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Two-dimensional magnetic polarons: Anisotropic spin structure of the ground state
and magneto-optical properties
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Magnetic polarons formed by holes in semimagnetic quantum wells are studied theoretically. The
theory is based on the formalism of the pseudospin and the anisotropic g-factor tensor of the hole. It
yields the direction of the total moment and energy of the polaron as functions of external magnetic
fields. Polarization characteristics of light- and heavy-exciton luminescence are shown to be strongly
influenced by the magnetic polaron formation.

I. INTRODUCTION

The exchange interaction of charge carriers with spins
of magnetic ions results in a variety of physical phenome-
na in diluted-magnetic (semimagnetic) semiconductors
(DMS's). ' Those most widely recognized are associated
with pronounced spin-dependent shifts of band edges
with a magnetic field applied. This so-called giant Zee-
man splitting stems from the strong exchange field, acting
on carriers, which is produced by polarized local spins.
This feature of DMS's became particularly valuable after
DMS heterostructures had been grown, since it made
possible quantum tailoring of confined electron and hole
states just by tuning the magnetic field or temperature.
Methods of optical spectroscopy, widely practiced in
studies of conventional semiconductors, have been suc-
cessfully applied to the resulting structures. By this
means a substantial dependence has been revealed of the
Zeeman pattern of free excitons in DMS quantum wells
on the magnetic-field direction. ' The anisotropy results
from strong spin-orbit interaction in the valence band.
At the conditions of size quantization this interaction
splits hole states into two subbands with spin projections
on the growth axis equal to +—,

' (light holes) and +—',
(heavy holes). Both subbands demonstrate an anisotropic
response to the exchange field, due to unequal spin com-
ponents in the quantum-well plane and normal to it. The
theoretical model, accounting for subband mixing and ex-
citon spin rearrangement in the exchange field, ' has
provided a good fit to the experimental data. '

Another class of exchange phenomena widely studied
in bulk and low dimensional DMS's is due to a
counterinAuence of localized carriers and excitons on
spins of magnetic ions in their vicinity. The correlation
of ion and carrier spins leads to the appearance of clouds
of polarized ion spins usually referred to as magnetic po-
larons. Magnetic polarons (MP's) in bulk semimagnetic
crystals have been studied experimentally by Raman-
scattering spectra, and by photoluminescence due to
recombination of impurity-bound carriers ' and excitons
trapped at alloy Quctuations. ' ' Theoretical models of
three-dimensional MP s in magnetic and semimagnetic
semiconductors with various types of interactions in-

volved' ' were built during the last three decades after
the pioneering work by De Gennes. '

Exciton two-dimensional magnetic polarons in DMS-
based quantum wells have been detected by the photo-
luminescence Stokes shift. The structure symmetry has
manifested itself in a significant difference of characteris-
tic magnetic fields required to suppress the polaron shift
in Faraday and Voigt geometries. ' This result has been
explained in the framework of the simplest model, assum-
ing the components of the heavy-hole spin in the
quantum-well plane to be equal to zero. Although the
model gives a good approximation of the MP energy in
moderate magnetic fields, it is evidently of limited utility.
For instance, it cannot describe the MP behavior in
strong magnetic fields, when mixing of the states in the
heavy-hole Kramers doublet becomes essential. Also, it
does not allow an analysis of selection rules for optical
transitions, which are expected to change as a result of
this mixing. In addition, manufacturing of strained
structures, with the light subband being the deepest, has
made topical a theoretical treatment of the light magnetic
polaron. The present work is aimed at studying these
problems.

In Sec. II the simplest model of the ground state of the
two-dimensional (2D) magnetic polaron formed by mag-
netic ion spins and a hole with anisotropic g factor is
developed. Section III is devoted to an analysis of polar-
ization, and the probability of optical transitions in an
external magnetic field. In Sec. III some ways to com-
pare the results with experimental data are proposed.

II. A MODEL OF THE GROUND STATE
OF THE LOCALIZED MAGNETIC POLARON

FORMED BY A 2D HOLE

To find out the Stokes shift and polarization of
luminescence from DMS quantum wells as functions of
magnetic field, it is necessary to know the structure of
magnetopolaron states. In this section a theory of these
states is developed. In Sec. IIA the general form of the
Hamiltonian is obtained, which describes the exchange
interaction of two-dimensional electrons and holes with
magnetic ions. It is shown that although in bulk cubic
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DMS's a hole has a spin J=—,', it is natural to ascribe a
pseudospin j=—,

' to the hole states in a quantum well

(QW). This pseudospin is subjected to an exchange field
% which results from the polarization of magnetic ions,
but does not retrace the direction of their average spin.
In Sec. II 8 the simplest model of a magnetic polaron is
considered, where the hole is assumed to interact with
the total spin I of a11 the ions inside its orbit. Within this
model the general expression for the MP energy is found,
as well as the relation between I and an external magnetic
field B. These expressions are legitimate for all types of
X(I) dependence. In Sec. IIC a linear approximation is
introduced for the function %( I) by use of the anisotropic
hole g factor. The model allows one to identify all
characteristic features of the dependences of the polaron
energy and spin on magnetic field. The symmetry of the
MP spin state appears to change at some value of the
external magnetic field. Finally, in Sec. IID this ap-
proach is refined for the heavy-hole subband, where some
components of the g-factor tensor are equal to zero. It is
shown that in this case the basic results of Sec. IIC
remain valid, if small nonlinear components of %(I) are
taken into account. The threshold value of the external
magnetic field in which the symmetry of the MP spin
states changes is estimated.

hereafter we will omit this term. The exchange field N,
being responsible for the splitting of the two hole states
and for the rearrangement of the two-component hole
wave function, plays the main role in magnetic polaron
formation. It will be shown below that the anisotropy of
% results in a behavior of the 2D hole magnetic polaron
ground state which is dramatically different from any-
thing known for isotropic polarons in bulk cubic DMS's.
It should be noted that Hamiltonian (2) is also valid for
wurzitelike bulk DMS's, where the valence-band struc-
ture is similar. Therefore all results obtained below can
be also applied to these crystals.

B. General consideration

Following the procedure suggested in Ref. 18, we con-
sider a hole interacting with the total spin I=+„I„ofall
ions inside the hole orbit. This corresponds to the forrnal
assumption that the hole wave function %' is constant
within the localization region (%'= 1/i V, where V is the
localization volume), and equal to zero outside it. Then,
assuming I))1, we neglect the quantum uncertainty of
its components. The spin Hamiltonian of the magnetic
polaron in the external magnetic field 8 can thus be writ-
ten as follows:

H=gM„p&(8 I)—(N(1) j) (3)
A. Exchange Hamiltonian for 20 carriers

In bulk diamondlike DMS's the exchange interaction
of charge carriers with magnetic ions is usually described
by the Hamiltonian

H,„,=a+(J I„)5(r—r„),
where 0 is an exchange integral, I„is the spin operator of
a magnetic ion with the position vector r„,and J and r
are the spin operator and position vector of the carrier.
The value of J equals J, =

—,
' for electrons and J& =

—,
' for

holes, and zone-center states are twofold and fourfold de-
generate, respectively. For definiteness sake, we consider
most widely used compounds which incorporate ions of
manganese (Mn +).

In quantum wells the states of electrons and holes
throughout the 2D bands are twofold degenerate. Hence
both electrons and holes can be considered as quasiparti-
cles with spin —,

' (for holes the term pseudospin j=
—,
' will

be used below). The exchange Hamiltonian of a 2D elec-
tron keeps the forin given by Eq. (1), whereas one can ex-
pect that the strong spin-orbit interaction in the valence
band results in a more complex Hamiltonian for a hole.
This Hamiltonian, being a scalar function of the Pauli
matrices, has the following general form:

~,„,=Hvi (Ii I„)—(&(Ii. . .I„)j) .

Here Mzz is the part of the Hamiltonian which depends
on the magnetic-ion spin state only, and leads to an
exchange-induced energy shift of both degenerate hole
levels, bearing some resemblance to the Van Vleck
paramagnetism. The estimated contribution of this
shift to the magnetic polaron energy is usually small;

where gM„ is the g factor of Mn + and p~ is the Bohr
magneton. In Eq. (3) the magnetic energy of the hole
(prig&8 J) is omitted, as it is small as J/I « l.

States of the polaron given by Eq. (3) are characterized
by the value and direction of I, and by the projection of
the pseudospin (m) on the exchange field %(I). The ener-
gy of the ground state should be minimal, and therefore
in the ground state m =+—,'. Thus the ground-state ener-

gy is

(4)

The field %(I ) usually increases with I, so that the
minimum of c is achieved at the maximal value of the to-
tal ion spin I=Io. Therefore, the polaron ground state
can be found from the system of equations

BXp Xp I
g MnPB a

(S)

where A, is a Lagrange multiplier. As can be readily seen,
A, gives the strength of an effective field which is a sum of
the externa1 field B and the exchange field—(1/pzgM„)(BS&/BI )(j&) produced by the hole. The
physical meaning of Eqs. (S) is thus quite clear: it follows
from this relation that the total ion magnetic moment
M= —pgI in the ground state is directed along this total
field. The system (S) permits one to find the connection
between the ion spin I and the external magnetic field
easily:

8=8,(I)+8i,
where
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B,(I)= 1

21 BgM&

[[V,I(I)I xI]xI]
I2 (7)

C. Polaron states in a magnetic field

To find out the polaron ground state along Eqs. (7) and
(8), it is necessary to know the explicit expression for the
field %(I). In the simplest and most demonstrative case
this field is related to I by a linear dependence

%(I)=—gI,
V

where g is the tensor of hole g factor, which connects,
neglecting Van Vleck paramagnetism, the hole spin J
with its pseudospin j:

Ja gap) p

If hole localization does not lead to an additional symme-
try reduction, the tensor g is diagonal, with
g„„=g=ging„(the axis Z is chosen normal to the
quantum-well plane). In this case the vectors 8 and I and

FICx. 1. Polar plot of the forbidden values of the external
magnetic Geld vs the direction of I (dashed). Solid lines denote
the value of transversal component of the magnetic field, B„as
a function of the angle y between M= —pgI and Z. Calcula-
tions are made for the case of the heavy hole. The inset shows a
sketch of vectors ( j ), M, and B in respect to the structure axis
Z.

is perpendicular to I; the component of 8 along I, B&,
may be of an arbitrary value. Therewith the polaron en-
ergy takes the form

g M I BBII—
—,
'

I
&(I ) I

From symmetry considerations one can conclude that B,
vanishes if I is normal to the quantum-well plane or lies
in this plane (the latter is strictly true if account is not
taken of the crystal anisotropy). Solid lines in Fig. 1 give
a schematic sketch of the B, dependence on the direction
of I. It is worthwhile to note that 8 equals [8, +8& ]'
and at given I is not less than 8,(I). Regions correspond-
ing to forbidden combinations of I and 8 are shown by
dashed lines in Fig. 1.

the Z axis evidently lie in one plane. Taking into account
this feature, one can find the relation between angles of 8
and the ion magnetic moment M= —pgI to Z (p and y
respectively):

g (g~~ gi )sing' cosp
sin(p —y) =

2»gMnB + Qg'cos'y+gt2sin'y

and the expression for the polaron energy in terms of
these angles:

E= I BgMnBI cos(p p ) Qgzzcos 1 +gisln 7'

It is seen from Eqs. (11) and (12) that the case of g„&gi
can be brought to its opposite (g„)gi ) by adding rr/2 to
both angles and simultaneously interchanging g„andg I

.
Taking that into account we restrict consideration to the
case ofg„)g~, which is realized for heavy holes in quan-
tum wells. An analysis of Eq. (11) yields four ranges of
the external field 8, where the dependences y(p) are
qualitatively distinct (see Fig. 2). These ranges are
separated by critical fields B&, B2, and B3-.

aBi= ~ (gzz
2I BgMnV

2 2
a gzz2—

2I B+Mn V gzz

2 2
a gzz3—

2PBgM~ V g~

At low fields [8(8, , Fig. 2(a)] the right-hand side of Eq.
(11) appears to be greater than 1 at some values of y.
Therefore, corresponding directions of I cannot be real-
ized. These are precisely the combinations of B and I
which fall into the dashed regions in Fig. 1. For each
direction of the magnetic field there are four solutions of
Eq. (11) which are stationary states with different ener-
gies. In the deepest state the deflection of I from the z
axis is minimal, as well as the difference between the an-
gles P and y.

At 8 )Bi [Fig. 2(b)] intervals of p with only two pola-
ron states appear. As the magnetic field overcomes B2
[Fig. 2(c)], the dependence y(P) suffers additional qualita-
tive changes. However, y(p) for the polaron ground
state still has a discontinuity at p=rr/2. It is not until 8
exceeds 83 [Fig. 2(d)] that this dependence becomes a
smooth function like one for a polaron formed by a car-
rier with isotropic g factor. Nevertheless, the di6'erence
between y and P at any Piner/2 vanishes only with
B~oo.

The most spectacular feature of the anisotropic Mp,
given by the above analysis, is the coexistence of several
degenerate states in the case when the magnetic field
B &B3 is applied along the direction corresponding to
the minimal g-factor component [p= m/2 in Figs. .

2(a) —2(c)]. It is worth noting that in this geometry a
qualitative di6'erence appears between the cases of
g„&g~and g„&gz. In the first case the ground state is
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FIG. 2. The solutions of Eqs. (11) and (12):
the direction of the ion total spin (angle y,
lower plots) and energy (upper plots) vs the
direction of external magnetic field (angle P);
a —8 &B„b—8, &8 &B„c—8, &8 &83,
and d —8 &83. Different branches of solu-
tions are numerated. The states with the
minimal energy (ground states) are shown by
the solid line. The curves are calculated for
g&/g„=0.2, and magnetic fields were taken
equal to (a) 2.38p (b) 2.458p {c) 38p, and (d)
158p, where Bp =(a/2p~gM„V). The charac-
teristic exchange energy cp=aI/V.

twofold degenerate (the magnetic-ion total spin lies in the
plane specified by the structure axis and the external
field). If g„&giand 8 is applied along Z, the vector I
can lie in any plane which contains this axis, the ground
state thus being infinitely degenerate. When the
magnetic-field strength reaches B3, the degenerate states
merge to one state with the polaron magnetic moment
directed along the external field. The appearance of com-
ponents normal to 8 of this moment at low fields
(8 & 83 ) can be considered a spontaneous symmetry
break resulting from the nonlinearity of the tight-bound
spin system of the polaron.

In quantum wells the case of g„&g~ is realized for
hole states near the bottom of the light subband, where
the z projection of the real spin J is equal to +—,. It is
easy to find that in these states g~ =2g„=2.All charac-
teristic fields B,, B2, and B3 therefore appear to be of the
same order of magnitude, B„=(1/2p~gM„)(a/V).

D. Heavy-hole polarons

In the states at the bottom of the heavy subband
(J,=+—,') at a zero approximation gi=o, g„=3.This
gives an infinitely high value for the field B3 at which the
twofold degeneration of the ground state vanishes. To
refine this value we complement the expression for the
field % by terms cubic in components of I, which are
small comparative to the first linear term:

By substitution of this expression into Eq. (7), we find
the modified relation between P and y:

1 a
sin(P —y ) =

2P~gM„B V

(g„—3G&I sin y)siny cosy

Qg,', cos'y+ G',I'sin'y

Since G~I &&g„,the term containing Gj in the numera-
tor can be omitted. The corresponding term in the
denominator appears to be significant only in the narrow
range of angles ~m. /2 —

y~ &&1, where cos y &&1 and
sin y = 1. Here Eq. (17) coincides with Eq. (11) if gi is re-
placed by G&I . An estimation for the parameter B3 can
thus be found as:

a gzz

2pzgM„V G&I

Therefore, the theory developed gives the desired depen-
dences of the direction of the total ion moment I and of
the MP ground-state energy on the strength and direction
of an external magnetic field, for heavy as well as light
holes. Recall that the direction of the hole pseudospin,
which is another important characteristic of the polaron
state, is connected with I by the simple formula

X=g„I,e, +GiIie (16) 1 %(I)
2 ~~(I)~

.
where G~ is determined by the ratio of the characteristic
exchange energy a/V and the splitting of light- and
heavy-hole subbands. For its relation to experimentally
available quantities, see Sec. IV below. In Eq. (16), for
definiteness' sake, we consider the external field and the
spin I to lie in the plane (ZX); e, and e are orts along
the respective axes.

Since the vector M= —pgI lies between % and 8, in the
case of strong anisotropy the hole pseudospin is deflected
from the direction of the external field more strongly
than the total magnetic moment of the magnetic ions.
Relation (19) will be used below in a description of mag-
netopolaron luminescence.
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III. INTENSITY AND POLARIZATION
OF LUMINESCENCE DUE TO RECOMBINATION

OF ELECTRON-HOLE PAIRS
IN THE GROUND MAGNETOPOLARON STATE

Photoluminescence studies have made feasible exten-
sive information on two-dimensional magnetic polarons
formed from localized excitons. ' The anisotropy of the
2D hole spin state viewed above is expected to reveal it-
self in the polarization characteristics of the exciton mag-
netic polaron luminescence, as well as in its intensity
dependence on a magnetic field. In this section, we
derive expressions for these dependences. In Sec. IIIA
the probabilities of optical transitions are obtained as
functions of the direction of the ion total spin I and the
external magnetic field B. In Sec. III 8 the peculiarities
in luminescence intensity and polarization in an external
magnetic field, resulting from the anisotropic structure of
the magnetic polaron, are discussed.

P, = ~+1/2}cos +
~

—1/2}sin
2 2

(20)

y„=I+1/2, h }cos + I

—1/2, h }sin (21)

where ~+1/2, h } corresponds to j,=+—,', yh being the
angle of ( j } to Z which generally does not coincide with

y +vr. It is easy to deduce from Eq. (19) that
tanyi, =%i/X„which for light holes gives

where ~+1/2} and
~

—1/2} are spin functions related to
projections of S on z equal to + —,

' or —
—,', respectively,

and y, is equal to y+~ if R, Rh, and to p+vr if
R, ))R&. Accepting here the representation of a 2D
hole as a particle with the pseudospin j=

—,
' allows one to

write the spin function of the hole in the same manner as
for the electron:

A. Probabilities of optical transitions tango&h = tany,
gzz

(22)

To treat the optical manifestations of the MP anisotro-
py, proper allowance must be made for the exchange in-
teraction of the electron with magnetic ions which gen-
erally can complicate the entire MP structure. Here we
consider two limiting cases defined by the value of the
electron localization radius R, .

If R, in the localized exciton state is less than or ap-
proximately equal to the radius of the hole wave function
R&, then in the context of our model the electron spin S
can be regarded as interacting with the total ion moment
I in the hole polaron dealt with in Sec. III. Since the
electron g factor is isotropic, the ground state of the exci-
ton magnetic polaron corresponds to S~~I. On that ac-
count, the exchange interaction with the electron does
not change the direction of I, and, consequently, the ex-
pressions for the angle y remain valid. The electron ex-
change energy —

—,'(a, /V)I (a, is the conduction-band ex-
change constant) must therewith be added to the polaron
energy.

In the opposite limiting case of R, ))R&, the electron
spin is oriented along the average magnetization of the
magnetic ions outside the hole orbit, which follows the
direction of the external field given by the angle p. The
electron in this case does not contribute to the polaron
energy, because the electron density at each ion is negligi-
ble.

To obtain the matrix elements of optical transitions,
one needs expressions for spin parts of wave functions of
both electron (tP, ) and hole (fh). Since the magnetic
field B affects the carriers much more weakly than their
exchange interaction with the Mn + spins, these func-
tions are determined by the directions of average magne-
tization of ions in the polaron and outside it, which are
given by the angles y and P from Eqs. (11) and (17). For
this reason we begin by finding the dependences of polar-
ization and intensity of optical transitions on y and p, to
apply them later on to the MP ground state.

The electron wave function can be found by the use of
finite rotation matrices for the spin —,':

and, for heavy holes,

GjI
gzz

sin ytany . (23)

0'e +O'I
dhh( ph if e ) excos

2

—ie cos (24)

2
dih(V'h 0' ) —e,cos

3

0'e 0'a

2

1—e„sin
3

0'e 0'h

2

1—ie sin3'

0'e +0'h

2

Here e, e„,and e, are orts along X, Y, and Z, respective-
ly. The frame is chosen so that the external magnetic
field lies in the plane ZX.

In experiments with quantum wells the radiation,
which propagates along the structure axis Z, is usually
studied. Equations (24) and (25) result in the following
expressions for the intensity 2 and degrees of circular
(p, ) and linear (p&) polarization in this case:

As it was already mentioned, j,=+—,
' relates to J,=+—,

'

for light holes and to J, =+-,' for heavy holes. By the use
of well-known selection rules for the transitions between
these states and the state of the conduction band com-
bined with Eqs. (20) and (21) we obtain the matrix ele-
ments for recombination of heavy holes (d„h) and light
holes (dih) with electrons:
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hh(9 h~V e ) Pec fh
1 —COS+e COS+p

~th(9 h &'Pe )

Sin+ e singg
Pl fh&V e

COSTS(, +COS+e

1+ oy
sing sing h

1 cosye coslpp

COS+g COS+e

1 cos+ cos+p,

(26)

Here positive signs of p, and pl correspond to the right-
hand circular polarization and the electric vector of light
parallel to X, respectively.

B. Luminescence of anisotropic magnetic polarons

arb.
units

arb.
units

—1
0

FICz. 3. Degrees of linear (dashed) and circular (dotted) po-
larizations and the intensity of optical transitions (solid), vs the
direction of the ion total moment: (a) conduction-band —heavy-
hole subband (GjI /g„=0.1); (b) conduction-band —light-hole
subband.

Relations (26) can immediately be used to describe ex-
periments if by some reason magnetopolaron effects are
absent, so that the ion magnetic moment is parallel to 8
both inside the hole orbit and outside it
(y+m=qr, =P+m. ). For instance, this may be realized
with free carriers, high temperature, or strong magnetic
field (B »B3). Keeping in mind the dependences ph(y)
[Eqs. (22) and (23)], one can conclude that both heavy
and light excitons demonstrate pronounced peculiarities
in luminescence when 8 is close to the direction which
corresponds to the minimal hole g-factor component. At
~(n. /2) —

P~ ~ (gi/g„) the linear polarization of the
heavy-exciton luminescence rises sharply with a simul-
taneous decrease of the circular polarization [Fig. 3(a)].
For light excitons, near P=O p, = —0.6 is insensitive to
small changes of the direction of 8 [see Fig. 3(b)]. In the
opposite situation the plane of linear polarization is
determined by small normal to Z components of 8, ~pi ~

being approximately equal to 0.8. The light-exciton
luminescence intensity vanishes with P~n m. .

If a MP is formed, a theoretical description of experi-
mental data on photoluminescence polarization and in-
tensity requires an account for the fact that the direction

of I is governed not only by the external field, but also by
the hole anisotropy. The appropriate analysis for the MP
ground state can be done in the framework of the model
developed in the Sec. II.

In the polaron formed by a hole from the heavy sub-
band, as was already mentioned, on the magnetic field be-
ing tilted to Z, the ion magnetic moment lags behind it.
At strong fields (B &B3) this just leads to a more pro-
nounced nonlinearity of p& and p, as functions of P. At
moderate fields (B (B3) the situation changes qualita-
tively. The point is that under this condition even in the
Voigt geometry (P=m/2), the polaron moment is not
aligned in the quantum-well plane. Therefore, the
luminescence polarization does not reach 100%%uo. The cir-
cular polarization at P=m/2 is nevertheless expected to
be zero due to averaging over the two degenerate ground
states with opposing projections of I on Z(y, =~—y2).

For a hole belonging to the light subband, optical tran-
sitions from the ground state with emitted photons along
Z are forbidden at high fields (B & B3 ). The polaron for-
mation at B (B3 allows the transition, with the lumines-
cence circularly polarized. The polarization degree has
the opposite sign as compared to heavy-exciton lumines-
cence Its .value reaches 0.6(R, ~Rh) or 1(R, &&Rh) at
B =B3, and vanishes linearly with decrease of B at B~0:
p, = 2psgM„V—B/3a(R, ~Rh). If R, &&Rh, p, keeps
close to —1, while the magnetic field is strong enough to
saturate the orientation of the electron spin.

The qualitative peculiarities listed exemplify the possi-
bility of detecting magnetic polarons in quantum wells
not only by Stokes shift, but also by the dependences of
photoluminescence polarization and intensity on the
direction and strength of applied magnetic fields.

IV. DISCUSSION

It is worthwhile to compare the properties of two- and
three-dimensional magnetic polarons with respect to
their possible optical manifestations.

A. Qualitative considerations

In optical experiments MP's are usually detected by a
photoluminescence Stokes shift which is suppressed by
applied magnetic fields and decreases with temperature
elevation. Suppression of a 3D MP in magnetic fields is
due to saturation of the magnetic-ion polarization, which
results in the ion spin density being leveled off inside and
outside the carrier (exciton) orbit. The characteristic
value of the field saturating the ion magnetization is
determined by the lattice temperature T and the effective
temperature To of the ion spin system:
B,=k(T+ To)/psgM„(To allows for spin-spin interac-
tion among ions'). In the demonstrative ultimate case of
T= To =0 the 3D polaron is completely suppressed by a
field as weak as is wished. The 2D hole polaron under
these conditions behaves quite differently. The quantity
which gives the Stokes shift in optics, i.e., the difference
between the hole exchange energies in the MP ground
state and with no polaron formed,
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be= — ("y g„cosy+g~sin y
1Ia „g2 2 2 2 Therefore, the polaron shift [Eq. (27)] in the Voigt

geometry is given by the simple formula

—Qg„cosP+g~sin P) (27) hc, =—y' Ezcos y+Evsin y —E, v
2 2 2 . 6 (29)

does not vanish except when B is parallel to one of the g-
tensor axes. Provided this is realized, the field in addi-
tion must not be less than B3, unless it is oriented along
an axis with the maximal g-factor component. It is in the
latter case only when the 2D polaron can be suppressed
by an infinitely weak field B, like the 3D one. This result
is not quite unexpected, since a similar situation is met
with in magnetic polarons (ferrons) in antiferromagnets, '

or in Van Vleck paramagnets, ' where the polaron is
formed due to deflection of magnetic-ion spins from the
direction prescribed by some built-in eft'ective field, in-
stead of the external field in our case.

The strong anisotropy of field suppression of 2D mag-
netic polarons was well documented experimentally.
It was also described theoretically assuming the pro-
found anisotropy (gj =0) of the hole g factor. As is noted
above, this is a good zero approximation for heavy holes
considered in Ref. 22, valid at moderate fields B «B3,
where 83 can be found with Eq. (18).

No reliable experimental evidence of the light-hole po-
laron has been reported so far, since the heavy-hole sub-
band is the deepest in the overwhelming majority of
available quantum-well structures. Hopes for finding it
are pinned on ZnSe-based strained quantum-well struc-
tures, ' where the ground state of a free hole is one
with Jz=+—,'. The analysis done in the present work
shows how essential the g-factor anisotropy is for under-
standing the physics of this object: the hole moment is
not quantized along the structure axis even without an
external magnetic field. This allows a transition which is
forbidden without the magnetopolaron efFect, thus pro-
viding the possibility to observe this kind of polaron in
photoluminescence spectra.

B. Relations between polarization and Stokes shift

The peculiarities related to magnetic polarons in the
magnetic-field dependences of luminescence intensity and
polarization, described in Sec. III, suggest some addition-
al ways to obtain experimental insight into the structure
of 2D magnetopolaron states (for reference, in the 3D
case the luminescence intensity and polarization are vir-
tually insensitive to MP formation). At the end of this
section we will show that within the model developed
above it is possible to construct an expression which links
a set of parameters of the heavy-hole MP, available in op-
tical experiments: exchange-induced splittings of free
heavy-hole levels in the Voigt (ev) and Faraday (eF)
geometries, the polaron shift of the PL line (bE), and the
PL linear polarization in the Voigt geometry.

First we note that Ez and E v are related to parameters
of the model by the following transparent relations:

1 aI 1 aI
E =— g E =— G

2 V "' 2 V
(28)

which allows one to find the angle y. If the condition
Ev«c.F is satisfied, which is true in narrow quantum
wells, we get

4bE(b, e+ E v)
cos y=

E,F
(30)

On the other hand, Eq. (23) for y and yl„on being corn-
bined with Eq. (28), takes the form

E, v
tanyh = sin ytany .

Eg
(31)

By this means both angles y and y&, which govern the
value of linear polarization, are uniquely determined by
4E, E~, and Ev.

After substitution of Eqs. (30) and (31) into the formula
for the linear polarization p&" [Eq. (26)], we achieve the
expression for pl" as a function of the polaron shift AE.
For R, ~RI, it takes the form

E v[eF —4he(DE+ E v ) ]

E~3[4bE(be+ E v)+ EF(2«+ e v) ]
(32)

and, for R, &&Rz,

E v[ E~ —4b, s( he+ e v) ]Pl"=
e+Ev)3

(33)

Equations (32) and (33) give lower and upper bounds for
the linear polarization degree for a heavy MP lumines-
cence. They contain no fitting parameters and can be
used to compare the above theory with experimental
data.

In summary, we have developed a theory of the ground
state of a two-dimensional magnetic polaron, taking into
account an anisotropic hole g factor. The model has
yielded magnetic-field dependences of the polaron energy,
and the polarization of the magnetopolaron lumines-
cence, which allow direct comparison with experimental
data. The problem of a light magnetic polaron has been
considered theoretically. The results of the theory can
also be applied to magnetic polarons in bulk wurtzitelike
DMS's.
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