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Collapse of spin splitting in the quantum Hall efFect
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It is known experimentally that at not very large filling factors v the quantum Hall conductivity
peaks corresponding to the same Landau level number N and two different spin orientations are
well separated. These peaks occur at half-integer filling factors v = 2K + 1/2 and v = 2K + 3/2 so
that the distance bv between them is unity. As v increases bv shrinks. Near certain N = Nc two
peaks merge into a single peak at v = 2N + 1. We argue that this collapse of the spin splitting at
low magnetic fields is attributed to the disorder-induced destruction of the exchange enhancement
of the electron g factor. We use the mean-field approach to show that in the limit of zero Zeeman
energy bv experiences a second-order phase transition as a function of the magnetic field. We give
explicit expressions for N in terms of a sample s parameters. For example, we predict that for
high-mobility heterostructures N, = 0.9dn n, , where d is the spacer width, n is the density
of the two-dimensional electron gas, and n,. is the two-dimensional density of randomly situated
remote donors.

I. INTRODUCTION

A characteristic feature of the quantum Hall efFect is
the appearance of peaks in the diagonal conductivity
0 ~ as the magnetic field is varied. The conventional
argumentation for this is as follows. Consider the den-
sity of states diagram for a two-dimensional electron gas
(2DEG) in a perpendicular magnetic field [Fig. 1(a)]. It
consists of disorder broadened Landau level subbands
(LLS): 0 $, 0 $, 1 f, 1 1,, etc. Here, arrows stand for the
two spin orientations. When the magnetic field is de-
creased, the Fermi level e~ consecutively passes through
these subbands. Whenever the Fermi energy coincides
with the center of some LLS, where there is a delocalized
state, the peak in the dissipative conductivity occurs.

For the case shown at Fig. 1(a), where the width of
LLS is smaller than the distance between them, peaks
are positioned at half-integer values of the average filling
factor v: v = 2N+1+ 2, where N = 0, 1, . . . is the Landau
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FIG. 1. The density of states diagram, where the two up-

per LLS are shown as disorder-broadened peaks. The dark
regions show the occupied states at the magnetic field cor-
responding to the spin up conductivity peak, The shaded
regions depict the states, which become occupied in addition
to those in the dark regions at the lower field, where the spin
down conductivity peak appears. The ratio of the shaded area
to the total area of one LLS peak gives bv. If the width of
LLS is smaller than their separation As (a), then bv is close
to one. In the opposite case (h), it is much smaller.

level number, and the plus/minus sign corresponds to
the spin down/spin up orientation. Experimentally, this
periodic positioning of the peaks is observed at small v
(high fields). In other words, at small v, two peaks for
the same N are well separated. The distance bv between
thein is approximately unity. At larger v (lower fields),
the periodicity of the peak positions is violated. Peaks
are found to appear in close pairs at v = 2N + 1 + 2bv,
with bv ( 1. The experiment suggests that starting from
a certain N = N, this separation becomes so small that
only single peaks instead of pairs are seen at odd integer
v 1)2

Returning back to the density of states diagram, the
smallness of bv can be interpreted as a result of the over-
lapping of LLS [Fig. 1(b)]. The larger the overlap is, the
smaller the separation between the spin peaks becomes.

It is worth mentioning that the possibility of observ-
ing a pair of peaks instead of a single one depends not
only on their separation, but also on the temperature,
because as the temperature increases, the conductivity
between the peaks rapidly rises. At low temperatures it
is most likely, due to the variable-range hopping. This
mechanism was discussed by Polyakov and Shklovskii.
Recently, Polyakov and Raikh studied the conductivity
between the peaks in a higher-temperature range. In this
paper, we consider the case of zero temperature, where
peaks are very narrow and concentrate on the peak posi-
tions only. However, we have to face the fact that all the
experiments are performed at finite temperatures, and
small bv cannot be measured accurately. Nevertheless,
we assume that the point hv = 1/2 can be reliably iden-
tified and de6ne N as the smallest peak number, where
bv ) 1/2.

It appears &om the experiment that bv is almost con-
stant (= 1) away from N, but decreases rapidly in the
very vicinity of N . Usually, as N changes &om, say,
N —1 to N + 1, bv drops &om bv ) 0.75 to bv ( 0.25.
For GaAs/Gai Al As heterostructures, K, is usually in
the range 1 —12, and grows with the mobility and the
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setback distance of the doped layer. '2

In this paper, we argue that the sharp change in bv,
or in other words, the collapse of the spin splitting at
low magnetic 6elds, is attributed to the disorder-induced
destruction of the exchange enhancement of the elec-
tron g factor. ' In GaAs the contribution of the ex-
change interaction to the energy splitting between the
LLS (the exchange gap) exceeds the bare Zeeman energy
Z = gopIBB, by a factor of 20 (Refs. 7 and 8) (here,
p~ is the Bohr magneton, B is the magnetic field, and
gs is the bare electronic g factor). This exchange gap
can be defined as the energy necessary for creation of a
well separated pair of an electron in the spin down and
a hole in the spin up LLS. The size of the exchange gap
is the largest at odd integer filling factors, where in the
absence of disorder, the spins at the upper LLS are com-
pletely polarized. We denote this maximum value by Eo
and the ratio Eo/Ru, by n. The parameter n is related
to the g factor via a =

2 (g —go) (m/mo), where m and
mo are the effective and the bare electron masses, respec-
tively. Experimentally, ' g ~ 6—7; therefore, o. 0.25.
Prom the theoretical side, the calculation of the exchange
gap for arbitrary Landau level number N was performed
already in the early paper of Ando and Uemura (see
also the paper by Smith et al. and references therein).
However, the explicit expression was given only recently
by Aleiner and Glazman, who showed that o. becomes
independent of N when N gets large:

ln(2k' a~)
xkJ;aB

where ky is the Fermi wave vector and ag is the effective
Bohr radius. In a realistic situation k~a~ 1, so Eq. (1)
may not apply literally. Nevertheless, for k~a~ ——1,
Eq. (1) gives the value of o. 0.22. In our theoretical
arguments, we assume that k~a~ )) 1, but we will keep
in mind that this parameter is close to unity when we
make our estimates.

So far, we have not allowed for a possibility of the
spin orientation being different &om parallel or, antipar-
allel to the magnetic Beld. It is known that by limit-
ing our consideration in such a way, we can reach incor-
rect conclusions for v & 2. For example, Sondhi et al.
showed that the lowest energy excitations for v = 1 are
not the electron-hole, but skyrmion-antiskyrmion pairs.
(The skyrmion is a particular spin texture, whose local
spin orientation smoothly rotates &om a point to point
in space, the whole picture resembling a hedgehog. The
antiskyrmion is a similar texture but with the opposite
direction of rotation. ) Subsequently, however, Wu and
Sondhi found that for larger filling factors (v = 3, 5),
the energy of these excitations 2Lsg exceeds that of
electron-hole pairs Eo. Therefore, already for these fill-
ing factors spin textures are not the relevant physical
states. Moreover, it can be shown that for large v, the
ratio 2Asi, /Eo becomes much larger than unity. For
this reason throughout the paper where we are dealing
with N & 1, we assume that the spin orientation can be
only up or down.

We argue that in the limit of zero Zeeman energy, in a

2Q! n pN
~h 10 cm — 10 cm /Vs' (2)

where in the last equation, we used o. = 0.25 and the
fact that for the short-range disorder the single-particle
scattering time w and the transport scattering time v.q„
which enters the expression for the mobility p = equi, /m,
are equal. Equation (2) is in agreement with empirical
observations that for samples with mobilities in the range
p & 50000 cm /Vs and the 2DEG densities n of order
2.0 x 10" cm 2, it is usually only N = 0, 1 peaks that
are spin split.

In Secs. III and IV, we consider a different mo-
del, which applies to high-mobility modulation-doped
GaAs/Gai Al As heterostructures. In this model, the
disorder potential is created by a plane of randomly po-
sitioned ionized donors set back &om the 2DEG by a dis-
tance d. The Fourier harmonics of the disorder potential
with wavelengths larger than d do not reach the 2DEG.
Therefore, for large d the disorder potential is long range.
Its amplitude is determined by fluctuations bn~(v ) of the
two-dimensional donor density around its average value
(nLi). Due to the Coulomb interactions between charged
donors, these fluctuations are usually much smaller than
in the case of completely random distribution of donors.
Following Refs. 16, 17, we assume that the fluctuations
can be described by the correlation function,

where n; « (nD) is the density of "uncorrelated" donors.
This parameter n, depends on d and a "&eeze-out"
temperature, and i8 not explicitly related to the ac-
tual donor density. In this paper, we consider the case
when n, is not too small: n, d )) 1.

To find the disorder potential, we also have to look at
the screening properties of the 2DEG. To this end, we
have extended the theory of the nonlinear screening (see
Refs. 16, 19—22) to the case of weak magnetic fields (large
K). A main different ingredient here was taking into ac-
count the screening properties of the lower N completely
filled Landau levels.

Using thus calculated disorder potential distribution,
we then found the critical number N . Depending on n,
it is given by the following three expressions:

mean-field approximation bv experiences a second-order
phase transition as a function of the magnetic field. The
possibility of such a transition has been mentioned ear-
lier (Ando and Ueinura, Yarlagadda, i4 MacDonald and
Yangis). However, no explicit predictions for the transi-
tion point N were made. In order to make such predic-
tions, we have to choose realistic models for the disorder
potential. Below we consider two limiting cases of short-
range and long-range disorder. These cases supposedly
describe low-mobility and high-mobility samples, respec-
tively.

In Sec. II, we investigate the case of short-range disor-
der and develop the mean-field description of the phase
transition. The number N, in this case, can be expressed
in terms of the single-particle scattering time w:
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'
ps~ n'n'~'n, '—. = 0.02'"'" '"",""', n & n.

B

N. =~ 5/B
0.9d

2/3
0.9d"„B)

A$ ~ A ~ AQ. (
A ~ YLg

(4)
(4b)

(4c)

Following Ref. 17, we have estimated n; to be of the
order (O.l—1) x 10 cm 2, so that 0.01 & n;a&~ & 0.1.
This results into the values of n, a& in the range 0.1—0.3
or n, = (1.0—3.0) x 10ii cm 2. Having in mind that
the experimental range of n is (0.4—4) x 10 cm 2, we
conclude that Eq. (4b) is probably the most frequently
realized in the experiment. However, for large electron
densities Eq. (4a) still may apply.

Our predictions can be verified in detail on gated
heterostructures. Changing the gate voltage, it is pos-
sible to vary n in a controlled manner and study the dif-
ferent regimes defined by Eqs. (4a)—(4c). Changing both
the gate voltage and the magnetic Geld, one can fix N
and study the collapse of a particular spin-split peak.
This may be a better way to study the critical behav-
ior experimentally compared to the examining of b'v at
discreet values N.

Concluding the Introduction, we note that the collapse
of the spin splitting can be represented in terms of the
global phase diagram for the quantum Hall effect origi-
nally suggested by Kivelson et a/. for the spinless case.
The modified diagram is shown in Fig. 2. The purpose
of this paper is to find the equation for the dashed line
in this figure.

The paper is organized as follows. In Sec. II, we present
the mean-field treatment of the problem and apply the
results to the case of low-mobility samples. In Sec. III,

where n, is such a value of n that N, given Eq. (4a)
matches the one given by Eq. (4b), i.e., n, is the
solution2 of the transcendental equation,

n. /n; = [0.4/n(n. )]'.

we study the case of high-mobility heterostructures with
large electron densities: n/n; )) n s. We show that
in this case, the mean-field description is adequate. In
Sec. IV, we complement the mean-Geld picture by a mi-
croscopic consideration and then derive Rom that the
expression for N, in the case of moderate and small elec-
tron densities n/n; « a . Finally, in Sec. V we make
several concluding remarks.

II. MEAN-FIELD DESCRIPTION
OF THE PHASE TRANSITION

FOR THE SPIN SPLITTING

Our goal is to study the phase transition in the spin
degree of &eedom in the system of interacting electrons in
a weak magnetic field and in the presence of an external
disorder potential. As we will see, this phase transition
occurs when the amplitude of the disorder is still less
than the cyclotron gap ~, and, therefore, only the two
upper LLS are partially filled while all the lower 2N LLS
are completely occupied. In this situation, all the phe-
nomena of interest take place at the upper Landau level.
Therefore, a natural idea is to describe the electrons at
the upper LLS by means of some e8'ective Hamiltonian,
where the degrees of &eedom of the lower LLS are in-
tegrated out. This program was realized in Ref. 10. It
uses the idea that the bare Coulomb interaction of the
electrons at the upper LLS is strongly reduced due to
the screening by lower LLS. The fact that interaction
is small suggests using perturbative methods, e.g, the
Hartree-Fock approximation.

Consider an electronic state at the upper LLS in the
form of a Hartree-Fock function, based on one-electron
wave functions proposed by Kivelson et al. (so-called
coherent states). We will not need the explicit form of
these wave functions. It is suKcient to know that for
large N, the square of the absolute value (the probability
density) of each wave function of this type is not small
only within a very narrow ring of width II3 and radius
B = v/ky (the classical cyclotron radius). Here, l~
v v/kp is the magnetic length. For a "ring" with the
center at point v'0, the probability density 3,t a point v' is
E(r —v'o), where

1I'(r) = 8(r —B)
2vrB

is the form factor of the wave functions. The ring centers
must be chosen such that their density be equal to nI. ——

1/(2nl&). Define the local filling factors v~(v) and vg(v)
as the &actions of occupied states with centers near the
point v', and also viv = v~(r) + vg(v') as the total filling
of the upper Landau level.

Our efFective Hamiltonian has the form

FIG. 2. The global phase diagram for the quantum Hall
effect, as obtained in the mean-field approximation (schemat-
ically). The Zeeman energy is neglected. The dashed line
is de6ned by the relation v = 2N + 1 with N given by
Eqs. [(4a)—(4c)j.

& = Hint + &imp + &z &

H;„,= H.„+JI~,

where all the terms are expressed via the local filling
factors. For example, the exchange energy of the system
H~x ls
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H,„=—n—l d rd r'G,„(r—r')
2

+[vs(r)vt(r ) + vl(r)vl(r )].

until Sec. III.
The ground state distributions of vt(r) and v~(r) can

be inferred &om the fact that H has the lowest value for
a given total number of particles, which gives

The kernel of this expression, G,„(r),is the energy of the
exchange interaction of two "rings, " whose centers are a
distance v apart. The Hartree energy of the system HH
is given by where

v~(r) = &[~(r) —Z/2 —E~(r)l
~( ) = &%( ) + Z/2 —E~( )l

(»)
(IS)

H~ = —nl ci 'p(i 'p v~ T G~ 'p —T vN 'p (10) W(«) = V(«) +«~ jd'«'G«(« —«')««(«')

where G~(r) is now the energy of the direct interaction
of two "rings. " The term H; ~ describes the interaction
with random impurities:

is the potential, which includes the screening effects of
both the lower completely filled LLS (the first term) and
the upper partially filled ones (the second term), f (e) is
the Fermi-Dirac distribution function, and Eg is given by

H; = nI. a2~a2~'U ~' r ~' —~ v~ ~, Eg —— d v'G, v —v' vg v' (2o)

where by U(r) we mean the impurity potential already
screened by the lower completely filled LLS. The form
factor I" here [see Eq. (6)] accounts for the fact that the
energy of each one-particle state is determined by the
potential averaged over the cyclotron orbit. To simplify
the formulas we introduce an additional notation for this
averaged potential:

(and similarly for E~). Notice that for every position r
of the ring center, there are two distinct values of energy
W(r) —Z/2 —Eg(r) and W(r)+Z/2 —Eg(r) correspond-
ing to the two orientations of the electronic spin. They
define Landau level subbands. The energy separation
b,s(r) between the subbands is a sum of two terms:

V(«) = J62«'U(«')F(«' —«), (12)

&s =Z+ (21)
(22)

so that

H; p
——nI, d vVv v~v

Equations (17,18) are in agreement with the density of
states diagram (Fig. 1), which we discussed above. Using
Eqs. (20,22), we can rewrite E in the form

Finally, there is the Zeeman term, z(«) = fd'«'G. (« —«')(«g(«') —«g(«')l. (23)

Hz = nl, Z d r [vg (r) ——vt (r)].=1 2

2
(14)

G,„(r)=, l~ && r & 2R,
ea~ 1

2~R r 1+r

To complete the definition of the Hamiltonian, we
also have to provide the explicit expressions for G,„(r),
GH(r), and U(r).

According to Ref. 10,

E = Ep(vg —vg), (24)

Now we can develop the mean-field description of the
phase transition, which is the goal of this section. Con-
sider the case where fluctuations in vt(r) and vg(r) exist
only on length scales smaller than (. Upon the integra-
tion in Eq. (23), these fluctuations are averaged out. We
denote the average values of vg(r) and v4(r) by vt and
vg, respectively, without the argument v. Clearly, E is
proportional to their difference:

where

2
(16)

G,„(r)rapidly falls oK beyond the distance (, which can
be called the range of the exchange interaction. It is easy
to verify that if X )) (k~a~), then ( )) l~. Hence, for
such N, the number of electrons at the upper Landau
level involved in the exchange interaction with the given
one is large and we can indeed describe the distribution
of electrons by continuous functions vt(r) and vg(r). In
the experimental situation k~a~ 1, and therefore, we
are referring to N &) 1.

The explicit formulas for G~(r) and U(r) will not be
used in the present section. We postpone their discussion

1
vt —v4 = —Bv.

2
(25)

Indeed, it is easy to see that bv is the total area of the

where Ep ——Jd rG,„(r)= nkvd, . Performing the lat-
ter integration with the help of Eq. (15), we recover
Eq. (1).sP

Since we are interested in the conductivity peaks, &om
now on by v~ and vg in Eq. (24) we will understand the
corresponding quantities for the position of the Fermi
level at the center of N t LLS, as shown in Fig. 1. Equa-
tion (24) is one of the central equations in the mean-field
theory of the spin-splitting phase transition. Another
equation relates vt —vg to the separation bv between the
conductivity peaks:
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shaded strip (of width As) at Fig. 1, whereas vt —vg is
only half of this area.

One more equation relates bv to Ag'.

&s
hv = p(e)de,

—&s

thus completing the system of the mean-Beld equations
Eqs. (21,24, 25,26). Here, p(e) is a quantity, which we
call the form factor of LLS. It has the dimensionality of
inverse energy and has the direct relation to the density
of states in the potential W(r). Namely, the contribution
to the total density of states &om, say, N g LLS centered
at the energy Et is—given by nr, p(e + E~).

Using Eqs. (21,24,25), we arrive at

—EpBP + Z.
2

(27)

(a) Eo & p (0) Eo) p (0)

The first (exchange) term is much larger than the second
(Zeeman) one, provided hv is not too small. First, let
us neglect the Zeeman energy. In this approximation,
the collapse of the spin splitting can be seen the most
vividly. We examine the effect of a finite Zeeman energy
a bit later.

We are going to solve the system of two equations (26)
and (27). This procedure can be illustrated graphically
(Fig. 3). We have a nonzero solution for hv, only if Ep &
p i(0). Therefore, the transition point is defined by

E, = p-'(0). (2g)

Near the transition, bv can be estimated using the Tay-

lor expansion for p(e) in Eq. (26):

-24 ~ E, —p-'(0)

It is easy to see that our approach is very similar in spirit
to such well-known mean-field theories as Stoner model of
band ferromagnetism or Weiss' theory of the molecular
field. In the latter case, the analogy is achieved via sub-
stitutions "disorder" (p i) ~ temperature, s2 exchange
energy (E) -+ magnetization. Following this analogy,
the Zeeman term is mapped onto the external field. It
is clear now that the effect of this term is the smearing
of the transition [Fig. 3(b)]. For instance, in the "para-
magnetic phase, " we have an analog of the Curie-Weiss
law:

2Z
Sv =, , p '(0) —Ep » Z. (30)

Now let us address the question of how reliable the
mean-field approach is. It is based on the assumption
that vt and vg can be treated as spatially uniform. In re-
ality, they Huctuate from point to point and in the imme-
diate vicinity of the transition, where these Huctuations
exceed the average value of vg —vg, the mean-field theory
definitely breaks down. However, in this paper, we do not
wish to discuss the details of the critical behavior at small
8v. Instead, we focus on not too small 8v, say, Sv & 1/2.
The characteristic scale of the Buctuations in vt and v~
is set by the correlation length I, , of the disorder po-
tential. As long as t, , « (, the fluctuations in vt —vg
are averaged out, and therefore, the mean-field theory is
a very good approximation. For example, it is expected
to work for low-mobility samples, where the disorder is
short range, i.e. , t, , « t~ [and we assume N && (k~aii)
so that l~ && ( as explained above]. In this case, we can
express N, in terms of the sample mobility. Indeed, it
has been shown that for the short-range disorder, the
self-consistent Born approximation (SCBA) is valid. In
this approximation,

p(0) = h 'Q(2/vr)(~/u), ). (31)
(0)As

Magnetic field
decreasing

Together with Eq. (28) this leads to Eq. (2), which as we
mentioned in Sec. I, qualitatively agrees with the exper-
imental data.

In the next section, we discuss the case of high-mobility
heterostructures with n/n, » n . As we will see, the
simple theory presented in this section gives the adequate
description of the phase transition.

(0)&o

Z)0
III. HIGH-MOBILITY HETEROSTRUCTURES:

LARGE ELECTRON DENSITIES

FIG. 3. (a) hv is given by the intersection of the bold lines
representing Eqs. (26) and (27). The nonzero solution exists
only for Ro ) p (0). (b) The dependence of hv on Rp has a
typical second-order phase transition farm. Nonzero Z smears
the transition. To generate these plots we used the Gaussian
form for the density of states: p(e) = p(0) exp ( —

harp (0)e ).
The solid and the dashed lines correspond to Z = 0 and
Z = 0.06&0, respectively.

In the preceding section, we applied our mean-Beld ap-
proach to low-mobility samples, where the disorder po-
tential is short range. Let us now turn to the case of
high-mobility samples. In particular, we consider a het-
erostructure described by a set of three parameters n, n;,
and d, as discussed in Sec. I. In this section, we will find
the transition point N„assuming n/n, » n » 1.

At first sight, the problem is different &om the one
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p(O)
' = /2vr(W') (32)

if W(v ) has the normal distribution. To calculate this
quantity, we need to know the bare potential created by
Huctuating donor density and the screening properties
of the 2DEG. The donor potential is characterized by
exponentially suppressed short-scale harmonics (with the
wave vectors larger than d ). The screening in its turn
greatly reduces the amplitudes of large-scale harmonics.
As a result, the harmonics with q d dominate in the
potential, and so we can focus only on the screening at
these q.

Both the lower, completely filled LLS and the upper,
partially Glled LLS participate in the screening, which is
reflected in the fact that W(r) as given by Eq. (19) is a
sum of two terms. The screening by the completely filled
LLS is described by the dielectric constant,

in the preceding section, because the disorder potential
created by remote donors is now long range with the
correlation length of order d )) l~. This length also sets
the scale for the variations of v~ and vg [Eqs. (17,18)].
However, we will show below that the transition point
is given by Eq. (4a); therefore, near the transition, the
range of the exchange interaction ( 2vrnR nsdn/n;
is much larger than d, and so on the scale of (, both
vt and vg are uniform and our mean-Geld treatment still
applies. The problem now reduces to the calculation of
the right-hand side of Eq. (28), i.e. , to the calculation
of the LLS width. This width is nothing more than the
amplitude of W(r). More precisely,

V(q) = +(q)U(q)

where F(q) can be deduced from Eq. (6) to be

Due to the averaging over the cyclotron orbits, the am-
plitude of V(v) is reduced compared to that of U(v)
by a factor of order gd/R. 29 This is because every cy-
clotron orbit samples approximately R/d uncorrelated
areas of size d each. Another way to see that is to no-
tice that for the dominant harmonics q d, we have
i+(q) I

- gd/R.
Prom Eqs. (32,35), we obtain

~(o) ' = dqqJo(qR)~(q)
0

where S(q) is the structure factor of the disorder poten-
tial defined via

(U(q, )U(q, )) = (2~)'S(q)8(q, + q, ). (38)

Using this definition and Eq. (3), we find

and for calculation of g(W2), we will need to consider
only the screening by the lower LLS and only in the
regime q )) 1/R described by Eq. (33b). Recall that
V is the potential averaged over the cyclotron orbits and
in real space it is expressed in terms of the unaveraged
potential U by means of Eq. (12). Now we rewrite this
equation in q space:

1+R q/a~, q (( 1/R
1+2/a&q, 1/R « q « k~, qs(q)

(39)

W(q) = V(q), q - d (34)

where e, is the dielectric constant of the media. In the
asymptotic expression for large q [Eq. (33b)], one rec-
ognizes the familiar zero magnetic Geld result. This is
natural, because large q correspond to small distances
q (( B at which the curvature of the cyclotron orbits
may not be important. The dominant harmonics with

q d belong to this range, because near the transition
( )) d and, of course, R )) (, so that R )) d.

We will show below that the contribution to the screen-
ing of the dominant harmonics &om the partially filled
LLS is negligible, provided n/n, )) a . At this point,
we would like only to indicate that a physical reason for
this is the smallness of the electron number density nI, at
one LLS. Even when all the electrons leave the maxima
of the random potential and accumulate in its minima,
the electrostatic potential created by the corresponding
charge redistribution is still much smaller than the ran-
dom potential itself. In other words, the screening by the
upper partially filled LLS is weak because it; is deep in
the nonlinear regime. On the contrary, the lower com-
pletely Glled LLS screen linearly, because of their large
electron concentration. Neglecting the weak screening by
the upper LLS, we obtain

so that

1 = /2m(W2) =
s (o)

e2a~n'. ~' (d 5
' '

(4O)

Together with Eq. (28), this leads to

N, = 2o. kydn/n, , (41)

which is the saine as Eq. (4a).
Now let us show that the screening by the partially

filled LLS is indeed negligible if the inequality n/n; ))
o. holds. In general, the calculation of such a screening
is a nontrivial problem. Its complexity originates &om
the fact that the screening by the partially Glled LLS can
be both linear and nonlinear, depending on the level of
disorder and the average filling factor v, i.e., on where we
are on the global phase diagram (Pig. 2). Since in this
paper we are interested primarily in the positions of the
conductivity peaks, we will focus here on a small region
of this diagram near the phase boundaries, deGned by the
equation v = 2N, +I+ zbv(n;, n). As we move along such
a boundary in the direction of the increasing disorder, we
proceed &om the point where the amplitude of TV is zero
and the spin splitting is t;he largest, to the point where
this amplitude is o.Lu and the spin splitting vanishes.
Consequently, all the way along this path the amplitude
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of W never exceeds o.~, not to say Ru . This means
that as long as N ( N„only the two upper (spin up and
spin down) LLS are partially filled [with the exception of
rare places, where W(v ) is untypically large].

To estimate the (averaged over the cyclotron orbit)
potential created by the partially filled LLS, we need to
know the expression for G~(x ). It is given by

(27r)' qs(q)

where we took into account the form factor of the wave
functions [Eq. (36)] and the screening by the 2N com-
pletely filled lower LLS [Eq. (33)]. This integral was
evaluated in Ref. 10 to be

e axx 3e aux t'Rl e axx t R t

H 27rRr 4m. 2R2
q r y

R2 (axis
'

lxx « r « R. (43)

Among these three terms, the last one is just a constant
and will have no effect in our consideration, and the sec-
ond term is smaller than the Grst one. Retaining just the
Grst term, we discover a remarkable fact: the renormal-
ized interaction is equivalent to the Coulomb law with an
effective dielectric constant,

mobility, in the long-range disorder potential case we use
72') fli ) an

Concluding this section, we would like to mention that
v can be estimated by analyzing the Shubnikov —de Haas
(SdH) oscillations. Existing theoriesss'ss ss predict that
the deviation of the resistivity in a weak magnetic Geld
&om its zero Geld value should behave as

0
PXX PXX g 7l /4Pc T

0
~XX

27r2T

f 2~eF lt

slxlll ~c
(48)

2
NsaH - ex~/7r& = Irzdn/n'— (49)

Comparing with Eq. (47), we obtain

There is a disagreement in literature about the value of
the numerical coefficient A (see the discussion in Ref. 36)
and problems with fitting the experimental data to the
theoretical predictions. Nevertheless, it is probably rea-
sonable to assume that the peak number NsgH where
the extrapolated to T = 0 value of the left-hand side of
Eq. (48) becomes of order unity corresponds to u 7
1.e. )

(44) N~ o.' vrNsgH.2 (5o)

p(0) = hg(u, /7. , (45)

Now the amplitude of the potential created by the par-
tially filled LLS can be easily estimated. The amplitude
of the variations in v~(i ) does not exceed one; there-
fore, the amplitude of the potential is of the order of
e2nx, d/E. , e2a~ns~ d/N, which is much smaller than

g(W2), if n/n, )) n and N N, [see Eqs. (40,41)].
Therefore, the screening is performed mainly by the com-
pletely filled LLS as we claimed above.

The expressions for N, obtained for the short-range
disorder potential considered in Sec. II and in the present
case, appear to be different. Let us show that, in fact,
they can be cast in a very similar form. Indeed, Eq. (37)
can be rewritten in the form

With cx = 0.25, this gives N, NsgH/5, in reason-
able agreement with the data by Coleridge et al. , where
N = 12 and NsgH 40. The reason why there is such
a simple relation between N and NsgH is that the un-
derlying physics is similar: the SdH oscillations develop
when the width of the LLS becomes comparable with the
energy separation ~ of the Landau levels, and the col-
lapse of spin splitting occurs when this width is of the
order of the spin subband separation o.her, which differs
only by a numerical factor.

In the following section, we are going to complement
the mean-Geld description that we employed so far by
the consideration on the microscopic level. This will en-
able us to find N, for the case of moderate (and small)
electronic densities n &( n;/a .

which difFers from the short-range case [Eq. (32)] only by
a numerical factor g2/vr. In this expression, w is again
the single-particle scattering time at B = 0:

IV. HIGH-MOBILITY HETEROSTRUCTURES:
MODERATE AND SMALL DENSITIES

OO
7l 6 CL fL

dqS(q) =—

With the help of Eqs. (28,45), N, can now be presented
in the form almost identical to Eq. (2):

N = —ey v..
h

(47)

Therefore, the difference between the two considered
cases is largely in the choice of measurable sample pa-
rameters, through which we express N . While, for the
short-range disorder potential, we can extract 7 from the

Consider now the case of moderate electron densities
1 « n/n; (& rx. , where the predicted transition point
is given by Eq. (4b). One can verify that near the tran-
sition, we still have the inequality d &( R, so that the
averaging over the cyclotron orbits is still important for
the calculation of the macroscopic density of states.
However, the range of the exchange interaction ( nR,
is shorter than the lengthscale on which this density of
states is forxned (d). In this case, the xnean-field theory
that we used so far becomes insufIicient, and there is a
need for a different, local theory.

A first step towards constructing such a theory will be
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to deepen our understanding of the already studied large
density case. The starting point of our analysis was to
associate the peaks in o with the presence of the de-
localized ("inetallic") states near the Fermi energy. Now
we have to somehow relate these metallic properties to
local values of the filling factor v(r), which can be either
integer (completely filled LLS) or noninteger (partially
filled LLS). Clearly, the regions of completely filled LLS
(the "incompressible" or i liquid), where there are no
gapless excitations, are unable to carry a dissipative cur-
rent. The i liquid is "insulating" in this sense. Note that
in the large density case, the i liquid occupies almost the
entire area of the sample. This is due to the fact that
near the transition, only the two upper LLS are typically
partially filled and the potential created by the electrons
at these LLS is small. The regions of partially filled LLS
(the "compressible" or c liquid) form narrow channels be-
tween neighboring "islands" of the i liquid. These chan-
nels are referred to as "bulk edge channels. " The peaks
in cr appear when at certain values of the average v,
the bulk edge channels form a percolating network, which
can conduct the dissipative current. The transport prop-
erties of such a network have been considered by several
authors. ' For us it is important to identify the dif-
ference in the structure of this network for the "ferro-
magnetic" and "paramagnetic" phases. This difference
is illustrated in Fig. 4(a), where we show the structure of
the channel network for the periodic external potential,

Cx+ yl . r'x —yl
U(x, y) = Uo sin

~ ~

sin
~ )

corresponding to the averaged potential V(r) of the same
form:

a):-

FIG. 4. The distribution of v(r). Labels "0," "1," and
"2" correspond to filling factors 2N, 2N + 1, and 2N + 2,
respectively. (a) "Ferroinagnetic phase" (8v ) 0). The spin
up bulk edge states (solid lines) are disconnected from the spin
down ones (dashed lines). The space between them is region
"1" (shaded). (b) "Paramagnetic phase" (hv = 0). Only the
regions "0"and "2" are present and the two networks spatially
cosnc j.de.

V(r) = U(r) Jo(B/d).

It follows &om Eqs. (17,18) that in the "ferromagnetic"
phase, where Lp ) 0, the total area occupied by the i
liquid is split into three regions, where v~(v') takes values
0 (both spin up aiid spin down LLS are empty), 1 (the
spin up LLS is occupied and spin down LLS is empty),
and 2 (both LLS are occupied). The bulk edge channel
network consists of two subnetworks with different spin
orientations: one is the channels with 0 ( v~ ( 1 (spin
up) and the other is those with 1 ( v~ ( 2 (spin down).
The two subnetworks are disconnected as they are the
two boundaries of region "1." The percolation through
the two networks is achieved at different average v, and
this is why there are two peaks in o for a given ¹
Let us find when these peaks occur. Note that the spin
up and spin down channels follow the contours of con-
stant V(r) [or, more precisely, of constant W(r), but in
this case they are the same]. Only one such contour,
namely, V = 0 percolates through the sample [V(r) is
symmetrically distributed around zero]. Therefore, the
peaks in o correspond to e~ ———Eg and e~ ———Eg,
which are the centers of the spin up and spin down LLS
[see Eqs. (17,18)]. Thus, the network picture is consistent
with the one we used previously, and gives an important
insight into the nature of the delocalized states at the
centers of the LLS.

On the contrary, in the "paramagnetic" phase, where
A~ = 0 (Zeeman energy neglected), only the regions "0"
and "2" are present [Fig. 4(b)]. In this case, the spin
up and spin down networks coincide spatially, and the
percolation through the two is achieved simultaneously,
which means that bv is zero.

In Secs. II and III, we found that the transition is
driven by the competition between the exchange interac-
tion and the disorder. Now we can trace this competition
on the microscopic level. The disorder is indiscriminative
towards the electron spin. It tries to push the electrons,
spin up and spin down all the same, away &om the hills of
the potential and pile them up in the valleys, thus tending
to create doubly empty ("0") and doubly filled ("2") re-
gions only. The exchange interaction, on the other hand,
prefers the ferromagnetic spin ordering and leads to spin-
Hip processes at the spin down LLS. Since in the region
"2" all the spin up states are occupied, these spin-Hip
processes occur via filling of the region "0" at the cost
of an increase in energy, due to the disorder potential.
Thus, the region "1"is created, and the spin up and spin
down bulk edge channels become spatially separated.

In our example of the chessboard potential, the per-
colating constant energy contour is the one that goes
through the saddle points. Therefore, the properties
of the channel networks near the saddle points are ex-
tremely important for the percolation (this is true for
the random external potential as well). In fact, it is near
a saddle point that the spin up and the spin down chan-
nels split: one turns in the clockwise and the other in
the counterclockwise direction [Fig. 4(a)]. One can say
that on the microscopic level, the spin-splitting transi-
tion is the transition of the saddle points &om a zero
magnetization "0"-"2"state to a magnetized "0"-"1"-"2"
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state. Recall that bv divers from the average magneti-
zation only by a factor of 2 [Eq. (25)]; therefore, bv is
approximately given by the the ratio of the magnetized
area at a single saddle point to the area of a chessboard
cell. The former can be estimated as the square of the
distance Sx between the two regions "2" (or two regions
"0") at the saddle point in the configuration shown in
Fig. 4 (corresponding to v = 2N + 1). This leads to

c) t

We see that for bv = 1/2 one should have bx of order d.
We will use this fact later in this section.

Before we start to analyze the moderate electron den-
sity case, let us give another explanation of why the
mean-Geld description is expected to work in the large
n case. The point is that in the "ferromagnetic" phase,
each magnetized saddle point creates the "exchange
field, " which supports the existence of its own magne-
tization and the magnetization of all neighboring saddle
points. In the case of large n, where the distance between
the saddle points (d) is much smaller than the range of
the interaction ((), each xnagnetized saddle point is sup-
ported by the field of a large number of other saddle
points. Therefore, this is a collective phenomenon and
the mean-Geld approach is a good one.

Let us now resume the study of the moderate electron
density case. In this case, ( « d and each saddle point
has to support its magnetization individually. Another
di8'erence &om the large density case is that the poten-
tial created by the electrons at the upper LLS is not
small, and the screening is now accomplished mainly by
the upper LLS. In other words, both the Hartree and the
exchange terms of the electron-electron interaction at the
upper LLS are working against the disorder. The impor-
tant role of the Hartree term was emphasized by Dempsey
et al. , who studied a similar "0"-"2" to "0"-"1"-"2"
transition for N = 0 in an edge of a wide quantum wire.
(See, also, the paper by Manolescu and Gerhardts4i and
references therein. ) The corresponding effect in our ge-
ometry is the "0"-"2" to "0"-"1"-"2"transition on the
sides of the chessboard cells. We remind you that our
interest is primarily in the saddle points. However, our
treatment of the problem is similar in spirit; therefore, we
brieHy review the results obtained in Ref. 40. Let x be the
coordinate in the direction transverse to the wire and the
edges of the wire be located at x = 0 and x = —b. We
denote the potential providing the lateral confinement
of the wire by V(x) [this choice reffects the similarity
between this potential and the potential V(x, y) in our
chessboard model]. The evolution of the edge structure,
as V(x) is softened, is as follows. For large confining fields
dV/dx the edge is in "0"-"2"state [v = 2 in the interval

b& x & 0 an—d v = 0 everywhere else, see Fig. 5(a)].
When the confining field gets smaller than the Hartree
field given by

the region "1" arises spontaneously and then grows
[Fig. 5(b)]. For a while, the edge density profile remains

FIG. 5. The "0"-"2"to "0"-"1"-"2"transition in an edge
of the wire (Ref. 40). (a) For a steep confining potential, the
edge is in the "0"-"2"state. (b) As the confining potential
is softened, the region "1" appears and grows. (c) When the
width of the region "1"reaches l&, the c-liquid strips appear.
(d) Eventually, the c-liquid strips become much wider than
region "1."

steplike, i.e., the edge channels are infinitesimally narrow.
However, when the width of the region "1" becomes of
order t~, the edge undergoes a second transition: the
edge channels acquire a finite width [Fig. 5(c)]. Using
another language, the c liquid appears. One can inter-
pret this second transition as follows. It is the exchange
interaction that stabilizes the steplike density profile,
because it provides the minimum of the exchange en-
ergy H,„[Eq.(9)] for a given total magnetization. How-
ever, this kind of profile does not simultaneously mini-
mize the Hartree (i.e., electrostatic) part of the energy
IIxI [Eq. (10)]. Electrostatics tends to create a smoothly
varying density, and starting &om the point where the
width of the region "1" gets comparable with the range
of the exchange interaction, which is l~ at the lowest
Landau level, the exchange interaction is no longer able
to counteract this tendency. With further softening of
the confining potential [Fig. 5(d)], the c liquid regions
becomes xnuch wider than the region "1"42 (this regime
was considered by Chklovskii et al.4s).

In our chessboard model, the situation is similar: when
the interaction strength is comparable or larger than that
of the disorder, the narrow bulk edge channels along the
sides of the chessboard that we were talking about earlier
in this section, become wide compressible regions occu-
pying a large portion of the total area. The saddle points
undergo the same reconstruction. We are going to show
below that for K close to K„where bv 1/2, the size of
the region "1"at the saddle points is much smaller than
the size of the surrounding compressible areas (Fig. 6).
In this case, the profile of tv(x ) in the cross section go-
ing through the saddle point via labels "2"-"1"-"0"in
Fig. 6(a) is similar to that shown in Fig. 5(d).

The fact that c liquid regions are wide has qualitatively
diferent implications for the transport properties. The
question now is whether or not this entire compressible
area retains the metallic-type of conduction. E&os
suggested that yes, all the c liquid is metallic. Since
the percolation through the e liquid is now achieved
in wide ranges of average v, this suggestion leads him
to the conclusion that the peaks in cr must be wide,
and correspondingly, the quantum Hall plateaus must be
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narrow44 (see also Refs. 43, 45). Indeed, this is what is
observed at relatively high temperatures. However, it
is well known that at lower temperatures peaks become
narrow. One interpretation of these phenomena was sug-
gested in Ref. 43 and is as follows. As the temperature
goes down, some &action of the c liquid with filling fac-
tors close to integer values becomes localized (or perhaps
pinned); thus, the range of filling factors where c liquid
is metallic shrinks. If we desire to preserve the prop-
erty so that only a single state per LLS is delocalized at
zero temperature, then we have to assume that only very
narrow strips of the c liquid, where v(v') is half integer re-
main metallic in the limit T —+ 0. Therefore, we have to
refine our criterion to have the conductivity peaks in the
following way: the peaks corresponding to Landau level
number N appear when there is a percolation through
viv(v ) = 1/2 (for spin up peak) and tv(v) = 3/2 (for
spin down peak). This is a very strong assumption, but
we do not know an alternative way to interpret the low-
temperature magnetoresistance data.

In our chessboard model the peaks in cr correspond
to the configurations of v~ = 1/2 and vN. = 3/2 fillings at
the saddle points (Fig. 6). The difFerence in the average
filling factor for these configurations, which is bv, can be
readily estimated as the ratio of the area occupied by
the c liquid near a single saddle point to the area of a

chessboard cell, i.e. , it is still given by Eq. (53), if by
bx we now understand the size of the compressible area.
Then as in the large density case, bv = 1/2 corresponds
to bx d )) (. Let us show that for such b'x, the size of
the incompressible region "1," which we denote by a [see
Fig. 6(a)j, is much smaller than bx.

We can estimate a in the way similar to the one used
in Ref. 43 for the wire geometry. Without the exchange
interaction, the saddle point would be covered by a com-
pressible region of size bx and the external potential V(v )
would be completely screened so that the electrostatic
energy could be minimized. Due to the exchange in-
teraction, the region "1" appears. It can be considered
as a quadrupole redistribution of the charge on top of
the compressible region. This redistribution causes the
deviation of the Hartree potential from its value for the
complete screening case. The magnitude of the deviation
is of the order (e2nL, as/s, )(bx), where the last factor
is the typical value of the second derivative of the fill-
ing factor at the saddle point (for the complete screening
case). Now o, can be estimated from the condition that
the deviation in the Hartree potential is of the same order
of magnitude as the deviation in the exchange potential,
which is o.Ru, if a )) (. Using F~q (44). for the effec-
tive dielectric constant s„wefind o, (bx)2/s(aB)i/s.
Replacing aB by (, we obtaiii

(b )2/s(1/s (55)

a)

b)

FIG. 6. The structure of a saddle point. Shown by gray
is the area occupied by the c liquid. Inside of this area, two
contours of constant filling factor, v(i') = 2N + 1/2 (dashed
line) and v(i ) = 2N + 3/2 (dotted line), are important for
conductivity. (a) Average v is 2N + 1 and the same is v at
the saddle point. Both contours are away from the saddle
point. Thus, they do not percolate through the sample and
o is zero. (b) The average filling factor is decreased from
the value of 2N + 1, by such an amount that v at the saddle
point becomes 2N + 1/2. This brings the former contour to
the percolation condition, while the latter contour is pushed
further away from the saddle point. This corresponds to the
spin up peak in o

Observe that for bx )) (, we have ( « a « bx, which
makes our estimate consistent.

For bv 1/2, we have bx )) ( and, therefore, a « bx
as we claimed above. In this case, bx as a function of N
can be found assuming that the entire area of the saddle
point is occupied by the c liquid, as it would be with-
out the exchange interaction. The evolution of the sys-
tem at this stage is governed by the Hartree interaction
(compare to Ref. 40), which makes the present case qual-
itatively difFerent &om the large density case, where the
exchange part of the interaction played the major role.
The reason for this difFerence is that, in the present case,
the exchange interaction is no longer enhanced through
the collective exchange field of neighboring saddle points—they are too far apart.

Let us now calculate bx as a function of N Having.
done that, we will be able to find N &om the condition
bx d. Similar to the estimate of a earlier in this section,
that of bx will be also based on the fact, that the charge
distribution in the compressible region can be described
as a quadrupole. In this case, it is the quadrupole formed
on top of the "0"-"2"state. Indeed, in the present state
there are more electrons in the two "0" regions, so there is
a negative charge there, and there are fewer electrons in
the two "2" regions, so they hold some additional positive
charge. The size of the quadrupole is such that the sum
of the Hartree and the external potential energies has the
lowest possible value. The energy of the quadrupole is,
essentially, the product of its quadrupole moment and the
second derivative of the external potential. Therefore, bx
can be estimated by equating the second derivatives of
V and the Hartree potential:
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which gives

02V e2nI,
Bx2 e,bx '

and Eq. (59) by

X/2

( )
i 7I e ri~n~

2 d

b'x pd, (57)

where p is the dimensionless parameter showing the rel-
ative strengths of the interaction and the external poten-
tial:

Z/2e 6~A.
d3

As a result, Eq. (57) gives

1 e2nL,

HV/Ox2 c,d
(58) (n;) R'

82V e a~n; Cd 5
x2 ds (R) (59)

[compare to Eq. (40)]. With the help of Eqs. (44,59), we
can express p in terms of n, n;, and N:

)'~' (k d ~

qn; ) g4~N)
(60)

and hence, N is given by

Equations (53,57) show that bv = 1/2 is achieved when

p is of the order of unity.
For the chessboard potential, p is defined unarnbigu-

ously, because all the saddle points are identical. In the
random system this is not the case, but it is reasonable
to assume that the point bv = 1/2 also corresponds to

1 if, in the definition of p, we use a typical value of
02V/Dx2, for which we take

(V')'~2 )Sx&'
Ru (d) (65)

Together with Eq. (64), this leads to Eq. (4c). Here, we
assume that the amplitude of the disorder (V2) i~2 does
not exceed e~, because otherwise the 2DEG would be
broken into isolated droplets of size d. There would be
no percolation through the 2DEG and the system would
turn into an insulator. The 2DEG density n~„,at which
this occurs can be roughly estimated &om the condition
(V2) ~ ey, which gives [cf. Eqs. (62)]

(66)

The other di6'erence &om the moderate density case is
that the amplitude of V near the transition exceeds ~
many times and v(r) varies typically not within 2N and
2N + 2, but in a much wider interval. In this case, the
proper modification of Eq. (53) is

N, ky d(n/n;) (61)

which reproduces Eq. (4b) apart fram the numerical coef-
ficient. The coeKcient was derived in the following way.
We performed a computer simulation for the chessboard
potential given by Eqs. (51,52), with the purpose of find-
ing the ground state of charged liquid interacting via a
Coulomb law with the dielectric constant e, . We im-
posed an additional constraint that the density at every
point is non-negative and does not exceed 2nl. . The re-
sults of the simulation depend only on two-dimensionless
parameters: p and v = n/nl, . By varying the average
density n in the systexn, we could vary the density at the
saddle points in the resulting ground state, in particular,
to make it equal to nl. /2 and 3nl, /2. We then calculated
hv as the difFerence in v corresponding to these values
of n. We found that bv = 1/2 is achieved at p = 0.1.
Eventually, we substituted this number into Eq. (60) and
obtained Eq. (4b). Note that the results for large and
moderate densities [Eq. (4a) and Eq. (4b)] match at the
crossover point defined by n/n; n s, or more precisely,
by Eq. (5).

Concluding this section, we want to brieBy discuss the
case of small densities n/n; « 1. This case is similar
to the case of moderate densities with two exceptions.
First, in this case, R (& d and the averaged potential
V(v ) coincides with the unaveraged one, so that Eq. (40)
has to be replaced by

The coeKcient in this relation was found via numerical
simulations by Efros et al. and proved to be 0.11, i.e.,
by a factor of 2 smaller than in this simple estimate. Our
theory is valid if nz n~„„nqbeing the 2DEG density
at which N, = l. Using Eqs. (4c,66), one easily finds
that this corresponds to the condition n;d2 & 2 x 10,
which is always realized in practice.

The case of small densities is interesting in the sense
that small regions (with size of order R) near the sad-
dle points occupied by the c liquid determine, in fact, a
large value of hv, which is a sample averaged quantity.
So, b'v can be of the order of unity, while the average
magnetization is very small.

Our primary goal so far was to find N, where by defi-
iution b'v = 1/2. Another interesting issue is the behavior
of b'v for N ) N, . For the moderate density case, we can
use Eqs. (53,57,60) to find that the transition has the tail
in the form

hv(N) (N, /N), N ) N . (67)

Surprisingly, the same expression is valid for the small
density case as well. In the derivation of Eq. (67), we as-
sumed that Sx ) (. Now the question is whether or not
it holds for smaller bx, where the compressible region
near the saddle point becomes more narrow than the re-
gion "1" that it surrounds. To answer this question, we
have to include the exchange interaction in our consid-
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eration. However, Eq. (67) will be modified by at most
a numerical factor [absent in Eq. (67) anyway], because
at distances r «(, the exchange interaction G,„(r),like
the Hartree interaction, is equivalent to the Coulomb law
with the dielectric constant e, [see Eqs. (15,44)].

Eventually, bx reaches l~. At this point, our approxi-
mation of the system of discreet electrons by continuous
liquid breaks down. For the chessboard, bv should drop
to zero. As for the random system, there is a 6nite proba-
bility of finding untypically soft saddle points (with small
value of 0 V/Bx2), which remain magnetized. Therefore,
we cannot exclude the possibility that hv is nonzero but
is very small.

Finally, we would like to remark that while for low-
mobility samples or for high-mobility heterostructures
with large electron densities, it is possible to express N,
in terms of the single-particle scattering time w, which
is a rather crude overall characteristic of the disorder, in
the case studied in the present section, N, is determined
by the properties of soxne particular areas in the sample,
namely, the saddle points of the disorder potential.

In Sec. III, we introduced the peak number NS~H re-
lated to the onset of the SdH oscillations and showed
that at large densities, NssH )) N, [see Eq. (50)]. Since
at moderate and small densities N is not expressed solely
in terms of w, Eq. (50) does not apply here. Using
Eqs. [49,(4b), (4c)], one can find that at n n;, N, be-
comes of the order of NsdH, and for even smaller densi-
ties (~ «n;) N, )) NssH. It may be interesting to verify
these predictions experimentally.

1/2

nc )
(68)

agreement with available experimental data. ' ' How-
ever, to verify our predictions in detail, experiments on
high-mobility gated samples, where the electron density
can be varied, are desirable. 2 Another way to verify
these predictions would be by the experiments where the
effective density of randomly situated donors can be var-
ied independently of the electron density (see Ref. 18).

Our theory of the disorder-induced destruction of the
many-body energy gap can be applied to other systems
with additional degrees of freedom, examples of which
can be multi-valley semiconductors or double quan-
tum well structures. For instance, in Si metal-oxide-
semiconductor field-effect transistor, each branch of the
phase diagram shown in Fig. 2 acquires an additional
"valley" fork (see, also, an experimental phase diagram
by Kravchenko et at. ).

The critical behavior, i.e., the question of how 8v goes
to zero in the vicinity of the transition requires an ad-
ditional investigation. Having in mind the experiments
on gated samples, where the electron density n can be
varied, while keeping the peak number constant, we can
de6ne the proximity to the transition by the dimension-
less parameter (n —n, )/n„n, being the density at the
very transition. Our mean-field theory, which applies to
the case of large electron densities, and not too small bv,
gives

V. CONCLUSION

In this paper, we demonstrated that the spin splitting
of the quantum Hall conductivity peaks is determined by
the competition between the disorder and the electron-
electron interactions. We showed that in the mean-6eld
approximation, the distance bv between the spin-resolved
0 peaks measured in 6lling factor vanishes starting
&om a certain peak number N„if the bare Zeeman split-
ting is zero. A nonzero Zeexnan splitting smears the tran-
sition, but in GaAs devices, this splitting is very small
and, in principle, can be totally eliminated by applying
pressure. We calculated the peak number N, where the
spin splitting disappears as a function of the heterostruc-
ture parameters and suggested a modified global phase
diagraxn for the quantum Hall effect, which now in-
cludes spin (Fig. 2). Our calculations are in qualitative

For moderate and small densities, the dependence is more
complicated (see the discussion at the end of Sec. IV).
Note that the experimental study of the critical behavior
may be difBcult in view of the 6nite temperature effects.
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