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The relaxation towards equilibrium of various profiles imprinted on a crystal surface is studied above
and below the roughening temperature of that surface. Evaporation kinetics and, above roughening, sur-
face diffusion are considered. Continuum theory and step models are compared with the results of
Monte Carlo simulations. Above roughening, the simulational data are well understood in the frame-
work of the continuum theory, and the oscillatory profiles characteristic of surface diffusion are easily
seen. Below roughening, the current continuum theories do not treat the top-step annihilation process
correctly. That process is described using a Langevin theory for step fluctuations. In addition, the op-
posing effects of the anisotropic mobility and surface free energy on the profile shapes are emphasized
and illustrated in a phenomenological extension of the continuum theory with small rounding parame-
ters. Although these extensions of the continuum theory improve understanding of the Monte Carlo
data below roughening, finite-size and lattice effects still preclude a quantitative fit of the theory to the

Monte Carlo data.

I. INTRODUCTION

A profile imprinted on an initially flat equilibrium crys-
tal surface will undergo morphological changes when re-
laxing towards equilibrium. This morphological evolu-
tion has been found, both experimentally and theoretical-
ly, to be significantly different above and below the
roughening transition of the relevant crystal surfaces.! ~©

These healing processes have been studied most exten-
sively for one-dimensional gratings [see Fig. 1(a)]. Above
roughening, the gratings acquire, for small amplitude to
wavelength ratios, a sinusoidal form, as predicted by the
classical capillary theory of Mullins' and confirmed by
experiments® and simulations.’ ! The decay of the am-
plitude is, asymptotically, exponential in time. This is
true for both evaporation dynamics and (experimentally
more relevant) for surface diffusion.

Below roughening, extensions of the classical continu-
um theory>!!716 take into account the anisotropic sur-
face free energy, o(6), and mobility, m(6), which may be
singular at special orientations of the surface. These an-
isotropies may play opposing roles.® An increase of the
surface tension with the inclination angle (away from a
special orientation at 6=0), may lead to a broadening of
the profile shape at its maxima and minima, or even a
faceting in the case of a cusplike singularity. On the oth-
er hand, the profile may sharpen at the sides and near the
apexes due to a lowering of the mobility (or diffusion
coefficient) at decreasing angles. Therefore, the resulting
morphological evolution will depend crucially on the bal-
ance of these two competing tendencies of broadening
and sharpening.

In fact, different scenarios have been suggested, based
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on extensions of Mullins’ theory. For surface diffusion,
Bonzel and co-workers!® obtained numerically a pro-
nounced broadening of the profile surface, when regular-
izing the cusp singularity of the free energy, assuming an
isotropic mobility (or diffusion coefficient). That assump-
tion has also been made by Spohn,? who kept the singu-
larity in o (0), giving rise to a faceting at the top and bot-
tom of the profile, and a finite decay time. In marked
contrast, in the continuum description of Rettori and Vil-
lain,'>!3 the sharpening tendency prevails, with profiles
being sharper than parabola near the top. For evapora-
tion dynamics, both Spohn? as well as Langon and Vil-
lain'! predict a similar sharpening, caused by a linear
vanishing of the mobility, m ~ ||, on approach to the flat
surface orientation. However, the nonparabolic profiles
following from these continuum theories are not seen in
Monte Carlo simulations.’ ™ '° In addition, the simulated
profiles and their decay typically reflect the atomistic na-
ture of the shape evolution, not captured by the continu-
um descriptions, as seen in the dynamics of the top ter-
races of the gratings and their bounding steps, with
meandering of the steps as well as forming and shrinking
of islands.>® Experimentally, below roughening,
broadening or even faceting has been reported, for in-
stance, for gold3 and silicon* surfaces, where the healing
proceeds, predominantly, through surface diffusion.

In this contribution, we shall study the relaxation of
several initial profiles imprinted on a crystal surface, con-
sidering surface diffusion above roughening and evapora-
tion dynamics both above and below roughening. Previ-
ous Monte Carlo work has been on gratings, so here we
concentrate on wire and bump profiles [Figs. 1(b) and
1(d)], for which continuum theory predictions exist and
which have not been tested by simulations. The pertinent
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continuum theories are outlined in Sec. II. Section III
contains a discussion of two new aspects that are relevant
in comparing continuum theory with simulations or ex-
periment. The first is the dynamics of step annihilation
at the top of profiles such as the wire or grating. The
second is the role of finite-size effects or small rounding
parameters on the opposing effects of the mobility and
surface free energy. In Sec. IV the Monte Carlo data are
presented and discussed. A summary concludes the arti-
cle.

II. CONTINUUM THEORY

We consider the relaxation of the profiles of Fig. 1,
where z(x,y) is the height of the surface at the point x,y.

(d)

FIG. 1. Sketch of the initial profiles. (a) 1D grating; (b) 1D
wire; (c) 1D step; (3) 2D bump.
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A. Evaporation recondensation above roughening

The continuum theory for surface relaxation is well es-
tablished, and is based on the seminal work of Herring
and Mullins.! In this theory, the surface evolution is
driven by local deviations from the equilibrium chemical
potential. In the case of evaporation recondensation, the
governing equation is

v,=—muf , (1)

where v, is the normal velocity at a point on the surface,
m is the mobility, and u is the local deviation of the sur-
face chemical potential from the equilibrium value. The
“gas” or reservoir with which particle exchange is occur-
ring is assumed to be at the equilibrium chemical poten-
tial everywhere. The deviation p is almost always as-
sumed to be small, so it can be found from a variation of
the equilibrium free energy. Using this principal, one ob-
tains

d%c
3¢?

where 0(60,¢) is the free energy of a surface oriented at
angles 0, ¢ to a reference [e.g., (111) of a fcc metal] sur-
face, «k; and «, are the principle curvatures of the surface,
and Q is a volume element. The mobility m is not so well
understood, although in some limiting cases (see below)
its behavior has been argued to be quite simple.>!° In the
thermodynamic limit, the surface free energy below the
roughening temperature (T;) exhibits cusps at special
orientations, so care has to be taken in analyzing Eq. (1)
in that limit [because at cusp orientations the second
derivative in (2) yields singularities]. Although it may be
well known, we first summarize the behavior in the
small-slope approximation where Eqgs. (1) and (2) reduce
to a linear diffusion equation, for convenience of later
comparison to the Monte Carlo data.

In this limit, valid at sufficiently high temperatures and
low amplitudes, z, =0z /3x and z,=0dz /dy are assumed
to be small, and the surface free energy and the mobility
are taken to be isotropic, i.e., we replace them by con-
stants (o, and m,). Using these approximations in (1)
and (2) leads to the linear diffusion equation

3z

2
p=a o+%é§ K+ o+ K|, 2)

= 2
ot EVz , (3)
where
E=pyo,Q/[2uM)VkyT)"?], 4)

with p, being the equilibrium gas pressure, kzT the
Boltzmann constant times the temperature, o, the free
energy of the reference surface, and M the mass of a par-
ticle. The asymptotic “‘scaling” solutions to this equation
for the four cases of Fig. 1 are as follows. For the one-
dimensional (1D) grating [Fig. 1(a)],

2(x,t)~e ~2T/M Eigin (2 me /0) (5)

where A is the wavelength of the grating, and the grating
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(2w /A)2Et

amplitude decays as e~ The solution for the 1D

wire [Fig. 1(b)] is
—x2/4Et
z(x,t)~ —6—7-[-—— s

so that the wire amplitude decays as 1/t/2 and its width
increases as t!/2, The 1D step [Fig. 1(c)] behaves as

(6)

2
x e P /4Et
,t ~ _
z(x,t) f Vs
so that its width increases as ¢1/2. Finally, the 2D bump
[Fig. 1(d)] decays according to

dp , (7)

.2
e r“/AEt

z(r,t)~—, (8)
t

t1/2

so that this profile spreads as and decays as 1/¢.

B. Surface diffusion above roughening

Again following Herring and Mullins,! it is known that
surface diffusion is driven by gradients in the local sur-
face chemical potential,

V= _msdvs,u' ’ ©

where mg, is the surface mobility, and V, is the surface
gradient. In combination with the continuity equation,

v,=—QV,j, (10)
where j, =nv, (with n the adatom density); one obtains
v,=QV,nmyuVu . (11)

Assuming the small-slope limit, leads to the linear

fourth-order equation,

9z _ _ FV*z | (12)

ot
where F=D 0,0%n /kyT, with D; being the surface
diffusion constant. This equation has been used exten-
sively to describe the dynamics of surfaces, for example,
grain boundary grooving, sintering, and profile evolution.
The results, found using Fourier analysis, are not as
straightforward as for the evaporation-recondensation
case. In any event, the asymptotic temporal decay laws
are known analytically, and for the four profiles of Fig. 1
they are the following:!” for the 1D grating, amplitude
~e”‘2ﬂ/M4F’; for the 1D wire, amplitude ~¢~1/* and
width ~¢!/%; for the 1D step, width ~t!/% and for the
2D bump, amplitude ~¢~'/? and width ~¢1/4,

It is seen that the characteristic exponent for profile
decay by surface diffusion above roughening is one-half of
that for evaporation-recondensation dynamics. Another
interesting feature of profile decay by surface diffusion is
that some of the profiles develop oscillations as they de-
cay. This feature will be illustrated in the Monte Carlo
simulations of Sec. IV.

It is well known that as one approaches T from
above, a cusp in the surface free energy develops. There-
fore, slightly above Ty a strongly anisotropic surface free
energy may be expected. Indeed, in the exactly solvable
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one-dimensional (solid-on-solid) SOS model it is easy to
show’ that the “cusp” is round only for angles smaller
than G,~e 78T The validity of the linear theories,
Eqgs. (3) and (12), is then restricted to small amplitudes
such that 6 < 6, everywhere on the profile. At larger an-
gles, the profile shape and dynamics are affected by an-
isotropy, as had been demonstrated by simulating 1D
gratings at various temperatures and amplitudes.’

C. Evaporation recondensation below roughening

In this limit, the continuum surface free energy is
singular and near a cusp orientation has the form

a(6)~G,16|+G,l0|" (13)

at low angles |0|. The first term in Eq. (13) is due to the
free-energy cost of creating an atomic step, while the
second term is due to step-step interactions. Both elastic
interactions and entropic interactions lead to ¥y =3. In
addition, below roughening, the mobility m in Eq. (1) is
dominated by the rate at which atoms detach from step
edges. This simple argument suggests that

—A/ky

m ~ve Tlo|=e,l06] , (14)

where A is an activation energy for atoms from, e.g., kink
sites, and v is an attempt frequency (e.g., the Debye fre-
quency). It has been assumed? that (14) captures the
essence of the mobility behavior at low temperatures and
on approach to a cusp orientation (note that Hager and
Spohn also considered, in the more recent work,? the
consequences of different forms of the mobility, motivat-
ed by the conflicting simulational findings). For one-
dimensional profiles [Figs. 1(a)—1(c)], combining Egs. (1)
and (2) with (13) and (14), one obtains>!!

oz
E=alzxzzxx , (15)
where a;=e;(G;+6G;)Q.  Similarly for two-

dimensional cases with cylindrical symmetry, the govern-
ing equation is?

3z 9G;e,z;  Gieyz
E=a12rzz,,+ . ~+ . - (16)

The asymptotic behavior of (15) and (16) can be found us-
ing separation or variables or similarity solutions.? The
result for the 1D grating is

z(x,t)~(t/AH) V20 (x /A) , (17)

so that its amplitude decays as (¢ /A%)"!/2, The 1D wire
behaves as

Z(x,t)~t VoW, (xt ~1/%) (18)

so that its amplitude decays as ¢ ~!/® and its width ~¢1/5,
Note that the profiles of the wires and the gratings
display a nonparabolic sharpening at their apexes, with
8z ~(8x)*3. That sharpening has not been observed in
previous Monte Carlo simulations of grating decay, nor is
it seen in the simulations of wires presented in Sec. IV.
Reasons for this discrepancy will be discussed in Sec. III.
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Essentially, the top-step annihilation process is not taken
into account in Eq. (14). This problem does not occur for
the 1D step, and Eq. (15) is expected to provide a reason-
able description. The profile is then given by

z(x,t)~Wy(xt 174y (19)

and so its width spreads ~¢!/. Finally, the 2D bump is
predicted to follow, in the limit of small amplitudes, the
scaling form

2(r, ) ~W, [V (ct+r?)] . (20)

Here the first term of the right-hand side of Eq. (16) is
dominant, describing the independent decay of the
curved steps. At large amplitudes, the step-step interac-
tions, contained in the remaining two terms of that equa-
tion, will alter the behavior. The Monte Carlo data (see
Sec. IV) are consistent with this prediction.

In contrast to the behavior above roughening, different
initial profiles may relax in qualitatively distinct ways.
For example, an initial 2D bump [Eq. (20)] will eventual-
ly shrink as its amplitude decays; on the other hand, at
T > Tk, one observes the usual spreading. The shrinking
is due to the presence of steps with a net curvature below
roughening, and this leads to enhanced step-edge eva-
poration.

III. CUSP-ROUNDING MECHANISMS
AND PROFILE DECAY BELOW ROUGHENING

Below roughening, the 1D step and the 2D bump may
be described quite well by the continuum theory which
follows from Egs. (15) and (16), respectively. However,
for 1D gratings and 1D wires, that theory implies the
supposedly unphysical feature of a sharp apex in the
profile shape. In this section we mention and discuss
mechanisms which may round this sharp apex in simula-
tions and in experiment. Such mechanisms are, in partic-
ular, the following.

(i) Miscut. If the surface is miscut, the closest ap-
proach to the cusp orientation that is achieved is the mis-
cut angle a. The ideal behavior, Egs. (17) and (18), is
then rounded out at an angle 6,=a. The drastic effect of

J

az
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this on-profile decay has been illustrated before!! for 1D
gratings, with the nonparabolic sharpening near the top
being replaced by a pronounced broadening. Of course,
the discrepancy between continuum theory and the simu-
lations cannot be explained by a miscut, because the
Monte Carlo studies were done on perfect surfaces.

(ii) Finite-size effects and top-step dynamics. One would
always anticipate finite-size effects, present and possibly
much pronounced in simulations, which would round the
ideal cusps of Egs. (13) and (14). In addition, it is easily
seen that the mobility m =1/1,,,, where I, is the width
of the top terrace, because the two steps that bound the
top terrace act as sources of adatoms.’ In the case of 1D
gratings, the smallest possible mobility is always greater
than 1/, in contrast to the vanishing mobility at the top
assumed by the continuum theory, Eq. (15). Indeed, im-
plicit in the continuum theory for the 1D grating and the
1D wire is the assumption that the center of masses of the
two unlike steps at the profile apexes undergo contact an-
nihilation. However, that is not the case. Instead, the
step annihilation begins when the two fluctuating steps
first make contact,” which implies a longer-range an-
nihilation process. We shall illustrate this aspect in the
following.

A. The effect of rounding the free energy and mobility

We first assess, in a phenomenological way, the effect
of rounding both the mobility singularity and the surface
free-energy singularity, due to, e.g., possible finite-size
effects. To do this we introduce two rounding angles, 8,,
and 0, into the expressions (13) and (14), so that

m~e (0*+62)1%, (21)
and similarly we make the replacement
|6]—(62+6%)'72 . (22)

In general 0,,70,, and the limiting behavior Eq. (15)
may be recovered when both of these rounding parame-
ters approach zero. From Egs. (1) and (2) it follows, for
1D profiles,

G;[(6+467)°+66°+367]

2w | G, [(6°+6%)*+6%]

—=q (62'{"63" )1/2
! (1+22) | ° (62+6%)"2

at

A constant G has been added to the surface free energy,
as occurs in lattice models and experiment. Note that the
equation is formally similar to the continuum theory
above, but close to roughening; there the rounding is due
to thermal fluctuations. It is readily seen that if the slope
(amplitude} of the profile is small, z, <<min(8,,,6 J; ), then
the equation becomes linear, and the profile decay is like
that given by Eq. (3). In that limit, the effective diffusion
constant depends on the small rounding parameters, be-

23
(62‘+‘9})1/2 ( )

ing proportional to a,6,,(G,+G,/6). For larger slopes
(amplitudes), the 1D grating and wire profiles may
broaden at their tops to take advantage of the lower free
energy there. This cannot occur in the continuum
description of Eq. (15), because there a possible broaden-
ing or even faceting is (over)compensated by the sharpen-
ing tendency caused by the vanishing mobility at the
apexes. Certainly, in our description the anisotropy of
the mobility still favors a more rapid decay of parts of the
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profile with larger angles. This may produce leaner
forms at the sides of the profile and also a sharpening
near the top, but with parabolic shapes. Accordingly, the
actual profile shape reflects the interplay of these two op-
posing effects stemming from the surface free energy and
the mobility. Their relative impact is determined, in the
phenomenological description, by the concrete choice of
the small rounding parameters. An example is depicted
in Fig. 2, with 0,, larger than 6,. Starting with a
sinusoidal grating, the sharpening tendency dominates at
early times. Eventually one observes a broadening near
the top, before the profiles acquire again, asymptotically,
the sinusoidal form of the linear solution at sufficiently
small amplitudes. Figure 2(b) shows the amplitude decay
as a function of time, and from this figure, it is seen that
at long times (low amplitudes), the exponential decay law
of the linear theory is recovered.

Note that a similar phenomenological ansatz, taking
into account, however, only a small rounding parameter
for the surface free energy, assuming an isotropic
nonzero mobility, has been analyzed before,!” for surface
diffusion. In that way, experimentally determined
profiles could be reproduced successfully.

Amplitude

-0 | 1 I 1
0.00 0.10 0.20 0.30 0.40 0.50

Timesteps (x 5000)

FIG. 2. The effect of small parameters on the decay of a 1D
grating. (a) Profile shape as a function of amplitude. (b) Profile
amplitude as a function of time. Solutions are for ,, =0.005,
6,=0.001, G,=G;=G;=1.0, using an explicit time integra-
tion of Eq. (23) with 160 points and central differences in the x
direction. The amplitude is in lattice units, while the time is in
dimensionless units.

0.60x10°

W. SELKE AND P. M. DUXBURY 52

B. The top-step annihilation process

Two wandering steps, bounding the top terrace of a 1D
grating or wire, may annihilate each other by first touch-
ing, then forming islands, and finally by island shrink-
ing.>® This process drives the equilibration process. Its
main characteristics may be mimicked by a single step
being repelled from a hard wall and being absorbed by an
attractive wall. Thus, consider a system of these two
straight walls, at distance W, and of length L, with a step
which is initially flat and located near the repelling wall.
The steps begin to wander with the step fluctuations
growing proportional to ¢!/4 and moving the step away
from the hard wall.'®!® Once a fluctuation of the step
first touches the attractive, absorbing wall, it attaches
and that produces a net local curvature near the point of
contact. The curvature is of order 1/W. This curvature
causes a more rapid attachment of the remaining nonab-
sorbed parts of the step according to the law,

di, m,o,Q

dr =——‘—W— for IS>>W .

(24)

where [ is the length of the step which is still not ab-
sorbed by the wall, m, (assumed constant) is the step mo-
bility, and o, (assumed constant) is the step free energy.
This leads to a linear decay, in time, of /. It follows that
the time taken for the curvature-driven annihilation of
the step from single initiation points (corresponding to the
time for island shrinking in the original problem) is ap-
proximately LW, while the time taken for the step to first
touch the absorbing wall (the time needed for the
meandering top steps to meet) is approximately W*.
Thus there are two distinct regimes. If L <<W?3, the
dominant time is the time for first attachment, with the
top terrace annihilating rapidly once that attachment is
made. However if L >> W3, many attachments occur and
many islands shrink over a time scale of order W*. In
both cases the time taken for the top step to annihilate is
of order W* We have simulated this process using the
usual stochastic Langevin equation I'"'3k /3t=0V?h
+7(¢), with the step bounded between a hard wall and
an absorbing wall. The absorbing wall is distance W
from the hard wall, and at # =0, the step is flat and locat-
ed close to the hard wall. The results are presented in
Fig. 3, where we have set the rate I'=1, the step free en-
ergy o =1, and the noise amplitude is also 1. In particu-
lar, it is seen that the island shrinking time (crosses) dom-
inates for small W, while the attachment time (pluses)
dominates for large W. In the regime 1<<W?<<L,
7~W* is found, while the crossover to a smaller ex-
ponent occurs at larger W due to finite-size effects (in the
limit L << W?, the step can be treated as a single walker
at the center of mass of the string, in which case
T~LW?).

From the discussion above, it is seen that in the vicinal
limit (L — o0; W-—> o0, with W2 <<L), two steps annihi-
late in a time of order W*, where W is the step separa-
tion. The topology of the top terrace consists of many is-
lands if L >> W3, while only one or a few islands occur if
L <<W3.
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Note that the dynamics of single steps has received
much attention recently, motivated largely by scanning
tunneling microscopy?® ™22 (STM).

IV. MONTE CARLO SIMULATIONS

The standard microscopic model for a surface display-
ing a roughening transition is the SOS model, with the
Hamiltonian

H=3J|h,—h,,| (25)

ILm

where A, denotes the height, taking integers only, at site /
of the surface above a flat reference plane. The interac-
tion between neighboring sites, / and m, is determined by
the bonding energy J. Below the roughening transition
temperature, T < Ty, the surface is smooth; in the rough
phase, T > Ty, the height fluctuations diverge, in the lim-
it of an infinitely extended surface.

For a square lattice, i.e., the surface of a cubic crystal,

T 3
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10* |- * —
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FIG. 3. The time, in dimensionless units, taken for a step to
be absorbed by an absorbing wall. Asterisks are the total time
to absorb (total time), pluses indicate the time taken for the first
attachment of the step (first attachment time), and the crosses
are the time taken for the islands to shrink once they have be-
gun forming (islanding time). The islanding time plus the first
attachment time is equal to the total time. W (in dimensionless
units) is the initial distance between the step and the absorbing
wall, and the time step is 0.5. (a) L =100 (averaged over 50
configurations) and (b) L = 1000 (10 configurations).
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Ty is known to be kpTy /J~1.24,2 where kp is the
Boltzmann constant. To study properties above roughen-
ing, it is also convenient to consider the one-dimensional
SOS model, where T =0.

The relaxation of an initial profile, imprinted on the
surface, towards thermal equilibrium, 4, ) =0, may be
simulated by Monte Carlo algorithms corresponding to
particle transport by evaporation condensation and by
surface diffusion.’ ! In the case of evaporation dynam-
ics, Glauber kinetics is employed. Surface diffusion is de-
scribed by Kawasaki Kkinetics, i.e., hopping of surface
atoms to neighboring sites. The trial site is chosen ran-
domly for both Glauber and Kawasaki kinetics.

Above roughening, both types of dynamics were simu-
lated. Below roughening, only results for evaporation
kinetics will be presented; surface diffusion becomes ex-
tremely slow, and it seems difficult to obtain data of the
desired accuracy.>®2*

We considered the relaxation of 1D wires and 2D
bumps.

A. 1D wire profiles

We first discuss the Monte Carlo findings for 1D wires.
Simulation results for one- and two-dimensional SOS
models were obtained. In one dimension, with (2K +1)
equidistant sites at x=—K,—K+1,...,K—1,K, the
initial configuration may be defined as

0, |x|>M

hix,t=0)= Ay, IxI=M

(26)

describing a wire of height 4, and width wy=2M +1.
For a rectangular surface of (2K +1) X L sites, (x,y ), the
analogous geometry is chosen, with the wire being ex-
tended in the y direction, h(x,y,t=0)=h(x,t=0). In
both dimensions, full periodic boundary conditions are
used.

To characterize the morphological changes, we record-
ed the profile z(x,?) by averaging h(x,y,t) over many
realizations of the healing process at time ¢ (see Ref. 5);
typically we sampled over 10* to 10° realizations. The
time scale is set by the number of Monte Carlo steps per
site (MCS/S). Various features of the profile may be of
interest, for instance, the amplitude A(¢)=z(x=0,1)
and the width.

Above roughening, surface diffusion was simulated for
the one-dimensional case, while evaporation kinetics was
studied for one- and two-dimensional surfaces. The ini-
tial height 4, of the 1D wire was, in most cases, chosen
to be 3 or 5, with the initial width w, ranging from 3 to
11. The size of the surface varied from (2K +1)=41 to
101, with L being, usually, equal to 41. Relaxation was
recorded, in the one-dimensional case, at kg7 /J=0.8
and, in the two-dimensional case, at kT /J=1.5 and
2.0.

We present first our findings for evaporation dynamics.
Examples of profile shapes are depicted in Fig. 4, showing
Monte Carlo data for the one-dimensional surface togeth-
er with numerical solutions of Eq. (3), using the same ini-
tial shape. From that figure, one observes a, perhaps
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FIG. 4. Simulated wire profiles of the one-dimensional SOS 60 05 10 15 20 25 30 35

model at kz T /J =0.8 (full symbols), compared to those of Mul- AMPLITUDE

lins’ theory (open symbols), for evaporation kinetics. Initial
wire configurations with 4, =w,=3 (squares) and with 4,=3
and w,=9 (circles) are considered. The solid line connects the
points of the continuum theory. The amplitude and x coordi-
nate are in lattice units, while the profiles were calculated after
76 MCS/site (top curve), 21 MCS/site (second curve), and 78
MCS/site (smallest amplitude curve), averaging over 10° realiza-
tions.

surprisingly, close agreement between the simulated
shapes and the forms predicted by Mullins’ asymptotic
continuum theory. Presumably, much of the remaining
difference could be described by including the actual
slopes of the profile shape and the anisotropies of o and
m in the continuum description [see Egs. (2) and (23)],

oz

$=E‘m(0)[a(9)+a”(9)]

zxx

1+z2

(27

The anisotropies of the mobility and the surface free en-
ergy are expected to become less important at higher
temperatures and for smoother profiles, as had been
confirmed before for 1D gratings (periodic grooves).’
Indeed, we found that the agreement improved for wider
profiles and at smaller amplitudes, as may be inferred
from Fig. 4. As described above, the anisotropies of o
and m play opposing roles, and a compensation effect
may further contribute to the striking similarity of the
simulated and the predicted limiting profiles. Hardly
visible systematic deviations (the simulated profiles are al-
ways slightly broader than the predicted ones, at small
amplitudes) can be attributed to the small differences in
the amount of mass change during the healing process;
see below.

The asymptotic validity of Mullins’ theory, Eq. (3),
may also be seen from the time dependence of the relaxa-
tion process. To describe the decay of the amplitude
A(t), one may define an effective exponent 7 by

T=In[ A(t)/A(t+At)]/In[t /(t +At)], (28)

where At is a time increment measured in MCS/S. From
Fig. 5, we see that 7=17(A4) approaches the asymptotic

FIG. 5. Effective exponent, Eq. (28), versus height of the wire
profile, from simulations of the two-dimensional SOS model,
with A,=wy=3, above (asterisks), k3T /J=2.0, and below
(full dots), kp T /J =0.8, the roughening transition, compared to
results from the corresponding continuum theories above (bro-
ken line) and below (solid line) the transition, for evaporation
kinetics.

value 7,= — 1, at small amplitudes, both for the simulat-
ed data and in continuum theory. Note that in continu-
um theory the initial rectangular profile gets curved very
quickly, associated with a significant increase in the am-
plitude. In the simulations, there is no mechanism for
that amplitude increase.

Similar observations hold for two-dimensional surfaces
above roughening. The simulated shapes of wires with
small or moderate initial amplitude and width, at temper-
atures well above the transition, follow closely the asymp-
totic forms predicted by Mullins’ theory. Again the small
differences between continuum theory and simulations
can be attributed to anisotropies in the mobility and sur-
face free energy. However, for both, the exact expres-
sions are not known.

In the case of surface diffusion, the agreement between
simulational data and the capillary theory reaffirms the
above conclusion that the classical theory, Eq. (12), pro-
vides a good description even for surface perturbations of
the extent of a few lattice spacings at temperatures well
above the roughening transition and for small amplitude
(slope) profiles; see Fig. 6. Correction terms are either
small or tend to compensate each other. In particular,
the oscillatory shape®!” of the profile, which follows from
Eq. (12), is nicely reproduced in the Monte Carlo simula-
tions. The height is found to decay more slowly than for
evaporation dynamics, A(t)«t~!/4 at late times, in
agreement with the continuum theory (see Sec. II). The
width of the profile, measured by the distance between
the minima to the left and right of the central maximum,
increases in proportion to ¢!/4, again in accordance with
continuum theory. Of course, by extending the continu-
um theory to include arbitrary slopes of the profile and
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FIG. 6. Wire profiles of the one-dimensional SOS model,
with 4,=w, =23 (full squares), and with 4,=3 and w,=7 (full
circles), at kz T /J =0.8, simulating surface diffusion, compared
to Mullins’ theory (open symbols). The amplitude and x coordi-
nate are in lattice units. The profiles were calculated after 480
MCS/site (top curve), 54 MCS/site (second curve), and 282
MCS/site (smallest amplitude curve), averaging over 2X10°
realizations.

anisotropic surface free energy and mobility, one may im-
prove the agreement. Actually, for the one-dimensional
SOS model, the anisotropic surface free energy is known
exactly,”® and an upper bound has been determined for
the adatom mobility,'® which seems to be quite close to
the true behavior.

Below roughening, the situation is less clear. For sur-
face diffusion conflicting continuum theories have been
proposed.*1%1! We did not attempt to clarify the contro-
versy by this Monte Carlo study because of the large
amount of computer time needed to obtain meaningful
data, as mentioned above. Attention may be drawn to
prior work on gratings, proposing simplified diffusion
processes,’ as well as recent impressive large-scale simu-
lations, which, however, may have been performed too
close to the roughening transition for too small sizes to
draw firm conclusions about the generic scaling proper-
ties below roughening.?* Instead, we considered evapora-
tion dynamics.

As had been noted before,>® the continuum descrip-
tion, Eq. (15), gives a rather unsatisfactory description of
the simulated profile of 1D gratings with moderately
large wavelengths, of up to about 100 to 200 lattice spac-
ings, and quite small amplitudes, of about five or less lat-
tice spacings. This discrepancy can be traced back to the
dynamics at the top of the profile as discussed in the
preceding section. Indeed, in continuum theory the van-
ishing mobility, following from nucleation processes, on
the top terraces gives rise to a nonparabolic sharpening
near the top of the profile. However, the top-step annihi-
lation process removes that peculiarity. Accordingly,
even for gratings of wavelengths of up to 600 atomic
spacings, new simulations do not show profile shapes
sharper than parabolic at their apexes.?
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For wire geometries of small size, the simulated
profiles also differ significantly from those predicted by
the continuum theory, as illustrated in Fig. 7. In particu-
lar, they do not exhibit the predicted nonparabolic shar-
pening, of exactly the same type as for gratings, but they
are more rounded near the top, reflecting again the dy-
namics of top-step annihilation. At the sides they are
leaner than those obtained by integrating the continuum
theory, Eq. (15). The deviations from continuum theory
become even larger as time goes on, i.e., at smaller ampli-
tudes. A widening of the profiles, by increasing w, from
3 to 9, has only a minor effect on the shape differences
(see Fig. 7).

In Fig. 5, the time dependence of the amplitude A4(¢)
for wires with the same initial profile, 4,=w,=3, above
and below roughening is shown, and compared to the
predictions of the continuum theories, Egs. (3) and (15).
Below roughening, one finds drastic deviations, as shown
by the behavior of the effective exponent 7( A). The con-
tinuum theory, Eq. (18), predicts a decay of the profile
amplitude with 7 approaching, at small amplitude, the
asymptotic value —{. In the simulations, the healing
proceeds much more rapidly. At monoatomic height, the
relaxation slows down a little bit, but finally it seems to
follow an exponential law (the exponential form may be
reproduced in an easy way by considering an initial wire
profile of height and width 1, at zero temperature).

Perhaps much wider profiles may be needed to ap-
proach a regime where the continuum theory provides a
closer description of the simulational data for the tem-
poral decay of the amplitude. We therefore increased the
width of the initial profile, up to values for which reliable
data could be obtained in reasonable computing times.
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FIG. 7. Wire profiles of the two-dimensional SOS model,
with 4,=w,=3 (squares), and with 4,=3 and w,=9 (circles)
below roughening, kzT/J=0.8, comparing simulational data
(full symbols, broken lines) to the corresponding numerical solu-
tions of the continuum theory, Eq. (15) (open circles, solid lines),
for evaporation kinetics. The amplitude and x coordinates are
in lattice units. The profiles were calculated after 205 MCS/site
(top curve), 29 MCS/site (second curve), and 62 MCS/site
(lowest amplitude curve), averaging over 2 X 10* realizations.



17 476

The amplitude was kept fixed, 4,=3, and we varied w,
from 3 to 9, with (2K +1) increasing from 41 to 81,
L =41. In Fig. 8, the effective exponent 7 is depicted.
The relaxation gets slower as the width increases, but de-
viations from continuum theory are still significant. Plot-
ting 7(w), at fixed height, a rather nontrivial behavior is
revealed; an extrapolation to large values of w seems to be
quite speculative, not allowing us to rule out or confirm
the asymptotic decay law predicted by continuum theory.
Obviously, rather large correction terms, in the mobility
and the surface free energy, may be needed to describe
the Monte Carlo data. Indeed, the terms of these two
quantities seem to be of decisively different origin and
relevance. As mentioned above and before, the mobility
is always dominated by step dynamics, thereby avoiding
its vanishing at flat surfaces, while only usual finite-size
corrections affect the singularity in the surface free ener-
gy. In addition, drastic differences in the amount of mass
change during the relaxation process, comparing the con-
tinuum theory and simulations, also play an important
role (see below).

Moreover, pronounced lattice effects are observed in
the simulated decay process, which have not been taken
into account by the continuum theory. They become, at
small amplitudes, more noticeable as the profile gets wid-
er: At profiles of integer height, here 1 and 2, the relaxa-
tion process slows down (see Fig. 8), reflecting the
smoothness of the top layer below roughening, with the
equilibration proceeding layer by layer. As for gratings
(periodic grooves),’ there are a slow time scale, due to the
meandering of the steps bounding the top terrace, and a
fast time scale, associated with the islanding, as illustrat-
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FIG. 8. The effective exponent Eq. (28) versus height of the
wire profile simulated for the two-dimensional SOS model
below roughening, at kz T /J =0.8, for wires of different initial
widths, wo=3 (asterisks), 5 (open circles), 7 (full dots), and 9
(crosses), at fixed initial amplitude, 4,=3. For comparison, the
result of the continuum theory, wyo= 4,=3, is shown (solid
line). Evaporation kinetics is considered.
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ed by the top-step annihilation process described in the
preceding section.

We obtained similar results for larger amplitudes, up to
A,=10, with the effective exponent 7 increasing some-
what, but being still rather far from the behavior predict-
ed by the continuum theory. The profiles remained
rounded near the top.

As indicated before, the large differences between the
simulated and predicted profiles can be partly explained
by the fact that the continuum theory, Eq. (15), implies a
conservation of excess mass, being initially A4 w,, while
in the simulations, the flat surface with vanishing excess
mass is approached (in contrast, we observe even a slight
increase in the excess mass for the one-dimensional case);
see Fig. 9. Therefore, we did some simulations with mass
conservation, removing and adding particles simultane-
ously at randomly chosen sites,’ for wires below roughen-
ing. However, as before, the simulated profiles remained
rounded at the top, in marked contrast to the nonpara-
bolic sharpening predicted by continuum theory. The
temporal decay, for small wires, also did not agree with
the predicted one, and a rather cumbersome finite-size
scaling analysis may be needed to establish the asymptot-
ic decay law. Above roughening, simulational data for
the one-dimensional SOS model with mass conservation
show the expected close similarity to the profiles obtained
from continuum theory wusing the same starting
configuration, with even a slight improvement compared
to the case of Glauber kinetics without mass conserva-
tion.

B. Square bumps

We now consider the relaxation of square bumps with
the initial configuration,
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FIG. 9. Simulated excess mass for wires above (full squares)
and below (open symbols) roughening, for the one-dimensional
case with wo= 4,=3 and the two-dimensional case with 4,=3
and wy=3 (circles), as well as w,=9 (squares), always at
kpT /J=0.8, for evaporation kinetics.
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AO’ IX'fM, |J’|5M

hix,y,t=0)= 0 (29)

, elsewhere
placed on square surfaces of N=(2K+1)X(2K+1)
sites, using full periodic boundary conditions. In particu-
lar, the average profile through the center, say,
z(x,y=0,t), was recorded. Simulations were performed
above, kpT/J=2.0, and below, kzT/J=0.8, the
roughening transition temperature of the SOS model, Eq.
(25). The width of the bump, wy=2M +1, ranged from 3
to 41, with (2K +1) varying from 41 to 101. The ampli-
tude A, was usually chosen to be 3 to 5. Typically, we
sampled over 10* to 10° realizations. Simulations were
done using Glauber kinetics to mimic evaporation dy-
namics, above and below roughening; surface diffusion
was simulated only above roughening.

Above roughening, in the case of evaporation kinetics,
the capillary theory of Mullins”!” described well the
simulated profile shapes (see Fig. 10), even for small
bumps, with, say, wo=A4,=3. As in the case of 1D
wires, the agreement improve further at lower amplitude
and for wider bumps. The predicted asymptotic decay of
the amplitude, as ¢ ~! [see Eq. (8)], is also reached closely
in the simulations, e.g., at 4,=wy=3, when the ampli-
tude A(t) gets smaller than, roughly, 1. The decay is
much quicker than for 1D wires, leading to a less rapid
spreading of the profile, at fixed height (compare Figs. 4
and 10). As noticed above and before, the continuum
theory may be improved by introducing anisotropic sur-
face free energy and mobility to describe the Monte Carlo
data, but the agreement is already satisfying.

Similarly, for surface diffusion above roughening, the

-20 ~10 0 10 20
2.0 PP NSO ST RIS S

=0,t)

z(xy

cov v b b b

LI L L L L L LB

0.5 0.5
0.0 0.0
-0.5 1T 0.5

-20 -10 0 10 20

X

FIG. 10. Simulated bump profiles (full symbols) of the two-
dimensional SOS model above roughening, kz T /J=2.0, with
wo= Ay=3 as well as 4,=3 and w, =7 (upper case), compared
to continuum theory (open circles, solid lines), for evaporation
kinetics. The amplitude and x coordinate are in lattice units.
The profiles were calculated after 58 MCS/site (top curve), 15
MCS/site (second curve), 23 MCS/site (third curve), and 54
MCS/site (lowest amplitude curve), averaging over 10* realiza-
tions.
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classical continuum theory describes closely the simulat-
ed profiles, predicting correctly its oscillatory behavior
(which is even more subtle than for the wire geometry).
An example is depicted in Fig. 11, for a small bump with
A,=w,=3, showing the very close similarity.

Below roughening, the bumps, at low amplitude, are ex-
pected to decay and shrink simultaneously, following
continuum theory and step models.? Indeed, the simula-
tions confirm this prediction qualitatively (see Fig. 12).
Good quantitative agreement can be demonstrated by
analyzing the scaling behavior of the profile obtained
from the continuum theory, Eq. (20), for radially sym-
metric bumps at late stages of the healing process. For
instance, the profiles of the case depicted in Fig. 12,
wo=21 and 4,=3, nicely follow that scaling form of Eq.
(20) at small amplitudes (this has been tested by recording
the times and radial distances of the profile at constant
height; e.g., at 0.5, the scaling behavior is clearly fulfilled
at amplitudes smaller than about 1.2). At large ampli-
tudes, the observed deviations from the scaling form
reflect step-step interactions, which are not taken into ac-
count in Eq. (20), and which are the reason for the
spreading of the foot of the profile at early times.

In addition, strong lattice effects which have not been
captured by the continuum theory show up also for the
bumps. For instance, by increasing the initial width wy,
the effective exponent 7 versus height displays a more and
more pronounced nonmonotonic behavior, similar to that
depicted in Fig. 8. Again, the relaxation process tends to
get slowed down when the height of the profile is close to
an integer value, due to the smoothness of the top layer.
A similar behavior has been observed recently experimen-
tally on Pb(111) and Au(111) surfaces, monitoring the
flattening of a bump using STM.?’
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FIG. 11. Simulated bump profile (full symbols) of the two-
dimensional SOS model above roughening, kzT/J=2.0, with
wo=23 and A4,=3, for surface diffusion, compared to continuum
theory (open circles, solid line). The amplitude and x coordi-
nate are in lattice units. The curve was calculated after 62
MCS/site, averaging over 10* realizations.
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FIG. 12. Simulated bump profiles of the two-dimensional
SOS model below roughening, kz T /J=0.8, with w,=21 and
Ay=3, for evaporation kinetics. The amplitude and x coordi-
nate are in lattice units. The curves were calculated after 12
MCS/site (top curve), 246 MCS/site (second curve), and 480
MCS/site (bottom curve), averaging over 4 X 10° realizations.

V. SUMMARY

We have compared continuum theories, step models,
and Monte Carlo simulations for the decay of several
types of nonequilibrium surface profiles. Above roughen-
ing, the Monte Carlo simulations confirm the predictions
of Mullins’ asymptotic continuum theory, both for sur-
face diffusion (see Figs. 6 and 11) and evaporation kinet-
ics (see Figs. 4 and 10). Small deviations are well under-
stood and may be mainly attributed to anisotropies in the
mobility and the surface free energy. The Monte Carlo
simulations show the predicted profile shapes, including
the oscillatory profile shapes characteristic of surface
diffusion (see Figs. 6 and 11), and they reproduce the
asymptotic temporal decay laws of the amplitude (see
Figs. 5 and 8).

Below roughening, we concentrated on evaporation
recondensation, and showed that the rounding of the mo-
bility and surface free energy leads to the possibility of
finding sharpening, broadening, and sinusoidal profiles
(see Fig. 2). We also discussed the process of top-step an-
nihilation, which removes the sharp profiles predicted by
the continuum theory (15) for the 1D wire and 1D grat-
ing profiles decay (see Fig. 7). A simulation using
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Langevin dynamics shows the characteristic features of
island nucleation and shrinking (see Fig. 3). The typical
time taken for the top terrace (of width W) to disappear
is proportional to W* and it is seen that the two top
steps interact with each other over significant distances.

The results of the Monte Carlo simulations below
roughening deviate from some of the predictions of the
continuum theory assuming a vanishing mobility at the
top of the profiles. For example, for the wire case, the
profiles do not show the peculiar nonparabolic sharpen-
ing at their tops (see Fig. 7). This does not mean that the
continuum theory is basically incorrect (on the contrary,
the basic structure has been convincingly established by
Spohn), but is indicates that a more adequate form of the
mobility has to be incorporated. The effective decay ex-
ponent displays quite large oscillations (see Figs. 5 and 8),
reflecting strong lattice effects, which are not described
by the continuum theory. We also note that the mass is
not conserved in the simulations (Fig. 9), but it is in the
continuum theory.

On the other hand, for the bump case (Fig. 12) the ob-
served scaling behavior of the profile at small amplitudes
is consistent with the continuum theory. In that case, the
top terrace dynamics is not important.

In conclusion, it is seen that Monte Carlo simulations
above roughening recover the predictions of continuum
theory for perturbations even of small extent. In con-
trast, below roughening there are a variety of factors
which make comparison of continuum theory with lattice
models problematic. We attempted to identify them and
described partial resolutions of them in this article.
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