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Transition from chaotic to regular behavior of electrons in a stadium-shaped quantum dot
in a perpendicular magnetic field
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The energy spectrum, wave functions, and field-induced currents in a two-dimensional isolated
stadium-shaped dot are calculated in the presence of a perpendicular magnetic field. By means of the
magnetic field one can explore the dynamics of this type of system, from quantum chaotic to regular
behavior. The distribution of energy-level spacings is found to transform gradually from a Wigner
{Gaussian orthogonal ensemble) distribution at zero field to a Poisson distribution as the magnetic field
increases. The spatial distributions of the currents and charge densities are used in elucidating and
visualizing the gradual formation of bulk Landau states and edge states at high magnetic fields.

I. INTRODUCTION

In ultrasmall semiconductor structures and devices,
electrons may be confined to two-dimensional areas of the
size of a micron or less. ' When the feature size of a de-
vice is made comparable to the electron de Broglie wave-
length, the properties of such a device are governed by
quantum mechanics. A general feature of electron trans-
port in submicron electronic devices is the appearance of
large irregular fluctuations in the conductance when mea-
sured at low temperatures. Recently there has been in-
terest in the statistical properties of such Auctuations in
ballistic transport within the semiclassical framework of
quantum chaotic scattering. Theoretical studies have
suggested that the chaotic behavior of the conductance is
induced by the geometry of the confining potential in
cross-shaped junctions and in open stadium billiards, i.e.,
billiards with open leads attached. Also, measurements
of chaotic scattering have been reported for ballistic
GaAs/Al„Csa, As microstructures. The resistance
across a microstructure in the shape of a stadium was
measured as a function of applied perpendicular magnetic
field. In general the measurements show large nonuniver-
sal conductance fluctuations which may be due to both
quantum interference because of, e.g. , coherent back-
scattering and the particular geometry of the device.
However, in the tunneling regime, i.e., a stadium that is
classically isolated, the magnetoresistance shows periodic
oscillations at high magnetic fields. ' '"

It is known that the motion of a classical particle in a
closed stadium is chaotic. ' Numerous theoretical works
have been applied to the understanding of the quantum
analog of such systems. ' In particular, detailed investi-
gations of the quantum behavior in a stadium have shown
that the eigenvalue spectrum satisfies the Gaussian or-
thogonal ensemble (CxOE), ' and most stationary states
are concentrated around narrow channels, called scars,
which resemble the classical periodic orbits. ' In spite of
all previous theoretical work, the efFects of a magnetic
field on a closed quantum stadium have not been studied
so far in a complete quantum-mechanical way. In view of
experiments on nanoscale arenas, studies of this kind are

timely.
In this paper we study one-electron states of a stadium

billiard in a magnetic field. The energy spectrum, two-
dimensional spatial distribution of the current, and
charge density are calculated using a numerical approach
which is similar to that of Weisz and Berggren. ' The
charge density and current induced by the applied mag-
netic field are interesting because they contain informa-
tion about the properties of stadium billiards. The
current patterns indicate the transition from chaotic to
regular behaviors as the magnetic field is increased. The
reason for this is the formation of edge states and bulk
Landau states at high magnetic fields. The correspon-
dence between the quantum current Aows and classical
orbits will be discussed. These results are useful in under-
standing the recent magnetotransport experiments for
stadium-shaped microstructures.

The rest of the paper is organized as follows. In Sec. II,
we briefly present the theory used in computing the ener-
gy spectrum, two-dimensional current, and charge-
density profiles. In Sec. III, we examine the energy spec-
tra and the states of a stadium in a magnetic field. Atten-
tion is focused on the transition from chaotic to regular
at high magnetic fields. Finally, in Sec. IV, we present
our conclusions.

II. THEORY

The stadium system considered in our study consists of
two semicircles of radius R connected by two parallel,
equal, rectilinear intervals of length 2L, as shown in Fig.
1. Neglecting the efFect of spin, the single-particle Hamil-
tonian for an electron with efFective mass I*=0.067mo,
appropriate for GaAs, and charge —e, can be written as

II= ( iAV+e A—) + V,2'
where V is the confinement potential and A is the vector
potential of the external magnetic field B. Here we as-
sume that the electrons are confined by infinite walls. In-
side the dot the potential V equals zero. We examine the
case of a perpendicular magnetic field B=VX A=Bz,
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p(x,y)= i%(x,y)i

J(x,y) = — Im[%(x,y)VQ'*(x, y)]+ A~ %(x,y) ~m* I

III. NUMERICAL RESULTS

A. The energy spectrum

FIG. 1. Schematic diagram for a stadium billiard where the
radius of the semicircle is R =50 nm, and the length of the rec-
tangle is 2L =2R.

and use the symmetric gauge for the vector potential:

By Bx
2 2'

The Schrodinger equation can then be written in the form

eBy . 8 eBx—iA +
Bx 2 By 2

2

= (& —V) II . (3)

+ +i,j
Bx 26x

(4a)

One can simply replace the derivatives in Eq. (3) by sym-
metric difference approximations

We have calculated the magnetic-field dependence of
the electron energies in a quantum stadium using the
symmetric gauge calculated by discretizing the
Schrodinger equation. ' Figure 2 shows the eigenvalue
spectrum as a function of applied magnetic field for the
first 25 eigenstates. At high magnetic fields the condensa-
tion of the states into degenerate bulk Landau levels is
evident. In this limit we also recognize levels that are as-
sociated with edge states. At low magnetic fields the
spectrum is quite complicated. Both crossing and an-
ticrossing of the energy levels occur in the figure. An-
ticrossing occurs for states belonging to the same symme-
try class, while states from different classes may cross. In
the integrable systems, such as a circular dot, only cross-
ing occurs. ' ' Anticrossing or level repulsion results
from the nonintegrability of our problem and is a signa-
ture of quantum chaos. The repulsion becomes weaker as
the magnetic field is increased in Fig. 2. In Fig. 3 we
show the Fermi energy as a function of the magnetic field
for the stadium with different numbers of noninteracting
electrons at zero temperature. The Fermi energy is not a
smooth function of the magnetic field. The convergence
to the lowest Landau-level energy is much faster for sta-
dia with a smaller number of electrons.
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2Bx (2bx )
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B. Charge density and current Bow

Robnik and Berry studied the classical problem of a
charged particle moving in a closed planar billiard with
su%ciently smooth boundaries in a magnetic field. '

They found that the type of dynamics depends on the
value of applied magnetic field in relation to the radii of

The grid problem with N nodes in the stadium turns
into an NXX eigenvalue problem. This results from
regarding the 4; as stored into a vector C„(n
= 1,2, . . . , N) and then solving the eigenvalue problem
HC=EC. It is important to have a fine mesh in the sta-
dium to ensure numerical accuracy. Results for the ei-
genvalues may be checked for convergence as the node
number X is made larger. The lowest eigenvalues con-
verge faster and are the therefore more reliable. For a
size of the stadium with R =50 nm and magnetic field
B ~ 7 T considered here, we have used 8991 nodes for
computing the 25 lowest eigenvalues. Meshes of up to
32 613 nodes were used to achieve convergence for the
400 lowest eigenvalues.

For each eigenstate, the two-dimensional electron
probability density p(x, y) and current density J(x,y) are
calculated directly from the computed wave functions
%(x,y) through the relations
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FIG. 2. The energy levels as a function of the magnetic field
for the stadium-shaped quantum structure. The Landau-level
energies of a,n ideal two-dimensional system (dashed lines) are
given as a reference.
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curvature of the boundary. For a quantum stadium bil-
liard, an interesting question is how the applied magnetic
field affects the charge density and current Qow pattern.

In Figs. 4(a) —4(f) we show how the charge density and
current How pattern of the 24th-lowest state in energy
evolve with increasing magnetic field. At B =0.01 T the

FIG. 3. Fermi energy as a function of the magnetic field for
different numbers of electrons.

charge density in Fig. 4(a) is, of course, similar to that
calculated for a stadium at zero magnetic field. For
higher states the density distribution becomes more com-
plex because more nodes appear. Patterns of this kind
are also observed experimentally for quantum corrals by
means of the scanning tunneling microscope (STM). '

As shown in Fig. 4(b) the currents induced by the field
show a volatile vortical pattern as one would expect in a
chaotic regime. In fact, the results are reminiscent of the
current distributions associated with transport in a
cross-bar device. Figure 4(c) and 4(d) show a hybrid
state where vortical and regular regions coexist at an in-
terrnediate field of 1.3 T. At a high magnetic field, the
state has already condensed, i.e., it has transformed into a
bulk Landau state in this case. The charge density and
current pattern in Figs. 4(e) and 4(f) clearly show that the
charge density peaks near the center of the stadium at
B =2.9 T. The behavior can be understood as a locali-
zation of the wave function at the center of the stadium
due to magnetic confinement applied on the electrons.
Figures 4(a) —4(f) show that an applied magnetic field may
be used to explore the transition from quantum
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FIG. 4. The charge density and current Sow pattern of 24th-lowest state in energy for different magnetic field. (a) and (b) B =0.01
T. (c) and (d) B =1.3 T. (e) and (f) B =2.9 T.
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chaotic~mixed —+regular dynamics which was observed
in the recent experiment mentioned. ' '" We also found
this kind of transition from chaotic to regular for other
states in the stadium. As expected, the transition from
chaotic to regular occurs at lower fields for lower-energy
states. The reason is that, for lower energies, the effect of
the magnetic confinement more easily overcomes the
geometric confinement.

C. Connection to classical orbits

teristic of a pure edge state corresponding to a skipping
orbit. This is consistent with periodic oscillations in the
high-field magnetoresistance observed in the tunneling re-
gime. " Tunneling takes place to the outermost edge
states only because the overlap with the inner states is
negligible. When the magnetic field B is increased, addi-
tional edge states become populated consecutively, caus-
ing the Aharonov-Bohm-type oscillations. At the same
time lower edge states move into the central region to be-
come bulk Landau states.

The current flow shown in Fig. 4(f) corresponds to the
classical picture of counter-clockwise orbit caused by the
Lorenz force on the electron. However, the state shown
in Fig. 5(a) is somewhat surprising. Rather than a coun-
terclockwise current Aow, there is a clockwise circulation
in the stadium. To understand the physics underlying
this behavior, Lent' studied the problem of a charged
particle moving in a circular quantum dot in a perpendic-
ular magnetic field, and examined the correspondence be-
tween quantum current Bows and classical orbits using
approximate expressions for the guide-center radius and
cyclotron radius. For a stadium billiard, we would ex-
pect a similar case. The classical orbits for the stadium
corresponding to quantum states in Figs. 5(a) and 5(b) are
illustrated in Figs. 5(c) and 5(d), respectively. As the
magnetic field increases, both the radius of the cyclotron
orbit and the distance from guiding center to origin be-
come smaller. Because of the effect of the stadium walls,
the orbits of guiding centers (dotted) in Figs. 5(c) and 5(d)
are not as circular as that in the unconfined Landau sys-
tem. One notes that the current in Fig. 5(a) is charac-

D. Distribution of energy-level spacings

Let us now turn to the distribution of the eigenvalue
spectrum in the stadium. A statistical description of the
spectrum in terms of the probability distribution of
neighboring level separations has received particular at-
tention for quantum chaos. ' ' ' " In applying a statisti-
cal description to a chaotic situation, it is important that
any discrete symmetries of the problem be taken into ac-
count. The geometry of the stadium billiard shown in
Fig. 1 has vertical and horizontal symmetry lines. Solu-
tions of the Schrodinger equation in this stadium can be
broken into classes according to whether they are even or
odd about the symmetry lines. There are four symmetry
classes at B =0 T, as shown in Fig. 6. The problem can
be reduced to solve the Schrodinger equation in a quarter
of the original billiard area with conditions on boundaries
I,, I 2, and I 3 (see the caption of Fig. 6).

The distribution P (s) of eigenvalue spacings is one sta-
tistical measure of the spectrum. It is defined so that s is
the level spacing divided by its mean (s ), and P(s)ds is

(a)

FIG. 5. (a} The current distribution of the eighth-lowest state in energy at B =2 T. (b) The current distribution of the eighth-
lowest state in energy at B =4 T. The classical orbits for the stadium corresponding to quantum-mechanical eigenstates of (a) and (b)
are illustrated in (c) and (d), respectively.
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FIG. 6. The symmetry classes of solutions of the Schrodinger
equation in a stadium correspond to a quarter of the stadium
with different boundary conditions. (a) %(x,y) =0 on I

&
and I 2,

and 3%(x,y)/By=0 on I 3. (b) %(x,y)=0 on I
&

and I 3, and
8%'(x,y)/Ox=0 on I z. (c) 0'(x,y)=0 on I &, I z, and 2. ( )I . ,d,
0'(x,y)=0 on I &, 8%'(x,y)/Bx =0 on I 2, and 8%'(x,y)/By=0 on
I 3.

very closely follow the GOE distribution P(s)
=(m.s/2)exp( —ns /4). ' ' Small spacings are less prob-
able; also large spacings are improbable. The spectrums
exhibit apparent mutual repulsion of eigenvalues. For
each symmetry class the 400 lowest levels have been in-
cluded in the analysis. We have also used 400—1500 ei-
genvalues for the histogram in the case of Fig. 7(c), and
checked that essentially the same results were obtained
upon increas''

creasing the number of eigenvalues. Figure 7 d
a 7b)shows the average of histograms shown in Figs. 7(a), (

and 7(c). The histogram appears to agree well with GOE
statistics.

For sufticiently strong magnetic field, the level spacing
distribution is expected to be the Gaussian unitary en-
semble (GUE) statistics P(s)=(32/n. )s exp[ —(4/n. )s ]
due to the breaking of time-reversal symmetry. ' The
geometry of Fig. 1 admits reQection symmetries at origin
0, which give rise to odd and even parities of the solu-
tions, i.e., the symmetry is lowered relative the field-free
case. We have examined the distributions of nearest-
neighbor spacings for both parities, and found that they

the probability of finding a separation of neighboring lev-
els between s and s +ds. Histograms are shown in Fig. 7
for difFerent symmetry classes. Figure 7(a), 7(b), and 7(c)

' s. 6!a) 6(b)correspond to symmetry classes shown in Figs. &a,
and 6(c), respectively. As can be seen, distributions
of eigenvalue spacings for different symmetry classes
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FIG. 7. Distributions of energy-level spacings for a stadium.

400 levels have been included in the analysis corresponding to
the first to the 400th levels for different symmetry classes. His-
tograms shown in (a), (b), and (c) correspond to the symmetry
classes shown in Figs. 6(a), 6(b), and 6(c), respectively. The his-
tograms for the average values of (a), (b), and (c) are shown in
(d). Smooth curves: %igner distribution.
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FIG. 8. Histogram: the distributions of (odd parity) energy-
1

'
s. Solid and dashed lines GUE and Poisson distri-

butions, respectively. The magnetic field B varies as follows: (a}
B =1 T, (b) B =3 T, and (c) B =7 T. 400 odd-parity eigenval-
ues have been included in the analysis.
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have similar statistical properties.
At very low fields the states are very close to the unper-

turbed case. The distribution we find is therefore essen-
tially the same as if we would have combined (a) and (b),
or (c) and (d), in Fig. 6 in the analysis of level spacings at
8 =0. The distribution essentially reflects both Poisson-
and Wigner-like statistics. With increasing 8 the mixing
of (a) with (b) and (c) with (d) increases and causes further
level repulsion. Hence we should anticipate GUE-like
statistics at some field.

In Fig. 8, we plot histograms of the nearest-neighbor
interlevel spacings for three different magnetic fields of
8 =1, 3, and 7 T together with lines corresponding GUE
and Poisson distributions. For the lower magnetic field
[Fig. 8(a)] the distribution is close to the one for the GUE
statistics. However, the perfect GUE form never devel-
ops in our case, because regular Landau bulk states occur
at low energies. For the higher magnetic field [Fig. 8(c)],
the distribution is close to a Poisson distribution
P(s)=exp( —s) expected for a regular system. Clearly, a
transition from the GUE-like to the Poisson distribution
is taking place.

IU. CONCLUSIONS

Numerical solutions of the Schrodinger equation for an
electron in a quantum stadium have been performed.
We have examined the spatial distributions of current
and charge density in the presence of a magnetic field.
We show how the charge density and current pattern in
the stadium evolve, and how electron motion changes
from chaotic to regular with increasing magnetic field.
At high magnetic fields, both counter-clockwise and
clockwise current Bows are found. The correspondence

between quantum current Aows and classical orbits was
discussed. The energy spectrum is analyzed in terms of
the probability of neighboring energy-eigenvalue separa-
tions, which is shown to be similar to a GOE distribution
at 8 =0, a GUE-like distribution at intermediate magnet-
ic fields, and a Poisson distribution at high magnetic
fields.

Our results are consistent with recent measurements of
the magnetoresistance in the tunneling regime. The field
at which the transition is completed is, however, different
compared with experiments because of differences in the
dimensions of the dot and Fermi energy. Another reason
is the shape of the confining walls. Here we have used
infinite walls, but in a real device one should expect a
smooth confinement. A more realistic modeling consists
of a parabolic potential outside a stadium-shaped Bat re-
gion. This point needs further investigation, but prelimi-
nary calculations show that softness could play a role.
There are also other features of the potential that we
have chosen to ignore here. In a real device one should
expect small deviations from the perfect, lithographically
defined shape. Since the appearance of quantum chaos is
related to the removal of symmetry, small irregularities
of this kind can have a profound impact on the level
statistics. Random potential fluctuations due to, e.g. ,
donor ions will act in the same way. Features like these
should not change, however, the overall picture of' a
crossover from quantum chaotic to regular behavior with
increasing magnetic field.
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