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In this paper we use the coherent-potential approximation within the Korringa-Kohn-Rostocker
band-structure scheme to investigate the influence of atomic disorder on magnetism and crystal
structure of transition-metal alloys like iron-nickel. This method allows an investigation of disordered
alloys on an equally well-defined basis as an investigation of corresponding stoichiometrically ordered
phases. In particular we have calculated the magnetic and structural binding surfaces of fcc Fe,Ni; _,
for concentrations close to the critical concentration £ = 0.65 which corresponds to the Invar alloy
FeesNiss, with the help of the fixed-spin-moment method. We find that magnetism in the ground
state gradually vanishes as we go from FegoNiso, which has a well-defined magnetic ground state
being separated from the nonmagnetic state by 1.0 mRy/atom, to FersNizs which is nonmagnetic.
The critical concentration for which this disorder driven magnetic-nonmagnetic transition occurs
is ¢ &~ 0.65-0.70 in accordance with the magnetic phase diagram of Fe;Ni;_,. These calculations
have to be compared with ab initio calculations for ordered fcc FesNi; here the magnetic ground
state is by 1.25 mRy more stable than the nonmagnetic state. This different magnetic behavior of
disordered and ordered phases can be explained on statistical grounds. Furthermore, the magnetic
disordered ground state is unstable with respect to a martensitic fcc—bcc transition on the Fe-rich
side in accordance with the structural phase diagram of Fe.Ni;_,. We have furthermore calculated
the temperature evolution of the binding surfaces with the help of a finite-temperature fluctuation
theory. We find interesting reentrant ferromagnetic phase transitions in the fcc phase close to the
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Invar concentration z = 0.65.

I. INTRODUCTION

Recent first-principles calculations of the instability
leading to the Invar effect (for recent reviews and further
references see Refs. 1-5) have shown that the origin of
the instability might be connected with a delicate balance
of charge distribution between spin-polarized d orbitals
of strongly antibonding and nonbonding character.® The
associated thermal anomalies like small thermal expan-
sion, softening of elastic constants with decreasing tem-
perature, etc., may be explained on the basis of a
phonon-assisted coherent transition of many electrons
from strongly antibonding majority-spin states close to
the Fermi energy Er into empty minority-spin nonbond-
ing orbitals just above Er with increasing temperature.
The associated rapid decrease of the magnetization can
reduce the magnetic pressure as shown by partial pres-
sure calculations.” This reduction of internal pressure
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could then compensate or even overcompensate the usual
lattice driven thermal expansion resulting in a negative
thermal expansion.?

In addition, the resonant coupling of the electrons to
specific lattice modes like the shear TA; mode propagat-
ing in the fcc lattice in [110] and polarization in [110]
direction, gives rise to a pseudogap at the Fermi level
which is most pronounced in the minority-spin energy
bands.® Our understanding is that this pseudogap is a
many-particle effect arising from phonon-assisted mixing
of spin-up and spin-down states at Er. However, the
tendency towards pseudogap formation is also seen in
our one-electron band calculations for distorted lattices
due to symmetry reduction. Such a pseudogap can actu-
ally pin part of the minority-spin bands relative to Ep.
As a result the majority-spin bands would move upwards
on the energy scale with increase in temperature until
they coincide with the pinned minority-spin bands at the
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Curie temperature T,.. Thus the lattice thermal expan-
sion is partially hindered since the redistribution of some
partial charges is also hindered due to the existence of
this gap. This scenario holds as long as the system re-
mains magnetic and the pseudogap exists.

Actually, there seems to be recent experimental evi-
dence of this theoretically predicted pinning of minority
bands in the magnetic state by spin-resolved photoemis-
sion from Fe-Ni and Invar alloys.?® For Fe,Ni;_, films
with ¢ = 0.84 and 0.5 the authors report pinning of
the minority-spin-resolved intensity curve with respect
to the Fermi energy independent of temperature, while
the shape and position of the majority-spin-resolved in-
tensity curve gradually approaches the Fermi energy. On
the other hand, angle-resolved and spin-polarized pho-
toemission studies on elemental Fe and Ni show that the
exchange splitting of the electron distribution curves per-
sists up and above T.. This can be interpreted on the
basis of the different temperature behavior of localized
and itinerant contribution to the total magnetic moment.
Since the intraband exchange energy is ~ 0.1 Ry per spin,
the exchange splitting of the local part of the moment re-
mains constant over the considered temperature range.®
Therefore, the disappearance of the exchange splitting in
Fe.Ni,_, as observed by Kleemann et al.® is a remark-
able effect showing that disorder can cause the exchange
splitting to vanish on the time scale of photoemission
studies as one approaches T..

While the investigations in Ref. 6 based on spin-
polarized augmented-spherical-wave (ASW) band calcu-
lations within the local-density approximation (LDA)
and atomic-sphere approximation (ASA) and the fixed-
spin-moment (FSM) procedure, were done for stoichio-
metrically ordered Fe3Ni, the real alloy Fe,Ni;_,, is disor-
dered with random distribution of iron and nickel atoms
on the fcc lattice. Since disorder as well as other defects
can act as nucleation center for martensitic precursor ef-
fects and martensitc transitions, it is very important to
know the influence of local environment effects caused
by disorder!! and its influence on the phase diagram of
Fe.Ni;_, which is shown in Fig. 1. Therefore, the aim of
the present paper is a detailed discussion of the influence
of disorder on the phase diagram for concentrations cor-
responding to the Invar composition and the formation
of martensite.

The ab initio treatment of disorder with the ASW
method is, apart from supercell calculations which are
very time and memory consuming, not feasible. There-
fore, we mainly have used the coherent-potential ap-
proximation within the Korringa-Kohn-Rostocker band-
structure scheme based on the LDA (KKR-CPA LDA)
which represents the most sophisticated method to treat
the electronic structure of disordered alloys. A fast ver-
sion of the KKR-CPA has recently been introduced by
Akail? which also allows the evaluation of binding sur-
faces using the FSM method in reasonable computer
time.

One should note, however, that we are not the first
to apply the CPA method to ground-state and finite-
temperature calculations of Fe-Ni alloys. In a series of
papers Hasegawa and Kanamori have discussed the mag-

netic instability in Fe-Ni and related compounds.'37'5 In

their first paper the electronic structure of Fe,Ni; _, was
obtained by using a nondegenerate tight-binding model
and by employing the Hartree-Fock (HF) approximation
together with the CPA. Model density of states for Fe
and Ni and on-site energies epe, €Ni, correlation ener-
gies Upe, Uni, and electron numbers n;re, n;Ni per site
served as input, whereby ep. and en; were fixed so that
the Fermi energies of pure metals agree with each other in
the nonmagnetic state leading to en; < €pe. This energy
difference now is very important since it leads to a con-
siderable deformation of the minority-spin band, whereas
the majority-spin band approximately keeps the original
shape because the down-spin U term in the relation for
the magnetic HF on-site energies

€4Fe — E4Ni = €Fe — €Ni + (Uren Fe — UNinyNi)
K ElFe — €|Ni
= epe — eNi + (Urentre — Uningni) (1)

cancels the difference of atomic energies while the up-spin
U term vanishes for z — 1 leaving € re — €Ni = €Fe —ENi
for a wide range of z. For z > 0.5 the up-spin band
passes the Fermi level leading to a rapid quenching of
the Fe moment. This happens where the deviation of the
magnetization from the Slater-Pauling curve starts. In
subsequent papers the authors extended the CPA calcula-
tions to other systems and presented a revised calculation
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FIG. 1. Concentration dependence of Curie tempera-

ture T., magnetic moments M., (fcc), and M, (bcc) of

.FezNi;_—, (Refs. 85-88). The dashed region is a complicated

mixed-magnetic phase with noncollinear spin arrangements
(Ref. 89). Vertical dashed lines mark the Invar region and
solid lines the austenite (A, and Ay) transformation upon
heating and the martensite (M, and My) transformation upon
cooling (the subscripts s and f refer to start and final). The
separations between the M, and My lines and the A; and
Ay lines are somewhat larger (Ref. 88) than earlier reported
(Ref. 87). The phase diagram contains also the Néel temper-
ature of the artificially stabilized v phase on the iron-rich side
(Ref. 37).
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for Fe,Ni;_,. Later work based essentially on the KKR-
CPA method within the LDA has basically confirmed the
findings of Hasegawa and Kanamori. The majority-spin
density of states (DOS) is less deformed because the dif-
ference in the Fe and Ni Hartree potentials is canceled
by the difference in the local exchange splittings (for ex-
ample, see Ref. 12).

The present work can be considered as an extension
of earlier works since, in addition, we have evaluated
magnetic and structural binding surfaces showing how
the ground state transforms upon alloying and thermal
spin fluctuations at finite temperature. In contrast to
Hasegawa and Kanamori our KKR-CPA results for the
majority-spin DOS does not show a shift through Er for
concentrations ¢ < z, ~ 0.70. In our calculation the
magnetic moment increases linearly with z and suddenly
breaks down at the critical concentration z.. This is in
contradiction to the experimental observation (see Fig. 1)
that the transition is rather moderate. This difference be-
tween experiment and theory was observed earlier!2:16:17
and can be attributed to the appearance of antiferromag-
netic and spin-glass-like correlations which develop in the
Invar region, while the KKR-CPA calculations have been
performed only for ferromagnetic alignment of the spins.

In addition one should mention the first paper for
finite-temperature calculations of Fe-Ni alloys with use
of the CPA by Kakehashi.'® Thermal expansion of Fe-Ni
alloys was calculated on the basis of Liberman-Pettifor’s
virial theorem and the functional-integral method. In the
calculation an effective two-band model (s and d) was
used in order to investigate the influence of s-d charge
transfer. Density of states and parameters were chosen
so that the critical concentration of the ferromagnetic-
paramagnetic transition occurs at z. = 0.65. Results
for the concentration and temperature dependence of
the local magnetic moments and the specific heat show
that anomalous thermal expansion in the Invar region
is caused by large temperature variation of the Fe lo-
cal magnetic moments due to single site excitations close
to z.. Kakehashi finds that in this region the specific
heat term and the s-d charge transfer are not important.
In addition to the KKR-CPA calculations, we have per-
formed a supercell calculation for £ = 0.75 which shows
that a small amount of disorder leads to large fluctuations
of the Fe local moments in the supercell. With increasing
temperature this will allow for additional single-site ex-
citations. This essentially confirms Kakehashi’s picture.
As discussed above, our more detailed electronic calcu-
lation shows that charge transfer close to the magneto-
volume instability plays an important role. However, it
is not the s-d charge transfer but the intra-atomic eg-t54
charge transfer which leads to a more rapid breakdown
of the Fe moment with increasing temperature.

II. KORRINGA-KOHN-ROSTOCKER-
COHERENT-POTENTIAL APPROXIMATION

A band-structure calculation based on the muffin-
tin potential model (without LDA) together with the
CPA was very early applied to the Fe-Ni system in
order to obtain the residual resistivities for different

concentrations.!® The KKR-CPA (with LDA) has sub-
sequently been developed.2°723 It has turned out that
this is a very powerful method to treat local environ-
ment effects in an ab initio manner. In this method
the concept to treat disorder is rather simple while the
underlying Hamiltonian is the same as that used in ab
tnito band-structure calculations; all the CPA does is
to replace the random array of nonoverlapping muffin-
tin potentials by an ordered array of effective potential
wells whose scattering properties have then to be calcu-
lated self-consistently in the single-site CPA sense. This
method was successfully applied to obtain total energy
and pressure of nonmagnetic alloys like Cu,Zn;_,.24

First ab initio calculations of the electronic structure
of ferromagnetic disordered alloys like FegsNizs based
on local-spin-density treatment of exchange and corre-
lation were presented by Johnson and Pinski.2® The
most striking result was as earlier observed by Hasegawa
and Kanamori,!371® that electrons with different spin di-
rections experience different degrees of disorder. The
minority-spin electrons are more strongly influenced by
disorder than the majority-spin electrons. Hence the
minority-spin DOS is smooth in contrast to the very
structured majority-spin DOS curve. In Fig. 2 we show
for comparison the iron, nickel, and total DOS of ordered
Fe3Ni (Ref. 6) and of disordered Fe75Nizs and FegoNigg as
obtained by KKR-CPA calculations. Apart from the po-
sition of the Fermi energy, the coarse-grained structures
of the majority-spin DOS curves of FezNi and of FezsNias
are very similar, whereas the smoothening effect of disor-
der is clearly visible in the minority-spin DOS curve. For
the disordered Fe75Niy5 case we have used the experimen-
tal value for the lattice constant, @ = 6.833 (a.u.), which
yields a magnetic ground state with Mg, = 2.346up and
Mpy; = 0.644up. This compares well with the extrapo-
lated value for the v moment in Fig. 1 at 75 at. % Fe. For
the case of FegoNiygo the smoothening effect is even more
serious. The main difference between the DOS curves of
Fe75Niss and FeggNiyg is connected with a small shift of
the minority-spin DOS to higher energies for Fe;sNiss,
having the larger magnetic moment.

The fact that the minority states experience most of
the disorder can also be discussed in the context of co-
valent magnetism.?%:27 The inset of Fig. 2(b) shows
schematically the exchange splitting of the iron and nickel
d states. The different effect of disorder is due to the
different degree of hybridization between the majority-
spin bands of Fe and Ni which are about equal in energy
(because the difference in the Hartree potentials is can-
celled by the difference in the exchange splittings), and
the minority-spin bands of Fe and Ni which lie at different
energies. What CPA essentially is doing, is to smear out
this difference in the minority DOS by strongly mixing
the Fe and Ni components.

As discussed in the introduction, the Invar effect can be
related to the opening of a pseudogap at Fr. Therefore,
it would be very important to repeat the calculations of
Ref. 6 for the case of a distorted fcc lattice by using the
KKR-CPA scheme, and to check whether the pseudo-
gap in the minority-spin bands will be smeared out due
to disorder or will survive. An inspection of Fig. 2(b)
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FIG. 2. Calculated majority and minority total and component densities of states of (a) ordered ferromagnetic Fe3Ni,
(Ref. 6), (b) of disorderd ferromagnetic FersNizs for the HM state at @ = 6.65 (a.u.), and (c) of disordered ferromagnetic
FegoNigo (ground state) as obtained by KKR-CPA calcualtions. The DOS of FegsNiss is nearly identical with (b). In (a) the
DOS per unit cell is plotted in order to deploy curves. DOS per atom is obtained by dividing the Fe DOS by 3 and the total
DOS by 4. The inset shows the difference between the energetic positions of the Fe and Ni majority and minority energy levels
which explains why disorder effects mostly the minority DOS.
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reveals that the Fermi level for FegsNiss coincides with
the nonbonding-antibonding valley of the minority-spin
DOS. So it is likely that resonant minority-spin electron-
phonon coupling can further deepen this valley.

In another paper the KKR-CPA scheme was applied to
obtain the Slater-Pauling curves of fcc/bec Fe,Ni;_, and
of bee Fe, Vi_;,%® which compare fairly well with exper-
iment. Quite remarkably, also in bce Fe,V;_, a pinning
of the Fermi level in the bonding-antibonding valley of
the minority-spin DOS was observed (being similar to
the case of fcc FegsNizs) which seems to persist over a
wide range of concentrations. In contrast, in the case of
adding Ni to bcc Fe, this bonding-antibonding valley in
the minority-spin DOS fills. Note that these properties
can also be explained by the simplified scheme in Refs.
13-15.

This brief discussion of the KKR-CPA has shown
that the influence of disorder in intermetallic alloys like
Fe,Ni;_, which can be perfectly mixed, is important
and cannot be neglected. Altogether we have performed
KKR-CPA calculations for 15 different Fe/Ni concentra-
tions. Figure 3 shows the calculated phase diagram. The
increase of the magnetization with increasing Fe concen-
tration follows well the experimental observation apart
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FIG. 3. Phase diagram of Fe;Ni; _, as obtained from the
KKR-CPA calculations. Open circles and crosses mark the
magnetic moments in the 4y and a phase, respectively. Filled
circles mark the energy differences between the nonmagnetic
and the HM ground states. For = > 0.70 filled circles have
been placed at zero energy indicating that the HM state does
no longer correspond to a local minimum on the binding sur-
face. The curve through these points gives an impression of
how the Curie temperature would behave. For comparison
we show recent LMTO-CPA results obtained by Abrikosov et
al. for the LM-HM energy difference (Ref. 90) (dashed dot-
ted curve). These energy differences are similar to ours. Also
marked are the KKR-CPA results for the energy differences
between the fcc and the bcc states at different concentrations
(filled squares). The open square is the result for FezNi. Note
that he energy differences Enm — EuMm and Egec — Epcc are of
comparable size at the onset of martensitic transformation.

from the first-order phase transition close to z = 0.70.
The zero-temperature energy difference between the non-
magnetic and the ferromagnetic ground states simu-
lates at least qualitatively the increase and decrease of
the Curie temperature with increasing Fe concentration.
Note that close in concentration to the magnetic moment
collapse, energy differences for magnetic and structural
transitions are of equal magnitude. For further discussion
it would be enlightening to evaluate the effective parame-
ters of exchange interactions by mapping the KKR-CPA
results onto the Heisenberg model

H = _Z‘]ijsisj, (2)
ij

where éz is the unit vector in the direction of the zth site
magnetization, and where the exchange interaction can
be related to the scattering path operator in the site (7, 5)
representation,?®3° but at present we are unable to do
this calculation. Approximately the Curie temperature
would then be given by

kpT, ~ %Jo, Jo = Z Joi- (3)
1#0
This and similar procedures have sucessfully been applied
to obtain the Curie temperatures of Fe and Ni (Refs. 30
and 31) and of Fe3Pt.3? In the following we discuss in
detail the impact of atomic disorder on magnetism and
the Invar effect.

III. MAGNETIC BINDING SURFACES
OF Fe.Ni,_,

We have calculated the magnetic binding surfaces, i.e.,
constant energy contour lines in the magnetization versus
volume plane, for a set of specific concentrations corre-
sponding to the Invar region of fcc Fe,Ni;_, (0.60 < z <
0.75). The results are displayed in Figs. 4(a)-4(g).3® The
most striking result is that for the composition Fe75Nizs
the ground state of the disordered phase is already non-
magnetic and looks similar to the binding surface of pure
fcc Fe,3* whereas the ab initio calculation for the ordered
phase yields a magnetic ground state which is displayed
in Fig. 4(h). Note that FesNi there is only a small energy
barrier of order 1.25 mRy or 197 K between the nonmag-
netic (NM) local minimum and the stable high-moment
(HM) solution at ~ 1.5up. For the disordered alloy the
NM state is stable being separated from the HM state by
~ 3 mRy or 474 K. For the case of Fey5Niys we do not
find a low-moment (LM) state corresponding to a local
minimum on the binding surface in contrast to Fe3Ni.®

The change of level sequence of HM and NM (LM)
states with change in concentration z for the disordered
case is shown in Fig. 5. Our calculations show that
the Fe magnetic moment starts to become unstable at
z = 0.65 — 0.70 which compares well with the exper-
imental phase diagram shown in Fig. 1. As already
noticed by Akai,'? the phase transition from the fer-
romagnetic to the nonmagnetic state by following the
H = (0E/OM),, = 0 line, is of first-order which seems to
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contradict experiment which shows a moderate variation
of M(T,z). However, the pressure experiments of Abd-
Elmeguid and Micklitz®® on fcc Fegg.5sNisy.5 and FeqaPtog
show a rather rapid decrease of T,.(p) for p > 2 GPa which
means that both systems are close to a first-order mag-
netovolume instability. In fact, partial and total pres-
sure calculations of ordered ferromagnetic FezNi show
that the HM—LM transition is complete at a pressure of
6 GPa, completely in agreement with the experimental
value for Fegg sNis; 5.7 Approximately the same values

for the pressure induced transition are obtained for the
disordered case in Fig. 5, where the dashed lines show the
pressure behavior for different concentrations. Note that
the first-order transition has a very interesting concen-
tration dependence. In the Invar region (z < 0.65) the
first-order transion occurs at volumes lower than the HM
ground state volume, whereas for £ > 0.65 it occurs at
volumes larger than the NM ground state volume. This
may be called an Invar-Anti-Invar transition. In fact,
alloys on the Fe-rich side (z > 0.65) with fcc structure

FIG. 4. Binding surfaces

Fegs oNiss.o

6.7 6.8

for the disorderd Fe.Ni;_. sys-
tem in the fcc structure in the
concentration range 0.60 < z <
0.75 as obtained by KKR-CPA
calculations, (a)-(g). Contour
lines are at 0.5 mRy inter-
vals. True equilibrium corre-
sponds to H = (8E/8M),, =
0 and p = —(8E/8V),, =
0. Upon changing z the sys-
tem gradually transforms from
(a) FeeoNiso being magnetic
with energy minimum located

AVERAGE MAGNETIC MOMENT (ug/ATOM)

at (¢ = 6.625 au., M =
1.6up/atom) to (g) FersNias
being nonmagnetic with energy
minimum at (a = 6.457 a.u.,
M = 0). (h) shows the bind-
ing surface of orderd FesNi as
obtained by ASW calculations
with a stable magnetic ground
state at (¢ = 6.653 a.u., M =
1.5pp/atom).

6.6 6.7 6.8
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behave as Anti-Invar systems. They have a nonmagnetic
ground state and exhibit enhanced lattice expansion at
high temperatures due to electronic excitations of in en-
ergy close lying HM states.3¢

It is interesting to consider the reasons why disordered
Fe,5Niys is nomagnetic in contrast to the ordered sample
being magnetic. First, in the disordered case statisti-
cally some Fe atoms have nine or more nearest-neighbor
Fe atoms in contrast to the eight nearest-neighbour (NN)
Fe atoms for the ordered case (in fact, the binomial dis-
tribution function gives @ = =N for the average number
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FIG. 5. Change of level sequence of HM and NM states
with change in concentration in Fe,Ni;_,. Here the energy
relative to the ground-state energy is plotted as function of the
lattice constant along the H = (8E/8M)v = 0 line for each
concentration. All data points are plotted on the same scale.
The third minimum in between the NM state (left minimum)
and the HM state (right minimum) does not correspond to a
local minimum on the binding surface but to the saddle point,
where the H = P = 0 lines cross. Also shown is the pressure
dependence (dashed line). Horizontal line marks the zero-
pressure line. The first-order transition is in the Invar region
(z < 0.65) at volumes lower than the ground-state volume and
moves to larger volumes for z > 0.65 which corresponds to an
Invar-Anti-Invar transition (Ref. 36). Anti-Invar behavior is
typical of enhanced paramagnets (Ref. 91).

of NN Fe atoms out of N = 12 NN atoms being 9 for
z = 0.75 and 7.8 for ¢ = 0.65; see Fig. 6). Let us consider
as a concrete example the interchange of two neighbored
Fe and Ni atoms in ordered FesNi. The interchanged Fe
atom has 11 (NN) Fe atoms which might destabilize its
magnetic moment. Among these 11 NN atoms seven Fe
atoms still have nine NN Fe atoms and four see eight NN
Fe atoms but in a disordered array. Altogether this inter-
change effects approximately 32 atoms corresponding to
eight neighboring unit cells (Fep4Nig). This cluster may
have at its origin a nonmagnetic Fe atom or an Fe atom
with a reversed spin, and Fe atoms with low moments
in its neighborhood. Interchange of more Fe-Ni atoms
will lead to interacting clusters which finally destabilize
the magnetic state. Therefore, the disordered case is a
system being closer to pure fcc Fe which has a nonmag-
netic ground state3” (the HM ferromagnetic fcc Fe phase
cannot exist since it is unstable with respect to the shear
deformation; the energy difference Enm—fcc — EFM—bec 1S
of the order of 5.31 mRy/atom3®). We have checked this
assumption by performing an ASW-ASA supercell cal-
culation for simple tetragonal Fep4Nig for the case that
the central Ni atom and one neighboring Fe atom have
been interchanged. This leads to a unit cell with 16 in-
equivalent atoms with magnetic moments listed in Table
I. The most striking result is that the interchanged Fe
atom has now a reversed magnetic moment of —1.91up
and that the perturbation is long ranged as can be seen
in Fig. 7; i.e., we find alternating Fe-Ni and Fe-Fe layers
with considerably reduced and less reduced Fe magnetic
moments, respectively. Of course, one would have to per-
form larger supercell calculations with different kinds of
simulated disorder but this is beyond our computer ca-
pacities. But starting from this zero-temperature sce-
nario, it is tempting to assume that finite temperatures
will give rise to large amount of excitations of the lo-
cal Fe moments. This comes close to Kakehashi’s result
that single site excitations of the Fe moments dominate
in the Invar region.!® Unfortunately this kind of behavior
of the Fe moments is not contained in the KKR-CPA cal-
culations which assume parallel alignment of all magnetic
moments.

This supercell scenario agrees with the interpretation
of Mossbauer investigation of Invar from which follows
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FIG. 6. Coordination numbers of Fe atoms around an Fe

atom in ordered and disordered phases with fcc structure as
a function of Fe content.
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that the Fe magnetic moment becomes unstable for less
than three NN neighbor Ni atoms.3® Another point is
that since the disordered system behaves statistically as
if fewer Ni atoms were present we have, on the average,
less carriers in the strongly antibonding Ni bands which
causes the volume to shrink and the magnetization to
become smaller. Furthermore this brings Er closer to the
antibonding peak in the majority-spin DOS of mainly ¢34

A more general discussion of clustering processes in
Fe,Ni;_, is difficult since metallic nature and itinerant
magnetism seem to mask many purely statistical features
of a system containing two types of atoms. For example,
the percolation process leads to the following result for
the mean cluster size in random site mixtures on the fcc
lattice:%!

~ — ) -
character, which can further destabilize the Fe magnetic S(@) > C(ze —2)™, 22 (4)
moment.*° with
J
z. = 0.198 + 0.003, ~ = 1.66 +£0.07, C = 0.101 £ 0.001 (fcc lattice), (5)
¢ = 0.245 4+ 0.004, ~ = 1.66 +0.07, C = 0.142 + 0.001 (bcc lattice). (6)
M

TABLE I. Supercell-ASW results of local magnetic mo-
ments in Fez4Nig for the case that the central Ni atom at
position (3,1, %) and neighboring Fe atom at (1,1, 1) have
been interchanged.

Atom Atomic position Magnetic moment (uB)
1 (Ni) (0,0,0) 0.4219
2 (Fe) (3,%,0) 1.9399
3 (Fe) (3,0 ,;) 2.1554
4 (Fe) (0,1, 4 2.1554
5 (Fe) (3,0,3 2.1554
6 (Fe) (0,%,%) 2.1554
7 (Ni) (0,0,%) 0.4489
8 (Ni) (3, 4, 1 0.4578
9 (Ni) (0,1,0) 0.4317
10 (Ni) (%,0,0) 0.4317
11 (Fe) (%,2,0) 1.2990
12 (Fe) (3,3,0) 1.2990
13 (Fe) (33 3%) 1.8843
14 (Fe) i,1,3 1.8843
15 (Fe) (3,3 3) 1.8843
16 (Fe) 1, ;,g 1.8843
17 (Fe) (0,2 o z 2.0098
18 (Fe) (0,%,2 2.0098
19 (Fe) (3,0, 1) 2.0098
20 (Fe) (3, ,3 2.0098
21 (Ni) (0,%,1 0.4771
22 (Ni) (%,0,%) 0.4771
23 (Fe) ;, 3,1 1.0238
24 (Fe) 552 1.0238
25 (Ni) (%,%,0) 0.3585
26 (Fe) 3, 4,0) 1.7502
27 (Fe) (4, 1,1 1.7151
28 (Fe) 2, 8 1.7151
29 (Fe) 4, 13 1.7151
30 (Fe) i, j, 3) 1.7151
31 (Fe) (3,41 —1.9128
32 (Fe) 331 1.6126

An inspection of Fig. 1 or of the experimental data for
magnetization, specific heat, resistivity, etc., does not
show any anomalous behavior of physical observables
at or close to the critical Fe concentration on the Ni-
rich side. Nor does the KKR-CPA calculation give any
anomalous results for concentrations close to z = 0.198
at. % Fe where the Fe cluster percolates. It seems as if one
mixes two perfectly soluble systems, where the physics
is determined by the intinerant nature of the electrons.
On the other hand, the other critical concentration on
the Fe-rich side is that for the percolating Ni cluster,
1 — 2z = 0.198, being close to the concentration = =~ 0.3
for which magnetism disappears in disordered Fe,Ni;_,.
Perhaps it is not too speculative to conclude that for
Ni concentrations for which the biggest Ni cluster is no

1
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FIG. 7. ASW results for the distribution of magnetic mo-
ments in Fey4Nig for the case that the central Ni atom and
one neighboring Fe atom have been interchanged. Length of
the arrows are relative to the arrow of the central Fe atom
which has a reversed magnetic moment of —1.91ug5. The re-
sulting decrease of the average magnetic moment per atom is
from 1.51up for stoichiometric order to 1.33up corresponding
to a 11.25% reduction (compare also Table I).
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longer percolative, also magnetism vanishes in the fcc lat-
tice. Furthermore, there is some structure in the austen-
ite and martensite transformation temperatures in Fig. 1
close to the concentration where Ni percolates. Whether
this is coincidence or physics is unclear at present.

It is now very tempting to imagine that for a given
nominal concentration, for example = 0.65, one might
find in the real disordered alloy in different regions of the
sample the different energy conditions E(a, M) shown in
Figs. 4(a)-4(h) due to local fluctuations of the concen-
tration leading to alternating regions of local HM, LM,
and NM states. Such a distribution of many different HM
and LM states in real space (together with noncollinear
alignment between moments of Fe-rich and Ni-rich re-
gions) can explain the unusual saturation magnetization
M(T) curves of various fcc Fe-Ni alloys close to the com-
position FegsNigs which lie much below the usual mean-
field curve in contrast to ordinary ferromagnets (see Fig.
30 in Ref. 3). Also the difference between the Invar alloys
Fe-Ni and Fe-Pt can be explained on the same basis. For
the composition Fe73Ptog both, the disordered as well as
the ordered sample are magnetic in contrast to FezsNiss.
The magnetic state in Fe-Pt is more easily stabilized for
ordered and disordered phases because the rather large
atomic volume of the Pt atom guarantees that the ground
state is the high-volume HM state. For further theoreti-
cal discussion of the differences between Fe-Ni and Fe-Pt
Invar alloys see Refs. 42 and 43.

The concentration dependence of equilibrium lattice
constant, local moments at Fe and Ni sites and the mag-
netization, hyperfine fields, and the Fe isomer shift has
already been discussed in Ref. 12 for the Fe-rich side of
Fe,Ni;_, and will not be repeated here. Altogether one
may say that the results agree fairly well with experi-
ment. i

Finally one should say that the scenario displayed in
Figs. 4(a)-4(h) is not identical to that of the Weiss model
which originally was introduced as a two-states model to
account for the possibility of HM—LM transition as an
internal electronic excitation in fcc Fe-Ni with increasing
temperature.** We think that our results differ greatly
from Weiss. The Weiss model concentrates on individual
Fe atoms. In effect, it says there are two different kinds of
Fe in Invar — a high-spin-high-volume and a low-spin-
low-volume variety. Accepting it, one would be forced to
think of a mixed-valence system. Our present day lingo
considers the state of the (entire) system — or the state
of local clusters. Therefore, we do not expect that a
local-moment theory would be a good starting point for
the discussion of the Invar effect in spite of its success in
fitting experimental data.4®

Despite the fact that disordered Fe;5Nizs is nonmag-
netic while the ordered compound is magnetic, one may
still use the latter as an Invar model for pedagogical
reasons.46750:55,56 Algo, discussion of band structures ob-
tained for the ordered alloy is somewhat easier than a de-
tailed analysis of the spectral function for the disordered
case which is defined by

A(k,E) = %Im é{%ﬁ’_), (M

where

Z(k,E) =In det [(k + g)? — E]
+1n det [tX(E) — Go(k, E)]
+x 4 In det {1 +7(E) [tZI(E) - t_l(E)]}
+zgln det {1+ 7(E) [t5}(E) -t H(E)]} (8)

is a measure of the total number of states below the (real)
energy E. Gy is the structural Green’s function of the
KKR band-structure method connected with the scatter-
ing path operator 7(E) and CPA t-matrix which has to
be determined self-consistently, by

7(E)= EL—Z /BZ &k [t7HE) - Go(k, B)] 1, (9)
7(B) =24 [t} (E) -t 1(B) + 7 (B)] "
t+p [t5H(E) —tHE) + 7 HE)] . (10)

Here z4 (zp) and t4 (¢B) are the concentration and the
t matrix of the muffin-tin potential of the A (B) atom,
respectively.12

We have evaluated the spectral function corresponding
to the momentum and energy resolved DOS (band struc-
ture) for the alloy FersNigs along the main symmetry
directions of the fcc lattice Brillouin zone (BZ). Results
for the HM and NM states [see Fig. 4(g) at a = 6.65 or
rws = 2.60 and at a = 6.47 or rws = 2.53, respectively]
are shown in Figs. 8(a)-8(c). A rather big imaginary
part of 3 mRy has been attached to the real energies in
order to smooth those parts of the spectrum which have
remained é-function-like. Summation over momentum
then leads to the DOS in Fig. 2(b). It is obvious from
the figures that the KKR-CPA band structure resembles
hybridizing (s,p) and eg- and ta4-like d bands.

In order to see the difference between disordered and
ordered cases, we have made a similar calculation for
FesNi by plotting the imaginary part of the Dyson equa-
tion

1
" ena (K) — T (K, 2) (11)

for each band n and spin polarization o (not in the fcc but
in the sc Brillouin zone). Here ¢, (k) are the Bloch ener-
gies calculated with the ASW-ASA method; ¥,,(k, z) is
the self-energy which can be assumed to arise from zero-
temperature quantum fluctuations. The momentum and
energy-resolved DOS is then given by

gna (ka Z) = Py

Ao, E) = ~_Tm G (k, ), (12)

where for simplicity the self-energy has been chosen to
be 12 mRy for each momentum and energy. The result is
shown in Fig. 9 for the up- and down-spin case. In spite
of four times more bands as compared to the KKR-CPA
case, the momentum integrated curves lead to the result
in Fig. 2(a) which, apart from the fine structure, resem-
bles the KKR-CPA DOS in Fig. 2(b). This shows that
for some integrated electronic quantities the difference
between the disordered and ordered cases can be rather
small.

In order to get further insight, it would be nice if
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these first-principles calculations could be pursued at fi-
nite temperatures. This is beyond present day computer
capabilities (in spite of first attempts do this, for exam-
ple, by using the disordered local-moment picture,’” or
by introducing effective-spin Hamiltonians®®). However,
the zero-temperature results presented in this section can
be used as input into a finite-temperature fluctuation the-
ory which allows the evaluation of the temperature de-
pendence of thermal expansion, bulk modulus, heat ca-
pacity, magnetization, pressure dependence of T, high-
field susceptibility, etc.’1 75 This is discussed in the next
section.

IV. FINITE-TEMPERATURE
FLUCTUATION THEORY

The finite-temperature fluctuation theory allows
us to extend the discussion of results obtained
in zero-temperature ab initio calculations to finite
temperatures.531756:5% The basic ingredients are magne-
tization and volume, both taken as thermodynamic vari-
ables which are allowed to fluctuate around their mean
values at finite temperatures. The functional used for the

energy is the following:
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(a) Majority-spin and (b) minority-spin KKR-CPA bands of FersNizs in the HM state at ¢ = 6.65 (a.u.); ()
nonmagnetic KKR-CPA bands of FersNizs for a = 6.47 (a.u.).
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1
Him,w] = 7 A d3r (gm Z (Vomp)? + a(we — w)m? + a'w?m? + bm* + cm® + g, (Vw)* + ng +ywd + 5w4).

a,B

The thermodynamic variables are split into static and
fluctuating parts,

m(r,T) =my(T) + m'(r, T), (14)
w(r,T) =wo(T) + '(r,T), (15)
where

r(ra)l o I — A(KE)
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(13)

3 3
w(r) = TE=% (16)
g
is taken as the appropriate volume variable with the non-
magnetic ground-state lattice constant ap = 6.48 a.u. as
reference for the case of Fe,Ni;_,.

We would like to point out that the finite-temperature
spin- and volume-fluctuation theory based on this
Landau-type effective Hamiltonian is suitable for the de-
scription of weak magnetism in which long-wave thermal
spin fluctuations are dominant, while Fe-Ni alloys can
be characterized by the anomalies in the intermediate
interaction strength between strong and weak magnets.
Therefore, we have paid particular attention when calcu-
lating the Landau coefficients from a least-mean-square
fit to the ab initio band-structure results. All series ob-
tained so far showed fairly good convergence properties.
Of course this still does not allow for a good description
of strong magnets in the Landau-Ginzburg frame (fur-
ther drawbacks of the fluctuation theory were already
critically discussed in Ref. 54). But some results give at
least an impression of what might happen at finite tem-
peratures. The calculated mean-square fluctuation am-
plitudes differ in magnitude not too much from results in
Refs. 60 and 61 obtained for Fe and Ni with the Hubbard
model and the functional-integral method.®? We think
also that the behavior of the finite-temperature binding
surfaces gives at least an impression of how spin and vol-
ume fluctuations destroy the HM state.

Important for the discussion of the influence of fluctu-
ations is the equal-time correlation function at tempera-
tures above T, which is easily obtained from the finite-
temperature fluctuation theory giving

2 _3 1
with
gz = a(we — wp) + 10b (m2), + 105¢ (mﬁ)f, , (18)

where wy is the equilibrium volume per atom.
Fluctuations are dealt with in Gaussian approximation
leading to a mode-mode coupling theory which leads to
nontrivial self-consistency equations for the temperature
dependence of magnetization, volume, mean-square fluc-
tuation amplitudes, thermal expansion, specific heat, sus-
ceptibility, etc. We omit the mathematical details here
since they have already been presented in Refs. 51-56.
The Landau coeflicients can be determined nearly unam-
biguously from the KKR-CPA binding surfaces. They
are displayed in Table II (for comparison Table III shows
the Landau coefficients for pure Fe and Ni). With this
input we can determine the finite-temperature binding
surfaces which are displayed in Fig. 10 for the most in-
teresting case corresponding to z = 0.65. For this Invar
concentration the input data of Table II yield a nonmag-
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TABLE II. The set of Ginzburg-Landau coefficients® used in the finite-temperature fluctuation
theory for different compositions of the alloy Fe,Ni;_,.
System a b c we K 04 4
Feso.0Niso0.0 29.5256 —1.5764 0.4119 0.0643 1355.94 —1869.76 4858.70
Feg2.5Nis7 5 29.3134 —1.4516 0.3574 0.0731 1353.58 —1701.94 4223.20
Fegs.0Niss.0 29.0076 —1.4443 0.3300 0.0872 1355.32 —1551.37 3589.93
Feg7.5Nisz.5 28.8228 —1.3192 0.2859 0.0947 1346.88 —1354.10 2958.04
Fez0.0Niz0.0 28.6963 —1.1289 0.2354 0.0982 1346.28 —1173.78 2262.49

2Units are chosen so that the magnetization is in units of up/atom and the energy in mRy/atom:

netic ground state lying slightly lower in energy than the
magnetic solution. At elevated temperatures T' ~ 50 K
magnetic- and volume-fluctuation amplitudes are larger
for the NM (LM) state than for the HM state. Hence
the HM state becomes a more stable solution at elevated
temperatures due to competition of fluctuations of dif-
ferent phases. This leads to reentrant behavior and a
high-temperature ferromagnetic phase. Note that this
behavior is limited to a very narrow concentration range
in the vicinity of z = 0.65. Note also that for z = 0.65
one observes spin-glass-like behavior in the real sample
at low temperatures due to noncollinear spin arrange-
ments, and not a stable ferromagnetic phase. So this
simple fluctuation theory even mimicks details of the low-
temperature Fe-Ni phase diagram. However, we must
emphasize that the fluctuation theory does not describe
a low-temperature spin-glass phase at 65 at.% Fe but
a nonmagnetic (NM) state with a local minimum on the
M = 0 line in Fig. 10(a) having slightly lower energy than
the HM state at M = 1.5up. The general behavior of
binding surfaces with increasing temperature is that each
surface elongates vertically and is shifted downwards to
the M = 0 line within our simple fluctuation scheme.
Hence in this particular case, the minimum of the zero-
temperature NM state disappears and the HM state is
stabilized with increasing temperature.

The behavior of the specific heat is shown in Fig. 11.
The onset of magnetism for 65 at. % Fe corresponds to
a phase transition and leads to an additional specific-
heat jump below 7. [we have used here temperature-
dependent cutoffs g, o (T) = (T/T:)*/3¢m,w for the mo-
mentum summation in order to avoid unphysical heat-
capacity behavior at low temperatures; this causes the
onset of magnetism to shift to higher temperatures as
compared to the results in Fig. 10, where temperature-
independent cutoff parameters have been used]. Figure
11(b) shows the reduced specific heat which is obtained
from

k . o
C= 12:,2 (3‘1;1 +3qﬁ) - <m§>0 9T <m2l>o 3;
Opw
- <w2>0 T (19)

by subtracting the first term (p,, 11, and p,, are vari-
ational ﬁeld554). It can be seen that Feg7 5Nisza.s and
FezoNizo show a tendency for magnetic order.

The theoretical specific-heat curves show a jump at T,
whereas the experimental specific-heat curve for FegsNizs
does not show any sign of a jump. This shortcoming of
our theory is due to the fact that we have no means of
dealing with the influence of disorder on the heat capac-
ity at finite temperatures if we use the simple functional
form in Eq. (13). This shortcoming could probably be
avoided by incorporating the concentration dependence
in the functional form and by allowing for concentration
fluctuations. An additional problem is connected with
the fact that within the finite-temperature fluctuation
theory, the magnetic specific heat has a tendency to be-
come negative above T, whereas experiment very often
shows additional specific heat. In our continuum theory
this is connected with the ever growing amplitudes of
fluctuations with increasing temperature. As was pointed
out by Moriya,®® the longitudinal spin-fluctuation am-
plitude should saturate because of the limited number
of electrons per atom. This was investigated in detail
within a finite-temperature fluctuation theory similar to
ours by Mohn and Hilscher.%¢ They showed that satura-
tion effects are important and can lead to an additional
maximum in the specific heat which lies below 7.

However, one should add that the specific-heat be-
havior of Invar alloys is far from being understood.
For example, the pseudobinary system FesoNi,Mnso_,
exhibits anomalously large contributions to the spe-
cific heat in the paramagnetic phase for concentrations
0.21 < z < 0.35 as well as a broad smeared out maxi-

TABLE III. The set of Ginzburg-Landau coefficients of pure fcc Fe and Ni.
System a b c we K 0% )
Fcc Fe 28.8670 —0.9510 0.0868 0.28 1280.94 —1301.50 2100.70
Fce Ni 20.3102 25.0133 —2.8059 —0.80 1144.34 —949.12 562.59
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mum close to 7.5 While this maximum still looks like
a well pronounced A anomaly in the case of FesoNisg
(at T. = 765 K), this anomaly starts to disappear for
FesoNigoMn;.2:6¢ If the transition temperatures of this
alloy series fall below 400 K, then even the smeared max-
imum has disappeared.5” We refer to Ref. 68 for further
discussion of the specific-heat behavior.

In Fig. 12(a) we show the temperature behavior of
the HM magnetization and of longitudinal and transverse
amplitudes of fluctuation for the NM (dashed lines) and
the HM (solid lines) solutions. The amplitudes of fluctu-
ation for the NM (LM) solution look similar to the HM
solution with one marked difference, that is, the longi-
tudinal amplitude is considerably larger for the NM case
than for the HM case. As discussed above, this desta-
bilizes the nonmagnetic phase at elevated temperatures
and leads to reentrant behavior.
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FIG. 12. Temperature dependence of (a) HM magneti-

zation and amplitudes of fluctuations and of (b) HM and
NM volumes showing that both join at 7. within the finite-
temperature fluctuation theory. Dashed curves show the
fluctuation amplitudes for the NM solution. The inset
compares theoretical (solid line) and experimental (dashed
line) (Ref. 70) magnetization curves; apart from the low-
temperature behavior there is rather good agreement between
theory and experiment.

The saturation magnetization in Fig. 12(a) behaves
qualitatively as experimentally observed. The calcu-
lated curve lies well below the Brillouin curve. The
low-temperature behavior is wrong since contributions
from collective excitiations (spin waves) are not taken
into account well enough in the finite-temperature spin-
fluctuation theory. Since cutoff parameters for momen-
tum integration are not of optimum choice, the Curie
temperature is only 360 K, whereas experiment gives 548
K.%9 Yet it is interesting to compare the overall behavior
of experiment and theory. The inset shows the scaled
experimental data (dashed line)”® and the scaled theo-
retical magnetization curve (solid line). Apart from the
low-temperature deviation there is good agreement be-
tween the two curves.

It is also interesting to compare results for the fluctua-
tion amplitudes, (m?2), with neutron-scattering data for
FegsNiss in the paramagnetic phase at T = 1.25 T.."™* The
mean-square amplitude of fluctuation (equal-time corre-
lation function) is obtained from the measured constant
q spectrum using the relationship”?

oo

(mz (q))=6 i dw S(q,w) (20)
_ I(q)
T 0.0485 f2(Q) e 2%’ (21)

where S(q,w) is the scattering function; I(q) is the inte-
grated intensity and f(Q) the magnetic form factor. It is
interesting to note that (m?(q)) is isotropic in the mea-
sured q range. In order to make comparison with theory
the authors use

(m?(0)) = 3k5T x(0), (22)
where x(0) is the uniform susceptiblitiy, and the molec-

ular field result for localized moments (or local-moment
limit of the band theory®2),

(m2(0))
hogm?(@) )
3k5T(91B)2S

with the low-temperature spin-wave energy hwq. The left
part of Eq. (23) corresponds to the classical fluctuation-
dissipation theorem which is assumed to hold in the high-
temperature limit Aw/kpT < 1. The quantity (m?2(0)) is
obtained from the static susceptibility and the spin-wave
dispersion from Awg = Dq?(1 — Bq?) with D = 143 meV
A? and B8 = 0.12 A2.73 The authors stress that although
there is no adjustable parameter in this calculation, the
agreement with experiment is perfect.”

Figure 13 shows the amplitudes of spin fluctuations
(m?(q)) for the three systems FegsNizs,”! bec Fe,” and
fcc Ni.”® The solid lines are curves fitted to experiment
by using relation (23) with parameters for the spin-wave
spectra from Table IV.7* The fit is perfect in the case
of FegsNizs and Ni, while for bcc Fe the fitted curve
behaves reasonably only for lower g values. The figure
shows that spin-fluctuation amplitudes are largest for the
Invar alloy. For comparison we show our theoretical re-

(mz(q)) ~ 3kpT x(q,w=0) =
1+



202 SCHROTER, EBERT, AKAI, ENTEL, HOFFMANN, AND REDDY 52

100 I T

80

Jm
=
AN
=
E 15

0 0.4 08 12 1.6

g (K)
FIG. 13. The amplitude of the spin fluctuation (equal-

time correlation function) (m?(q)) for FeesNiss along [100]
(Ref. 71), bcc Fe along [110] (Ref. 74), and for fcc Ni along
[111] (Ref. 75). The solid curves are fits to the experimental
data by using Eq. (23) with the parameters of Table IV. The
dashed dotted curve for FeesNiss denoted by (T') is our theo-
retical result, the curves marked by (H) stem from Hasegawa.
(Refs. 76 and 77). The inset shows the (experimental) am-
plitude of fluctuation multiplied by the phase factor ¢ for
FeesNiss, Fe, and Ni, respectively. The result for Fe for larger
q values is probably an overestimation (dashed line).

sult for FegzNizs and the theoretical result for Fe and
Ni taken from Hasegawa.”®7” The theoretical result for
FegsNizs agrees qualitatively with experiment. The the-
oretical curves in the case of Fe and Ni do not decay fast
enough for small q.

The inset shows the experimental fluctuation ampli-
tudes multiplied by the phase space factor g2. This phase
factor appears when integrating the amplitudes over the
first Brillouin zone. There is a continuous increase in all
three cases showing that fluctuations with large ¢ values
make very important contributions. We do not observe
a peak in ¢2(m?(q)) in any of these cases in contrast to
earlier experimental data of neutron scattering on param-
agnetic iron.”® These authors observe a peak structure at
g = 0.4 A~ from which they deduce a typical wavelength
for spin waves of the order of 16 A. This strong short-
range magnetic order in the paramagnetic phase has been
questioned arguing that the energy window in the experi-

ments may not be sufficient to include the whole magnetic
scattering (for further discussion see Ref. 76).

It is quite interesting to deduce the effective moment,
the correlation length, and the local moments for the case
of FegsNiss from the experimental data by using

2
T
(m?(q)) = % for q =0 and T — oo,
2
beg(T)T 1 (24)
- f
T—T. 1+£q2 or q — 0,
=m?_ for q — ggz.

This yields for T/T. = 1.25 the following values: peg =
4.1pp [which is larger than the ideal paramagnetic scat-
tering value being peg(T = 0o0) = 3.3up], &€ = 4.32 A
[equating (23) and (24)], and mioc = 1.50pp (at ¢ = gBz).
This gives mﬂec = 2.0up if we assume that Ni still has its
full moment, mfi‘c = 0.57. It is also interesting to calcu-
late in the same way the correlation lengths of Fe and Ni
at T/T, = 1.25. They are £p. = 3.16 A and ¢y; = 5.06 A
being considerably larger than the values calculated by
Hasegawa (£p. = 1.25 and &n; = 2.6 A).7677

In order to compare our fluctuation amplitudes in Fig.
12(a) with Ref. 71, we integrate the momentum depen-
dence of the experimental values over the whole Brillouin
zone with the help of Eq. (23) giving mie.(T/T.=1.25) =
4.1 which is larger than the value obtained from the edge
of the Brillouin zone given above (mj,. = 1.50). This
difference might be connected with the concept used in
Ref. 71 to use the relation (23) with an expansion of the
low-temperature spin-wave dispersion as input, at very
elevated temperatures in the paramagnetic region. We
think that this overestimates a bit the scattering con-
tributions coming from the high-momentum area. This
overestimation is clearly visible in Fig. 13 for the case of
Fe, where it leads to unreasonable results for the high-
momentum states. Therefore, the value mj,. = 1.50 de-
duced from experiment for the case of FegsNiss is much
more reliable. This value compares fairly well with our
result of 1.04up for the sum of fluctuation amplitudes at
T = 1.25 T, in Fig. 12(a) in spite of the fact that our fit
of T, is poor.

The temperature variation of the volume expansion
and contraction of the NM and HM state is shown in
Fig. 12(b), respectively. Note that the different volumes
approach each other and merge at T,. With respect to
the thermal expansion this means that there is a gradual

TABLE IV. Parameters for the calculation of the amplitude of fluctuation in Eq. (23) obtained
from measurements of the spin-wave dispersion, susceptiblity and magnetization (see Ref. 71 for

details and references to experimental work).

System D (meV A?) B (A?) (m?(0)) (u3) s

FeesNiss 143 0.12 84.0 0.91
Fe (3.5% Si) 270 0.70 55.0 1.11
Ni 400 0.00 15.5 0.30
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transition from the low-temperature NM behavior to the
high-temperature HM behavior.

The thermal-expansion coefficient which is easily ob-
tained from the derivative of the relative volume change
displayed in Fig. 12(b), does not perfectly agree with
experiment. But this is clear since details of the true
thermal-expansion curve are connected with important
charge transfers in the temperature range 0 < T < T,
which is beyond the scope of a Landau description with
temperature-independent parameters. The thermal-
expansion coefficient obtained here first increases at low
temperatures in the nonmagnetic state, then remains ap-
proximately constant in the transition region to the fer-
romagnetic phase, and finally decreases up to T, in the
ferromagnetic state.

In this section we have shown that the zero-
temperature KKR-CPA FSM binding surfaces of disor-
dered alloys are equally well suited to serve as input for
the finite-temperature fluctuation theory as the surfaces
obtained by ASW-FSM calculations for ordered systems.
A close inspection of Table II shows that a change of
concentration x towards the more Fe-rich side changes
the Landau parameters in a systematic way; a and c de-
crease while b increases resulting in weaker magnetism.
Also the elastic coefficients show a systematic trend. For
example, the coefficient « being proportional to the bulk
modulus, softens considerably by going from the Ni-rich
side (with strong ferromagnetism) to the Fe-rich side with
weak ferromagnetism in the fcc structure. A closer in-
spection shows that the change of parameters scales in a
nontrivial way with concentration when going from the
magnetic to the nonmagnetic ground state.

Altogether one may say that the finite-temperature
fluctuation theory describes qualitatively correct some of
the Invar behavior of FegsNiss. The finite-temperature
magnetic binding surfaces in Figs. 10(a)-10(d) can be
considered as a central result. We believe that they show
the Invar behavior at finite temperatures. For example,
Figs. 10(c) and 10(d) show how the region of minimal
energy around the ferromagnetic ground state becomes
very elongated with negative magnetic anharmonicity.
A characteristic feature is also that the Fe-Ni system
can go from one state to many in energy close lying
to other states which can have quite different magnetic
moments due to local fluctuations of temperature, vol-
ume or concentration. Of course, our finite-temperature
fluctuation theory can not describe the resonant cou-
pling of electronic transitions to phonons and the pseu-
dogap formation. We have only a coarse-grained picture
of the impact of spin and volume fluctuations on ther-
modynamic variables. Other drawbacks are mainly con-
nected with missing quantum-mechanical aspects at low
temperatures.’* An artifact is connected with the nature
of the phase transition itself which turns out to be of first
order in any self-consistent spin-fluctuation theory based
on Gaussian fluctuations. There is no simple way to
avoid this since the Gaussian approximation violates the
fluctuation-dissipation theorem.?*7® More refined spin-
fluctuation theories based on the Hubbard model®? still
show this artifact when they are based on the Gaussian
method.

V. STRUCTURAL BINDING SURFACES
OF Fe,Nil_,

The phase diagram of Fe,Ni;_, in Fig. 1 shows that
the onset of martensitic transformation is just on the bor-
derline of the magnetovolume instability. Another char-
acteristic feature is that the Curie temperature as well
as the transition temperatures for the structural trans-
formation considerably decrease when approaching the
critical concentration z ~ 0.70. Similar behavior is ob-
served for ordered and disordered Fe;oPdag and FeroPtog
(where, however, the low-temperature magnetic moment
does not change much in the instability region). There-
fore, the question arises whether Invar on the -y side and
the formation of martensite on the a side have some com-
mon origin. One common feature seems to be that on
both sides (v and «) of the structural transition we find
magnetic order. On the « side the less close-packed low-
temperature bce structure (compared to the more close-
packed high-temperature v phase) seems to be stabilized
by ferromagnetic order since usually the fcc structure is
realized in the ground state. In order to check this, we
made some preliminary investigations. For example, the
influence of local distortions along the Bain path in Fe3zNi
and its connection with the martensitic transition was
discussed in Refs. 6, 7, and 59 on the basis of ASW-LDA
total-energy calculations. This served as input for a Lan-
dau formulation which contains symmetry adapted strain
fields as well as the fields (mn,w). This allowed us to es-
tablish a structural binding surface for the Fe-Ni system
which displayed quite nicely on one and the same sur-
face two local minima belonging to the fcc and the bcc
structure, respectively.

Unfortunately, in order to obtain the (rws, c/a) bind-
ing surface from the Landau-Ginzburg Hamiltonian, we
had to assume how magnetism changes on the surface.
For simplicity we used for each fixed rws radius the
same change as obtained from the ASW calculation. This
procedure produced a rather deformed binding surface.
Therefore, we have recalculated the structural binding
surface with the ASW method [see Fig. 14(g)]. Com-
pared to the surface obtained with the effective Lan-
dau Hamiltonian,®® we now find a very unstable fcc
state having a very shallow minimum. We also observe
that the position of the bcc minimum is not exactly at
¢/a = 1/4/2. We attribute this to the fact that because
of two atomic species distributed regularly, c¢/a = 1/v/2
does not correspond to a true bcc phase.

Of particular interest are now the KKR-CPA binding
surfaces, since we know that, for example, FersNizs has
a nonmagnetic fcc ground state while FegNi has a mag-
netic fcc ground state (see Fig. 4). Figure 14 shows the
structural binding surfaces of Fe,Ni;_, for the interest-
ing range of concentrations, where the magnetic moment
collapses and where martensite forms. In Figs. 14(a),
14(c), and 14(e), the magnetic moment was allowed to re-
lax at each point of the surface corresponding to H = 0,
while in (b), (d), and (f) the magnetic moment was con-
strained to have the value M = 0 everywhere by using
the FSM procedure. The results show that obviously in
the absence of magnetism the ground state is realized in



204

the fcc structure in this concentration range. Allowing
for magnetic order destabilizes the fcc structure and re-
sults in a magnetic bcec ground state. By comparing the
energetic scenario in Figs. 4 and 14 one finds that in
the instability region magnetic and structural excitation
energies seem to be of equal importance. What we also
find interesting is connected with the ground-state vol-
umes of the HM fcc and bcce states. They approximately

SCHROTER, EBERT, AKAI, ENTEL, HOFFMANN, AND REDDY 52

are of equal magnitude, the difference being of the order
of 0.1% for each concentration.

Let us now concentrate on z = 0.75. The correspond-
ing (rws,c/a) binding surface of Fe7sNiys is shown in
Fig. 14(e). It is different from the stoichiometric case in
(g) with respect to the following features. (i) The sur-
face exhibits now two minima and a saddle point. On
the ¢/a = 1 fcc line we have the HM saddle point at
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Fego.oNigo.0, M=0 FIG. 14. Structural binding
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rws = 2.61 corresponding to the HM state on the mag-
netic binding surface in Fig. 4(g), and a shallow non-
magnetic minimum at rws = 2.53 corresponding to the
NM state in Fig. 4(g), while the bcc phase has a rather
deep minimum at rws = 2.61. HM saddle point and NM
minimum are connected by the H = 0 line in Fig. 4(g),
while they are connected by the ¢/a = 1 path in Fig.
14(e). (ii) The bcc minimum is now at ¢/a = 1/v/2 as
expected, since CPA forms one effective atom giving rise
to a binding surface which should have its minimum at a
high-symmetry point. (iii) The particular new feature is,
as compared to our old results, that the Bain path would
now connect the bcc state and this fcc saddle point with
practically no volume change, while for Fe3Ni this would
result in a 2.02% contraction when going from bcc to fcc.
(iv) Note also that the disordered Fe;sNizs bce ground
state has a lower volume compared to the ordered phase.

Figures 15-17 show energy versus the c/a ratio for
z = 0.60, 0.65, and 0.75 and constant volumes. The
all over behavior of the E(c/a) curves at fixed volume
can be explained as follows. The total energy can be
decomposed into the band energy
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and (b) nonmagnetic FegoNiso for two different volumes.

Ep
deN(e)e, (25)
Ep

Ep =

where Ep is the bottom of the valence band and N(e)
is the valence electron density of states, the electrostatic
Ewald energy

@ [(Qws)®
Ergw = (1.8 - aM)—— (———) (26)
rws \ QMT
and contributions which depend only on volume. Qwsg
and Q7 is the volume of the Wigner-Seitz and the
muffin-tin sphere, respectively, and ¢ the charge in-
side the Wigner-Seitz sphere minus the charge in-
side the nonoverlapping muffin-tin sphere; ajs is the
Madelung constant (for further discussion we refer to
the literature®®). The band energy essentially follows
the total energy for 1/v/2 < c/a < 1 and decreases out-
side of this region, while the electrostatic energy is small
for 1/4/2 < ¢/a < 1 but then increases rapidly, because
electrostatics makes so highly distorted fct and bct lat-
tices very unfavorable. So the increase of the energy for
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c/a < 1/+/2 and c/a > 1 is of electrostatic origin.

Figures 14(a), 14(c), and 14(e) and Figs. 15-17 show
that the energy difference between the HM fcc and HM
bcc state decreases with decreasing Fe concentration. In
our calculation, the bcc state is stable down to z = 0.55
(see also Fig. 3). This is in contrast to the experimental
phase diagram in Fig. 1, where the bcc structure is no
longer stable for z < 0.70. However, one should be cau-
tious when comparing KKR-CPA energies for different
¢/a ratios. Since the KKR-CPA code does not contain
nonspherical potentials, it is suitable for cubic crystals
(fcc, bee), but for ¢/a # 1/4/2 or 1, tetragonal symme-
try is present. Because nonspherical potentials have been
neglected, we estimate the error to be of the order of +2
mRy for the total energy differences. A shift of 2 mRy
of the energy difference Ef.. — Epcc in favor of the fcc
structure in Fig. 3 would give a much better agreement
between the experimental and theoretical phase diagram.
We think that in spite of this error bar, one may say
that magnetic and structural excitation energies are of
equal magnitude in the instability region and that their
coupling at finite temperatures might constitute a link
between Invar and martensite.
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In order to illustrate this mutual influence of magnetic
and structural excitation energies in short terms, let us
consider the cases £ = 0.65 and 0.75. FegsNizs is an fcc
Invar alloy which can be characterized at zero tempera-
ture by the magnetovolume instability in Fig. 5(b) oc-
curing at a lower volume than the equilibrium volume.3%
The energy difference Enm — Eym is smaller than 1 mRy.
The closeness of the martensitic transformation can be
seen in Fig. 16(a). The fcc HM state has a very shallow
minimum which leads to an energy barrier between the
fcc and bcc structure being also smaller than 1 mRy.
Hence competing effects may occur at finite tempera-
tures due to interacting magnetic, volume, and tetragonal
(shear) fluctuations leading to the formation of austenite
or martensite embryos near nucleation centers. Figure
16(b) shows the rather large energy difference between
the fcc and the bec structure in the absence of magnetic
order (see also Table V for energy and magnetic-moment
values). KKR-CPA results for FezsNigs show that for
this concentration the bcc structure has become very sta-
ble. The gain in energy due to the formation of the bcc
structure is of the order of 7 mRy/atom. Here again
magnetism is necessary to stabilize the bcc phase, the
energy difference between FSM M = 0 bcc and M # 0
is of the order of 17 mRy. As already stated, for the
fce structure disorder is important leading to a nonmag-
netic ground state. Figure 5(d) shows that for larger Fe
concentrations the Invar effect of the magnetic fcc alloys
disappears and that instead fcc Anti-Invar characteristics
appear with a magnetovolume instability occuring under
lattice expansion. The energy barrier between the HM
metastable state and the NM ground state is also of the
order of 1 mRy.

In Table V we have also listed calculated values for the
bulk modulus B and the elastic constant C’ given by

2
B= %(611 +2c12) =V (%) ; (27)
c/a,M
2

1 (L B ) . (28)
V \ 9(c/a)? V.M

For those cases, where comparison with experiment is
possible, we do not find very good agreement between
calculated and experimental values. For example, the
calculated value for the bulk modulus B and the shear
constant C’ in the case of FegsNizs (HM fcc ground state)
is 22.588 and 4.908 (10! dyn/cm?), respectively, while
ultrasonic measurements yield 13.017 and 1.615 (10!
dyn/cm?) at 4.2 K. However, we would like to point out
that all elastic constants of FegsNizs show an increase at
very low temperatures with some tendency to approach
their extrapolated high-temperature values (see Ref. 81
for details). This would give a much better agreement be-
tween experiment and theory. In this context one should
point out that there are differences between ultrasonic
measurements and inelastic neutron-scattering results.
For example, in inelastic neutron scattering, the soften-
ing in the longitudinal mode is not observed, neither in
the FeNi nor in the FePt system, i.e., the longitudinal
elastic constant Cr, (and also the bulk modulus) is larger
than the ultrasound value. For the case of FegsNiszs neu-
tron scattering leads to B = 19.8 x 10! dyn/cm? which

1
C'= 5(011 —c12) =
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is much closer to our theoretical value (this value can
be derived from the discussion in Ref. 1). The negative
values for C’ in Table V obtained in the FSM (M = 0)
calculation for the bcc structure are connected with the
bcc saddle point instead of a local minimum [see Figs.
14(b), 14(d), and 14(f)]. Negative values for C’ are also
obtained for the ferromagnetic cases, for example, C’
is negative in a rather wide region separating the HM
fcc and HM bcc local minima on the binding surfaces in
Figs. 14(a), 14(c), 14(e), and 14(g). This may indicate
that very small shear deformations near imperfections
could suffice to destabilize spontaneously the fcc or bcc
crystal structure. We also think that the decrease of mag-
netic order (as observed from the lowering of the Curie
temperature) when approaching the martensitic transi-
tion is important, since the release of magnetic energy
might help to overcome the high strain energies which
exist due to the formation of martensitic plates in the
host.

This discussion shows that the Invar region can be
considered as the premartensitic region of the fcc—bcc
transformation at either zero temperature or at decreas-
ing temperature for concentrations z < 0.70 — 0.75 in
Fe,Ni;_,. The discussion also shows that the scenario
of excitations involving magnetic, structural or mixed
ones is rather rich and that competing interactions with
small energy differences determine which structure and

which magnetic moment is stable at which concentration.
For a more detailed discussion of the influence of struc-
ture, magnetism, and bonding one would need to discuss
the spectral function A(k, F) for energies close to Ep
and for different concentrations in addition with a de-
tailed study of partial pressures for the distorted and the
undistorted lattice at finite temperatures. In addition
one would need the explicit concentration, volume, and
strain dependence of the effective exchange parameters.
As already mentioned, this calculation, in particular the
evaluation of the effective interatomic exchange poten-
tials, is left for the future. But even without these calcu-
lations we have gained some insight into the interrelation
of Invar behavior and associated structural instabilities
in magnetic transition-metal alloys.

One should add that there are many other theoreti-
cal investigations of structural instabilities in Invar al-
loys. In some work it is emphasized that the instability
is of magnetic origin and can be understood on the ba-
sis of an anomalous exchange driven instability which
can be derived from the localized moment model®2:83
or the itinerant model.®* We believe that this aspect is
very important but would like to add that the finite-
temperature martensitic transformation will involve the
dynamic modes of specific polarizations which couple
most to local changes of charge and spin. This can be
deduced from our microscopic investigations.® 759

TABLE V. Calculated binding energy E (Ry/atom), magnetic moment M (pp/atom), bulk
modulus B (10'! dyn/cm?), and elastic constant C' (10'' dyn/cm?) for given lattice constant a

(a.u.).

Fe55Ni45 FeeoNLm F665Ni35 Fe75Ni25
HM Bcc (a) 6.648 6.655 6.666 6.673
E —2764.0297821 —2739.251 009 6 —2714.472 3280 —2664.9152327
M 1.660 1.758 1.851 2.025
B 23.480 23.480 23.516 24.160
c’ 4.788 10.496 14.700 17.580
HM Fcc (a) 6.640 6.648 6.657 6.690
E —2764.0288385 —2739.248776 1 —2714.4686298 —2664.9081981
M 1.603 1.681 1.764 1.859
B 24.760 24.332 22.588 19.460
c’ 0.956 2.856 4.908 1.199
LM Fcc (a) 6.450 6.480 6.477 6.469
FE —2764.0259507 —2739.247324 3 —2714.468 660 2 —2664.9116722
M 0.044 0.105 0 0
B 33.067 33.163 29.996 29.660
c' 6.199 6.898 8.200 7.048
FSMM=0
Bce (a,) 6.515 6.510 6.505 6.503
FE —2764.0150920 —2739.2352088 —2714.4554491 —2664.896 282 2
B 27.296 27.776 27.784 28.760
c’ -23.512 -27.620 -31.752 -41.360
FSM M=0
Fcc (a) 6.486 6.480 6.477 6.469
E —2764.026128 7 —2739.2473283 —2714.468 660 2 —2664.9116722
B 28.172 28.652 28.916 29.692
c’ 11.204 12.244 13.176 15.424
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VI. CONCLUSIONS

We have discussed the influence of disorder on mag-
netic and structural instabilities in the Fe-Ni system on
the basis of KKR-CPA FSM calculations. The results
show that atomic disorder is important and cannot be
neglected in calculations of magnetic, Invar or marten-
sitic properties of transition-metal alloys. Calculations
show that disordered Fe,Ni;_, becomes nonmagnetic at
a critical concentration in the Invar region in accordance
with experiment. Although calculations for other In-
var systems like FezaPtog which in contrast to the Fe-Ni
system can be prepared as ordered and disorderd sam-
ple, have only started, we expect that the KKR-CPA
method can also in this case account for the marked dif-
ferences between the physical properties of ordered and
disorderd samples. Furthermore it has been shown that
magnetism is of crucial importance for both, the Invar
properties as well as the formation and stabilization of
martensite. Typical energy differences like |Enm — Fum|

and |Efcc — Epcc| become smaller and smaller when ap-
proaching the collapse of the magnetic moment. We
think that this explains qualitatively the strong decrease
of Curie, austenite and martensite transformation tem-
peratures as function of the concentration. The KKR-
CPA calculations of the magnetic binding surfaces have
been extended to finite temperatures with help of a fluc-
tuation theory. Although disorder is not correctly taken
into account in the most simple version of the fluctuation
theory, results for magnetization, amplitude fluctuations,
volume changes, and thermal expansion look reasonable
and describe qualitatively the experimental data.
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