangling-bond bands ranges from 0.70 eV at I' to 1.55
eV along the I'J2 line. It should be noted that the dis-
persion of the Dp „state depends very sensitively on
the surface geometry, especially on the buckling angle.
A reduction of the buckling angle reduces the gap as has
also been found by other authors.

Starting from this LDA calculation, the GW approx-
imation is evaluated following the method described in
Sec. III. We calculate the full static dielectric function
of the slab in RPA. In the GW basis set we employ the
same Gaussian orbitals for the Si atoms as used for the
Si bulk system, i.e., 8, p, d, and 8* orbitals with decay
constants of 0.15 and 0.5 and additional f orbitals with
the decay constant 0.5. For the H atoms we use 8, p, d,
and 8* orbitals with the decay constant 0.3.

For the calculation of the dielectric matrix as well as
for the evaluation of the self-energies, we employ two spe-
cial points in the irreducible part of the surface Brillouin
zone. In order to account for the long-range behavior of
the head of the dielectric function, we employ eight spe-
cial k~~ points for the calculation of this quantity in the
case of q —+ 0 (see Sec. III C). The dielectric constant
calculated for the slab geometry amounts to e' =12.3.
This value is smaller than e ""=13.0 calculated for the
bulk (see Sec. IVA).

The correction of the LDA energies according to
Eq. (4) results originally in a shift of D„~to lower ener-
gies by —0.35 to —0.20 eV (displayed by crosses in Fig. 1).
This energy shift is smaller than that of the valence band
maximum (VBM) in bulk Si of —0.40 eV (displayed in
Fig. 1). It should be noted that we have defined the
valence band maximum as EVBM ——0 eV for both the
LBA and the GUAVA results in Fig. 3. This way, relative
to E~BM the D„p band is eventually shifted to higher
energies by +0.05—+0.20 eV. The bandwidth of D„~is
increased a little bit by the GTV correction and amounts
to 1.00 eV (cf. 0.95 eV in LDA). The shape and disper-
sion of D„pis hardly affected by the quasiparticle correc-
tions. The quasiparticle energies of the dangling bonds
are displayed in Fig. 3 (solid lines).

The dangling-bond band D„p compares well with
experimental data from angle-resolved photoemission
spectroscopy, 22 2s especially with those of Ref. 23 (filled
circles in Fig. 3). This holds for both the LDA and the
GWA results (dashed and solid hnes, respectively). At I'
and J' and between I' and J we find very good agreement
of our GW quasiparticle band-structure energies with the
experimental values. Between J' and 1 and along the
[010] direction, the quasiparticle energies come out a lit-
tle bit higher than found experimentally. Both the LDA
and the GWA calculations yield distinct maxima of D„p
along JK, J'I', and I'J2, which have been observed in
LBA results of other authors as well, but they are
not observed in photoemission. The two experimentally
determined band structures of Refs. 22 and 23 difkr from
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FIG. 3. Calculated dangling-bond bands of Si(001)-(2xl).
Solid lines, GWA energies (full RPA calculation). Dashed
lines, LDA energies. The symbols refer to photoemission ex-
periments by Uhrberg et al. (diamonds) (Ref. 22) and by
3ohansson et al. (filled and open circles) (Ref. 23).

each other by up to 0.3 eV. This may be due to diKculties
in determining the position of the valence band maximum
EvBM with respect to the Fermi level E~. At J' and J2
some states (open circles in Fig. 3) are detected at about
—0.3 eV. They do not fit to the calculated dispersion
of the D„pstate. These measured features may be ex-
plained as a second dangling-bond band resulting from
local c(4x 2) regions existing already at RT on the norni-
nal (2 x 1)-reconstructed surface. In a c(4 x 2) reconstruc-
tion, for example, J2~q and J2xz are backfolded onto
J4~2 and become equivalent. Thus the dangling-bond
states D„~at J2~q and J2~~ may both be detected at the
same wave vector for the Jz~z high-symmetry point even
on the nominal (2x 1)-reconstructed surface. The exper-
imental bandwidth of the D„~state is somewhat smaller
than our results from the LDA as well as from the GW
calculation. This feature may be caused by local c(4x2)
regions existing already at RT, as well. In such regions,
the distance between the occupied dangling bonds is in-
creased due to the alternating orientation of the buckled
dimers. This leads to a reduction of the bandwidth of
the D„~state, as has been shown by Northrup's detailed
calculation for the c(4x2) reconstructed surface. The
resulting bandwidth is in good agreement with experi-
mental data.

The unoccupied state Dd
„

is shifted by the GlV
quasiparticle corrections to higher energies by +0.10—
+0.25 eV, which is a smaller shift than found for the
lowest bulk conduction band states (+0.25—+0.40 eV; see
Fig. 1). If we refer the quasiparticle Dd „band again to
E~BM, the Dd „stateis eventually shifted to higher en-
ergies by +0.50—+0.65 eV. Its bandwidth amounts to 1.20
eV, which is a little bit smaller than the LDA value of 1.25
eV. The indirect fundamental surface band gap, which
results as 0.20 eV in LDA, is increased by 0.50 eV and
amounts to 0.70 eV. The direct energy gap between D„p
and Dg „ranges from 1.10 eV at F to 2.00 eV along the
JK line. There are a few inverse photoemission data on
Dg~~„. We do not include them in Fig. 3 since their ab-
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solute energetic position with respect to E~BM is difficult
to determine &om the experimental data. From optical
spectroscopy experiments on the Si(001)-(2x1) surface,
the energy of the empty Dd „state at I' can be esti-
mated to be 1.1 eV above E~~M. " This agrees well with
our theoretical result of 0.95 eV. The fundamental surface
gap extracted &om optical absorption spectroscopy is
0.44 eV, which is smaller than our calculated value of 0.70
eV. STM measurements, on the contrary, show a larger
fundamental surface gap of 0.9 eV. Surface photovoltage
measurements have yielded a value of 0.64 eV.

It is quite revealing to analyze the exchange and cor-
relation contributions to the total self-energy at the sur-
face in comparison to the bulk. To this end, we present
in Fig. 4 self-energy values of the dangling-bond states
and compare them with the self-energies obtained for Si
bulk states. For the occupied D„pstate, the exchange
contribution E to the self-energy is negative and its ab-
solute value is smaller than that of occupied bulk states.
The correlation contribution E is positive and is smaller
than that of respective bulk states. In total, D„~shows
a smaller self-energy (—11.4 to —10.2 eV) than the upper
bulk valence band states (—11.65 eV for the VBM). For
the unoccupied Dg „state,the absolute value of the ex-
change contribution to the self-energy is larger than for
the low conduction band bulk states. The absolute value
of the correlation part, on the other hand, is a little bit
smaller. The total self-energy araounts to —9.9 to —9.2 eV
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FIG. 4. Calculated self-energies for bulk Si (dots) and for
the dangling bonds D„~ and Dg „ofthe Si(001)-(2xl)
surface (crosses). We present the exchange contribution

(a) and the correlation contribution (b) to the self-energies

(mk~E(B~k) ~mk) as well as the total self-energy (c) which is

given by the sum of both.

for Dg „andis larger than for the low conduction band
bulk states [

—9.05 eV for the conduction band maximum
(CBM)]. In the bulk calculation, the self-energies of the
VBM and of the CBM are separated by 2.60 eV. The
self-energy separation between occupied and unoccupied
states corresponds to the existence of a fundamental gap
in the band structure. The large difFerence between the
self-energies of occupied and unoccupied bulk states is
strongly reduced at the surface [see Fig. 4(c)]. In conse-
quence, the fundamental gap between the dangling-bond
bands at the surface is smaller than the bulk gap. It is
interesting to note in Fig. 4 that the total self-energies
for the respective states at energy E p show only a very
weak energy dependence while the separate exchange and
correlation contributions show significant but opposite
energy dependencies, as has been found for the homoge-
neous electron gas, as well. For the values of the total
self-energy, we observe the following trend:

Z(VBM) & Z(D„~)& Z(D~ „)& Z(CBM) (21)

In Fig. 1, we compare the quasiparticle shifts of the
dangling-bond states (crosses) at the Si(001)-(2xl) sur-
face to the quasiparticle shifts of the Si bulk states (dots).
As mentioned above, the absolute shifts of the dangling-
bond states are smaller than those of the bulk states,
resulting in a reduction of the step within this figure.
Nevertheless the correction values of the surface states
fit well to the bulk values. The distinct step function be-
tween occupied and unoccupied bulk states with a cor-
rection step of 0.7 eV is smoothed by the corrections for
the surface states whose energies lie in the fundamental
energy gap.

The calculated renormalization constants Z~g for the
surface and bulk states do not difFer very much. The
values for both the occupied and empty dangling-bond
bands range from 0.76 to 0.78. For the bulk states near
the fundamental gap we find somewhat larger values of
0.79—0.81. The dangling bonds are highly localized at
the surface. One cannot expect the screening properties
at the surface to be the same as in the bulk. Therefore,
the perturbation operator Z (r, r', E) —V„,(r) 8(r —r')
at the surface will difFer from that in the bulk. This real-
space difFerence as well as the energetic difFerences be-
tween dangling-bond states at the surface and bulk states
explain the difFerence between the self-energies E ~ of
respective states and. their difFerent quasiparticle correc-
tions, as discussed above. The good fit of the surface
state corrections to the bulk quasiparticle corrections (ac-
cording to Figs. 1 and 4) is a quite revealing result.

Finally we address the efficiency of our GO-GUAVA cal-
culations in comparison with PW-GWA calculations (see
Table I). A highly converged surface I,DA calculation us-

ing plane waves would require about 3000 basis functions
and the evaluation of the GW approximation would re-
quire more than 1000 plane waves. Again, the GW basis
set requires less basis functions than the LDA because
of the smooth real-space structure of the GW self-energy
operator as compared to the LDA wave functions. If
Gaussian orbitals are employed as basis functions, only
400 GO's are needed to perform the LDA. In this case,
the GW calculation again demands more Gaussians due
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to the need for including f orbitals but 520 GO's turn
out to be sufficient for good convergence (see Sec. IV A).

Contrary to the bulk situation, for the slab system
the GO-GWA method performs much faster than the
PW-GWA. The Gaussian method requires only about
110 CPU minutes for the self-energy of one state (mk~~)
whereas the PW-GWA method would require more than
500 CPU minutes. The same relation holds for the cal-
culation of the dielectric matrix in the RPA for one g
point. It would require more than 100 CPU hours for
plane waves as opposed to only 20 CPU hours for Gaus-
sians. In conclusion, we find that the evaluation of the
GW approximation for surface systems using Gaussian
orbital basis functions is a relatively fast and very efFi-

cient method.

C. Model dielectric functions for Si(001)-(2x1)

Finally, we address the question of the usefulness
of model dielectric functions for quasiparticle band-
structure calculations of surfaces. For more complex sys-
tems the evaluation of the RPA expression for the dielec-
tric function may quickly become too demanding, even
if localized basis functions are employed. In such cases
appropriate dielectric model functions could be particu-
larly useful. In Ref. 9 we have investigated both diagonal
and nondiagonal model functions for bulk semiconduc-
tors. We found that some nondiagonal functions that
account for local fields [labeled (b2) and (c2) in Ref. 9]
yield quasiparticle band-structure energies in good agree-
ment with GWA calculations employing the full RPA di-
electric function. In addition to the RPA dielectric ma-

trix, we have employed these two model functions in our
GO-GWA calculations for the Si surface, as well. In
Table II we compare the respective quasiparticle band-
structure energies with those resulting &om the full RPA
GW calculation discussed in Sec. IV B. The nondiagonal
model function (b2) has been proposed by Hybertsen and
Louie, based on a diagonal model function by Levine
and Louie. Using this model function, we have ob-
tained quasiparticle bulk band structures in good agree-
ment with those of our RPA GW calculation in Ref. 9.
However, we found that the conduction bands come out
somewhat lower in energy than in the RPA GW method.
For bulk Si we obtain a fundamental energy gap of 0.95
eV for the theoretical lattice constant using e =13.0, as
compared to 1.23 eV calculated with the RPA expression
(see above).

For the application to Si(001)-(2x1),we employ the di-
electric constant e =12.3 as calculated in the RPA (see
above). Contrary to the results presented in Sec. IVB,
the D„pstate is now shifted to lower energies (especially
at K and J') with a mean correction of —0.05 eV with
respect to the LDA. The correction of the Dg „state
amounts to about +0.35 eV with respect to the LDA.
This value is smaller than the one that results when the
RPA dielectric function is used, as could be expected
&om the bulk results. Nevertheless, the fundamental sur-
face gap amounts to 0.65 eV in close agreement to the
RPA result of 0.70 eV. This is due to the lower energy of
D„~resulting for the (b2) model dielectric function.

This same dielectric model function has been employed
by Northrup to calculate the quasiparticle energies of
the Si(001)-c(4x2) surface. To account for the vacuum
in the slab supercell, Northrup used a dielectric constant
of e =10.0, which is considerably smaller than the ex-

TABLE II. Calculated quasiparticle energies (in eV) for the dangling-bond states of
Si(001)-(2x1) of a full GW calculation including the RPA dielectric function. (second column),
as well as GW calculations using model dielectric functions (columns 3—5; see text) using dielectric
constants of e =12.3 and e =10.0, respectively. The model function (b2) has been proposed by
Hybertsen and Louie while the model function (c2) is a combination of the models by Bechstedt
et at. and by Falter et al. ' We display the respective LDA results in the first column and the
last column contains experimental data.

Si(001)

D„p

Drown

&oo

I'
J
K
Jl

bandwidth
mean shift

I'
J
K
gI

bandwidth
mean shift

LDA

—0.30
—0.30
—0.85
—0.90

0.45
0.50
0.50
0.20
1.25

0.20

GWA
RPA

—0.15
—0.20
—0.80
—0.85

1.00
+0.15

0.95
1.00
1.10
0.85
1.20

+0.50
0.70

GWA
(b2)
12.3

—0.25
—0.30
—1.00
—1.05

1.05
—0.05

0.75
0.80
0.90
0.65
1.10

+0.35
0.65

GWA
(b2)
10.0

—0.30
—0.35
—1.G5
—1.05

1.05
—0.10

0.80
0.85
0.95
0.70
1.10

+0.40
0.70

GWA
(c2)
12.3

—0.15
—0.15
—0.85
—0.90

1.05
+0.10

0.85
0.90
1.00
0.70
1.].0

+0.40
0.55

Expt.

—0.4,—0.1
-0.4,-0.2
—1.0
—1.0,—0.8
0.6 ,0.8

0.44,0.9

See Ref. 22.
bSee Ref. 37.

'See Ref. 23.
See Ref. 38.
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perimental value of 11.7 for bulk Si. If we use e =10.0
instead of our RPA result e =12.3 in our model cal-
culation, an additional downshift of D„zby —0.05 eV to
lower energies results, whereas the Dg „stateis shifted
to higher energies by some 0.05 eV, in addition. Our 6-
nal quasiparticle corrections of —0.10 eV (D„p)and +0.40
eV (Dq „)relative to EvnM for the (2x1) surface agree
well with Northrup's results of —0.15 eV and +0.33 eV
for the c(4x 2) surface, respectively. This close agreement
indicates that the evaluation of the GW approximation
using localized basis functions yields very reliable results
agreeing well with those of PW-GWA calculations. Fur-
thermore, it shows that the quasiparticle shifts of the GW
approach are very similar for both the Si(001)-(2x 1) and
the Si(001)-c(4x2) surface. The agreement is even more
obvious, if we consider the opening of the surface gap,
which results from the downward shift of D„&and the
upward shift of Dd „.It amounts to AEg p 0.48 eV in
Northrup's and to LEg p:0.50 eV in our results. It is
thus only the absolute energy position of the two bands

Dip and Dpo~„with respect to E~BM that difFers for the
(2x1) and the c(4x2) surface. Their relative energy sep-
aration is virtually the same for the two con6gurations.

In addition, we have' investigated the usefulness of a
second model dielectric function [labeled (c2) in Ref. 9]
that uses a model function proposed by Bechstedt et
a/. for the diagonal matrix elements while the nondiag-
onal matrix elements are taken into account in the form
suggested by Falter et a/. When applied to bulk Si
with e =13.0, this model leads to a fundamental energy

gap of 1.09 eV [larger than for (b2), but smaller than
for the RPA calculation]. For the Si(001)-(2x1) surface,
we obtain (with e =12.3) an upward shift of +0.40 eV
for D~ „

that is again larger than for (b2) and smaller
than for the RPA. Referred to EVBM, the D„~state is
shifted to higher energies by about +0.10 eV. This agrees
roughly with our RPA result. In total, the fundamental
surface gap amounts to 0.55 eV in this case, which is
smaller than for the RPA dielectric function and for the

(b2) model calculation. Kress et aLzo calculated quasi-
particle corrections for the dangling bonds of the Si(001)-
(2x1) surface, employing a simplified GW approach us-

ing a model dielectric function similar to (c2). The au-

thors obtained a correction of the D„pstate at I' relative
to EvBM of —0.03 eV (+0.15 eV in our calculation) while

the Dp „stateat I' shifts to higher energies by +0.85
eV (cf. +0.40 eV in our calculation). The fundamental
surface gap calculated in Ref. 20 thus amounts to 0.80
eV as compared to our result of 0.55 eV for this model.
These deviations may arise &om systematic differences
between the approach of Ref. 20 and our method.

From our results we conclude, that both nondiago-
nal model dielectric functions (b2) and (c2) give quasi-
particle band-structure energies for Si(001)-(2x 1), which

agree well with those of our calculations based on the
full RPA dielectric matrix. Di8'erences in the approach
for the evaluation of the GR'A, as encountered between
our method and that of Ref. 20, give rise to deviations
of the order of 0.25 eV for the surface gap. The close
agreement of the calculated quasiparticle corrections us-

ing the model (b2) between our results for the (2x1)

surface and Northrup's results for the c(4x2) surface is
quite rewarding. We conclude &om these comparisons of
our calculations based on model dielectric functions with
the results of Kress et al. and Northrup, ~ as well as,
with our results based on the full RPA dielectric matrix
that appropriate model functions can certainly be very
useful to treat more complex reconstructions with larger
unit cells.

V. SUMMARY

The GW approximation of Hedin and Lundqvist has
been applied in the literature with great success to real,
inhomogeneous systems, especially to bulk semiconduc-
tors. However, more complex systems like surfaces are
very difBcult to treat by this method since it scales very
badly with the size of the system ( Ns). The investiga-
tion of such systems by the GR' scheme requires more ef-

ficient algorithms than the common evaluation of Fourier
transforms enforcing large numbers of plane waves. In
this paper we have represented all two-paint functions of
the GWA using a relatively small basis set of Gaussian
orbitals. This way large Fourier transform matrices are
avoided. We have tested this GO-GWA method in the
case of bulk Si and found excellent agreement of all re-
sults with those of an equivalent PW-GWA calculation.
This proves the high flexibility and the usefulness of our
GO basis set.

With the use of such basis functions we have calculated
the quasiparticle band structure for the Si(001)-(2xl)
surface including the static dielectric function fully com-

puted within the random-phase approximation and ex-
tending it to Gnite &equencies by a generalized plasmon-
pole model. We hand that the dangling-bond states D„p
and Dd „shift nearly rigidly in energy with respect to
the LDA results sa that their dispersion remains almost
unchanged. The calculated band structure of the occu-
pied state D„~agrees well with results &om photoemis-
sion experiments. The fundamental surface gap is opened
by 0.50 eV with respect to the LDA gap of 0.20 eV by
the quasiparticle corrections and amounts to 0.70 eV in
agreement with the scarce experimental data. We have
tested two model dielectric functions in our surface cal-
culations, in addition, and found results that are simi-

lar to those obtained employing the full RPA dielectric
matrix. However, the 6nal quasiparticle shifts resulting
for the model functions show some systematic deviations
&om the results obtained with the RPA dielectric ma-
trix. The energy shifts resulting from our calculations
for one of the model dielectric functions (b2) applied to
Si(001)-(2xl) agree very well with those of a previous
PW-GWA study by Northrup for Si(001)-c(4x2) based
on the same model dielectric function. This additionally
con6rms the appropriateness of aur basis set for surface
systems. In summary, we have presented a method for
evaluating the GW approximation that is considerably
more eKcient than the PW-GR'A approach because it
performs much faster than the conventional plane wave
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approach based on Fourier representations of the occur-
ing two-point functions. This method w'ill turn out to be
particularly useful if more complex surface reconstruc-
tions or systems including highly localized orbitals are to
be investigated.
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APPENDIX: THE SYMMETRIZED
DIELECTRIC FUNCTION

Starting &om the polarization P, the dielectric func-
tion e is calculated by a convolution with the Coulomb
interaction, a=1 —vP. If evaluated, e.g. , in Fourier
space, this matrix is not Hermitian. Even worse, its
(G = 0, G' g 0) elements eo a (q) diverge as 1/q if qwO
because of the divergency of the Coulomb interaction,
va a (q) = 4vre /Iq+ Gl ha a . The localized basis set
of Gaussian orbitals used in this work leads to the same
complications as can be seen kom the close relationship
between the Gaussian representation and the Fourier rep-
resentation [see Eq. (20)]. To overcome this problem, an
auxiliary dielectric function ~ can be defined in Fourier
space as

lq+ GI
ea, a (q):=, G, ]ca,a (q))q+ G'

1). Iq+ G I~a,a- «-,a- (q) .
~ I I ~ I I I lq+

1 1
ha a~ —4vre ) $a ali . Pari alii (q) gc,I)i ~1„,lq+ GI ' ' lq+ G'I

(A1)

(A2)

In a basis-independent notation, these equations read or

E:= V E'U = 1 —VPV (A4) ). , (q) -, (q) = . , (q) (A8)

with an auxiliary function v. Its Fourier representation
va a (q) is given by %'e also note the following relation that results &om

Eq. (A7):
2'�'/'e

'( ) (A5) 'U 'U =V (A9)

as can be seen from comparing Eqs. (A3) and (A4). Its
transformation into real space results in

If represented with respect to basis functions, the sym-
metric dielectric function of Eq. (A4) is given by a Her-
mitian matrix with elements that remain finite if q-+0.
After inversion of ~, we calculate the screened interaction:

I e
v(r, r ) = (A6) W=e v= (ve v ')v=ve v (A10)

v(r, r")v(r", r')d r" = v(r, r'), (A7)

The convolution of the auxiliary function v with itself
yields the Coulomb interaction:

We have written Eqs. (A4) and (A10) in a general, basis-
independent notation. With respect to a set of basis
functions, the convolutions must be replaced by the re-
spective matrix multiplications [see, e.g. , Eq. (12)]. We
use the respective symmetric dielectric matrices through-
out our work.
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