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The optical absorption of short-period semiconductor superlattices with an electric field per-
pendicular to the layer plane is studied. The applied fields cover the range from the "miniband
regime" (low fields), where Franz-Keldysh (FK) oscillations can be observed, up to the regime of
Wannier-Stark (WS) transitions (high fields). Special emphasis is devoted to the investigation of the
intermediate-field regime where both efFects are present. We give a thorough theoretical treatment
which is the basis for results published recently. It is shown that the crystal momentum represen-
tation can correctly describe the absorption behavior over the whole field range. For intermediate
fields one obtains complicated but regular structures due to the coexistence of WS transitions and
FK oscillations. Using double difFerential photocurrent spectroscopy, a technique of modulation
spectroscopy, we have investigated a strongly coupled GaAs/A1As superlattice. A symmetric fan of
negative and positive WS transitions and a series of FK oscillations both near the lower and the
upper combined miniband edge could be observed with unprecedented resolution. The theoretical
results are confirmed excellently.

I. INTKQDUCTION

Electro-optical eKects in semiconductor superlattices
are a field of continuing interest, both because of the im-
plications for attractive device applications and insight
into basic principles of solid state physics. The latter
is the topic of this paper. Basically there are two ma-
jor efFects in the electroabsorption characteristics of any
periodic semiconductor system with direct band gap, no
matter whether it is a natural or an artificial crystal: the
Franz-Keldysh (FK) and the Wannier-Stark (WS) effect.

The Franz-Keldysh eKect is well known for bulk ma-
terial since the early days of solid state physics. In
1958 Franz and Keldysh independently found that there
should be an exponentially decaying absorption tail for
photon energies smaller than the band gap energy if an
electric field is superimposed on the crystal potential. A
few years later Aspnes ' extended their results on the
photon energy range above the band gap energy and
demonstrated that characteristic oscillations of the ab-
sorption coeKcient around the zero-field value, the so-
called Franz-Keldysh oscillations, should occur. This be-
havior was expected to appear in the vicinity of any Van
Hove singularity in the Brillouin zone of a crystal. Mag-
nitude and period of the FK oscillations should increase
with increasing field. In the following years, the FK ef-
fect could be observed experimentally and the theoretical
predictions were excellently confirmed. Apart &om some

corrections, due to the complicated band structure of real
crystals, the eBect is now well understood and has found
a wide range of applications in the determination of crit-
ical point energies in crystal band structures and electric
fields in semiconductor structures.

The derivation of the expression for the FK absorption
assumed infinitely extended bands resulting in a continu-
ous energy spectrum of the eigenstates. In 1960, however,
Wannier proposed that in a real semiconductor with G-

nite bands, a series of discrete energy levels should exist
with an equidistant energetic spacing eEa that only de-
pends on the field F and the periodicity a of the crystal in
the direction of the Geld. This Wannier-Stark ladder was
supposed to be the frequency domain counterpart of the
Bloch oscillations (coherent field-induced oscillations of
the band electrons between the band edges, both in a real
and a k-space picture), which had been predicted long
before. The existence of the WS ladder and Bloch os-
cillations has been extensively discussed over n".any years
in view of possible interband tunneling and scattering
mechanisms destroying the wave function coherence. The
discussion was supported by the fact that no reliable ob-
servation of WS levels has ever been reported in bulk
material. In 1987, Emin and Hart, however, concluded
that at least interband tunneling should not suppress the
observability of the WS ladder in interband absorption
experiments.

Meanwhile, improved epitaxial growth techniques
made it possible to fabricate one-dimensional artificial
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superlattices, the lattice constant of which is increased
by one or two orders of magnitude as compared to the
bulk material and the bandwidths of which are decreased
by a similar amount. In such structures both the spac-
ing of the WS levels, which is now proportional to the
superlattice period d, and the mean carrier scattering
times are strongly enhanced, making the conditions for
the observability of WS transitions and Bloch oscilla-
tions more favorable. In 1988, Mendez et al. clearly
identi6ed WS transitions in the photocurrent spectra of
GaAs/Alp 35Gao s5As superlattices. In 1992, Bloch oscil-
lations were detected in the time domain in optical four
wave mi~ing experiments on similar samples. ~

FK oscillations can be less easily observed in the ab-
sorption spectra of superlattices, due to the small mini-
band widths and the minuteness of the structures. How-
ever, in 1992, Schneider et al. i succeeded in the detec-
tion of FK oscillations at the lower miniband edge of a
strongly coupled GaAs/A1As superlattice for low electric
6elds. In the high-field range, the same sample showed
the usual WS transitions.

Until recently, detailed investigations on the transition
from the FK to th= WS regime were lacking. Callaway
had shown theoretically that the FK absorption spectra
of bulk semiconductors should have an additional mod-
ulation, due to WS transitions. Bleuse et al. demon-
strated that FK oscillations should be obtained &om the
WS absorption spectra of a superlattice in the low-6eld
limit. Both of them only considered the lower (mini-)
band edge and there was no clear idea about the in-
terference between the FK oscillations &om the lower
and upper (mini-) band edges and the WS transitions.
Recently, however, we succeeded in analyzing superlat-
tice absorption spectra over an energy range covering the
complete lowest combined heavy hole-electron miniband
width and over a 6eld range &om the FK to the WS
limit. i A clear interplay between both kinds of structure
could be demonstrated and the origin of that structure
could be revealed. This paper is intended to provide a
detailed theoretical description of our ideas and further
experimental evidence for our conclusions.

II. PRELIMINARY CONSIDERATIONS

The electronic properties of periodic semiconductor su-
perlattices depend strongly on the composition and the
width of the barrier material. If the coupling between
the wells is strong enough, the discrete levels of the sin-
gle quantum wells split into minibands. In the zero-6eld
case, the idealized wave functions are the completely de-
localized Bloch functions of the artificial superlattice. If
an electric field is applied parallel to the growth direction,
the degeneracy of the QW levels is removed and the qua-
sicontinuum of miniband Bloch states transforms into a
series of levels with an equidistant energy spacing eEd,
which is due to the discrete translation symmetry of the
(infinite) lattice. At the same time, the wave functions
become localized within a range A = AE+/(eE) [AE+:
(mini-) bandwidth] centered around a certain well n. In
Fig. 1(a), the situation close to a complete localization of
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FIG. l. Schematic drawing of (a) potential profile and WS
states and (b) absorption spectra of a semiconductor super-
lattice with an electric field applied parallel to the growth
direction. For clarity, only the lowest conduction (cl) and up-
permost heavy hole (hhl) miniband (shaded areas) and a few
of the associated WS states are shown. Possible light-induced
transitions are indicated by arrows in (a).

both electron and hole wave functions is shown schemat-
ically. If the localization length A is much larger than
d, it de6nes the width of the carrier motion between the
tilted (mini-) band edges, which are the turning points
of the semiclassical carrier motion.

The intensity of the transition &om hole level m to
electron level n is proportional to the square of the over-
lap between the corresponding wave functions. It usually
has its Inaximum value for the spatially direct transi-
tions m = n and decreases monotonously with increas-
ing value of ~m —n~. Since all transitions with equal

p = m —n are equal in energy, the energetic spectrum
will reHect the WS-ladder energies. Each WS level forms
a two-dimensional (2D) subband of states, with respect
to the in-plane motion. The absorption spectra will,
therefore, consist of a series of transitions with quasi-two-
dimensional character [Fig. 1(b)]. The above mentioned
hierarchy in WS transition intensities shall be called the
"classical" WS effect and it will be shown that it is valid
in the "high-" field case only (the term "high" is to be
defined later). Actually this will be a crucial point in our
line of argument.

The WS ladders can only exist if the carrier scatter-
ing times 7; are large enough to permit at least one full
Bloch oscillation cycle for the carriers accelerated by the
field. Since the Bloch period w~(F) = h/(eI"d) is in-
versely proportional to the 6eld E, there must always ex-
ist a low-6eld limit in which a carrier accelerated &om the
lower miniband edge will be scattered before it reaches
the upper miniband edge and even before it traverses
those regions of the miniband in which the parabolic ap-
proximation for the dispersion around the minimum is
still valid. As in the theory of the bulk FK effect, a
description of the wave functions, in terms of envelope
functions with respect to the superlattice cell, should be
applicable [Fig. 2(a)] replacing the full superlattice wave
function used in the WS case. In this limit, FK oscilla-
tions similar to bulk material will be observed, but with
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FIG. 2. (a) Superlattice minibands and envelope functions
in the low-field limit. The lattice period d is small compared
to the oscillation periods of the wave functions. (b) Superlat-
tice absorption in the low-Geld limit showing FK oscillations
near the lower (Ms) and the upper (Mi) combined miniband
edge.

an oscillation period that corresponds to the eR'ective
miniband masses. Furthermore, these oscillations appear
both near the lower and upper combined miniband edges
[Fig. 2(b)]. However, in the absence of scattering events,
the WS ladder will still be present. The inBuence of scat-
tering processes in absorption spectra basically results in
line broadening. Thus, it becomes clear that there has
to be a relation between the WS and FK eKect and that '7

in particular, the transition from one to the other is gov-
erned by the relation between the line broadening and
the distance of the WS levels.

Experimentally WS transitions and FK oscillations can
be distinguished easily using their Geld dependences. WS
transitions originate at the center-of-mass energy of the
combined miniband and move linearly towards the mini-
band edges with increasing field [Fig. 3(a)]. The struc-
tures due to FK oscillations, on the other hand, origi-
nate at the miniband edges and move in the direction of
the center with a characteristic nonlinear E / behavior
[Fig 3(b)1 ~

Our following considerations will in most parts be gen-
eral, so they will be applicable to bulk semiconductors
and insulators, as well as to semiconductor superlattices.
The explicit results for the wave functions and absorp-
tion spectra, however, are calculated for a superlat tice
consisting of 11 ML (= 31.3 A.) wide GaAs wells and 1
ML (= 2.83 A.) wide AlAs barriers. In a subsequent sec-
tion, these results will be compared to experiments on a
superlattice sample with the same nominal parameters.
We will Grst discuss the properties of the wave functions
corresponding to the WS levels and then calculate the
absorption spectra.

A. Wannier-Stark eigenstates

There has been a variety of approaches to calculate the
wave functions of a periodic crystal in an electric Geld.
In the crystal momentum representation, the time inde-
pendent Schrodinger equation for the envelope function
component in field direction (which is assumed to be the
z direction) readsis

I
E„(k,) —E„„+ieF

I
A„„(k,)Ok, )

+ieE) X„„(k,)A„(k,) = 0,

where A „(k,) are the coefficients of the field-dependent
eigenstates (Kane functions) I@ „)belonging to a
(mini-) band n, expanded in the Bloch states Ig ~ ) of
the (super-) lattice (lattice period d),

E„(k,) is the dispersion of the (mini-) band n and
X (k, ) are the tunneling matrix elements defined by

(a)
High
Field

where

0X„(k,) = f u„'~ (z) u„~,(z) dz,
z

P„i,, (z) = e'"*'u„g,(z).

(3)

In a (super-) lattice that satisfies inversion symmetry
with respect to the field direction, X„(k,) is identical to
zero. is If all the remaining tunneling terms X (k, ) are
neglected, a solution of Eq. (1) can easily be obtained:

n=0

Energy Energy A„„(k,) = exp [E„(k')—E„]dk' . (5)

FIG. 3. Schematic drawing of (a) WS absorption spectra in
the range from high to intermediate electric fields and (b) FK
absorption spectra in the intermediate- to zero-field range.
The field dependence of both kinds of structures is difFerent
(indicated by the arrows), making an experimental distinction
possible.

E
„

is the energy of the WS level v:

E „=E' p+ veEd,
+~/a

E o = — E„(k')dk,',
—m/d

(6a)

(6b)
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and N is the number of unit cells.
The shapes of the wave functions can be discussed more

clearly if they are expressed in terms of (super-) lattice
Wannier functions defined by

Using

P„g,(z) = ) e'"*" a„„(z)

and Eq. (5), one obtains from Eq. (2),

with

A:

@„„(pd)= —) exp
~ [E„(k,') —E„„N (eF

+peIl d] dk,'

TABLE I. Parameters

d (GaAs) (A.)
d (A1As) (A)
rn, (GaAs)(mp)
m (A1As) (mp)
mhh (GaAs) (mp)
mhh (A1As) (mp)
mg, (GaAs) (mp)
m~h (A1As) (mp)

used in the calculations.

31.09
2.83
0.0665
0.1495
0.3774
0.5076
0.0905
0.2208

, py and p2 being the Luttinger parameters for
GaAs and AlAs.

71+272

Keeping in mind that the Wannier function a „(z)is
strongly localized inside the well p and a„„(z—d)
a „+i(z), it is obvious that the behavior of the Kane
function 4

„

is determined by the envelope coefBcients
g „(pd),which modulate the periodic series of Wannier
functions a „.In fact, Eq. (10) is the envelope function
representation of the problem on the level of the (super-)
lattice cell, which is, for bulk material, equal to the usual
formalism.

In the calculations for the superlattice investigated
here, a rectangular shape of the superlattice potential
has been assumed, and a Kronig-Penney model has been
used to obtain the miniband dispersion and the Wannier
functions. The properties of the host materials are de-
scribed within an effective mass approximation for both
electrons and holes neglecting I -X and F-I mixing. All
results given here correspond to the lowest electron (cl)
and the uppermost hole minibands (hhl, lhl), respec-
tively. The calculation parameters are summarized in
Table I, the calculated miniband parameters and transi-

TABLE II. Calculated miniband parameters and transition
energies for the investigated 11/1 ML GaAs/A1As superlat-
tice.

b R (eV)
E„'(eV)
R„"(eV)
E'„p (eV)
m'„(rnp)
m"„(mp)
p'., „(eV)
p.",„(eV)
e i „(eV)

cl
0.332
0.076
0.408
0.208
0.0765

-0.0119

hh1
0.050

-0.033
-0.083
-0.054
-0.4415
0.1241
1.621
2.003
1.774

lhl
0.249

-0.042
-0.292
-0.140
-0.1045
0.0143
1.631
2.212
1.860

Energy values with respect to the corresponding band edge
of GaAs.

tion energies in Table II.
In Fig. 4, the Geld-&ee superlattice potential, the cal-

culated E(k ) dispersions for the lowest conduction mini-
band cl and the uppermost heavy hole miniband hhl,
and the corresponding Wannier functions are shown. The
incomplete localization results &om the A:, dependence of
the Bloch functions u A, which, in turn, depends on the
extent of the deviation of the real band structure (solid
lines) from the tight-binding limit (dashed lines). The
inQuence of this eKect on the absorption spectra, how-
ever, turns out to be small, even in our case of a strongly
coupled superlat tice.

The Kane functions for the lowest electron miniband
cl for various values of the electric Geld are shown in
Fig. 5. The discussion can be restricted to @ ~ „0,since
4„„(z)= 4 o(z —vd) [which can be easily verified by
direct calculation using Eqs. (9), (10), and (6a), assum-
ing an infinite superlattice]. One immediately recognizes
(most easily visible for the low field values) that the wave
functions consist of a lattice periodic part and an enve-
lope. In the high field limit, the wave function 4 q 0 is
strongly centered around the well p = 0 and the ampli-
tudes decrease with increasing distance &om that well.
This is the "classical" behavior of Kane functions. With
decreasing fields, however, the spatial extension increases
and the envelope @,i p(pd) undergoes oscillations both as
a function of the spatial position pd and the electric Geld.
In consequence, the wave function no longer reaches its
maximum value in the center well p = 0, but can even
have zero crossings there for certain values of the electric
Geld. This is also true for any other well. In this way,
a complicated distribution of the electron density is ob-
tained, which is far &om the classical WS limit. For low
Gelds the maximum values are even near the limits of the
localization interval. This corresponds to a quasiclassical
motion of the electron oscillating between the tilted band
edges. In the vicinity of the turning points, the proba-
bility density is enhanced, because of the reduced carrier
velocity.

We shall consider this low-Geld limit in some more
detail. For a given eigenstate 4 „,the exponential in
Eq. (10) has a stationary phase if
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Hence, those values of k„which closely fulfill Eq. (11),
will yield the maximum contribution to the sum in
Eq. (10); all other values correspond to rapidly oscillat-
ing parts of the exponential, which cancel out due to the
summation. For the following, we will assume inversion
symmetry for the crystal, i.e. , E (—k, ) = E (k, ). If
in this case, E „—peEd is close to a band extremum
at k, = 0 [which is, for the lowest (mini-) band, the
lower (mini-) band edge E„;the above condition is also
equivalent to pd being close to the corresponding classi-
cal turning point, cf. Fig. 1(a)], E (k, ) can be expanded
into a Taylor series up to second order giving

h'I.'E„(k,) = E( &+
( ), with E„)= E„(0), (12)

2m~p~'
FIG. 4. Potential profile, Wannier functions a~q/hhq o and

R(k ) dispersions for the lowest electron (cl) and the upper-
most heavy hole (hhl) miniband of the investigated 11/1 ML
GaAs/AlAs superlattice. The cl dispersion obtained by the
Kronig-Penney model (solid line) deviates sigxuficantly froxn
the corresponding tight-binding dispersion (dashed line).

which is the efFective mass approximation around the
critical point k, = 0, m&o& being the efFective (mixu-)
band mass. Note that m& ~ can have a negative sign de-
pending on the type of critical point. The integration in
Eq. (10) can be carried out yielding

50 kV/cm

I

I
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The summation over k has, in principle, to be carried
out over the first Brillouin zone only. However, as dis-
cussed above, only small k values will contribute signif-
icantly and the sum can be extended to infinity. Trans-
forming to an integral and changing variables leads to

I% I
x I

I I!J i'd% ~:v'
I g "-.wc x . Mphil

i / 'I x
\ I

I
I

I

I

300 kV/cm

500 kV/cm

8Ed
@nv (Pd)

2 58(
+oo

x exp x —q

peEd —(E„„—E„)+ gO(p) QZ QZ ) (14)

which is proportional to the integral representation of the
Airy function, yielding finally
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riess)
' re(o)

with the electrooptic energy

FIG. 5. Wave functions belonging to the (v = 0)-WS level
of the cl miniband of the investigated ll/1 ML GaAs/AlAs
superlattice for various values of the field (solid lines). For
comparison, the envelopes of the parabolic dispersion ap-
proximation near the lower miniband edge are shown (dashed
lines). The miniband range is marked by gray bars. In the
lower part of the figure, the superlattice potential and the
(v = 0)-hhl wave function for the highest-field value is in-
cluded.

(o) f (eEh) ~ )
I, 2m(') )

(Here and below, 50 is defined as having the sign of
the efFective mass m. ) This result is exactly equal to
that obtained for the Geld-dependent envelope functions
in the efFective mass approximation, assuming infinitely
extended parabolic bands.
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In bulk material, the envelope function @ p is often
treated as a continuous function averaging over the fine
structure, due to the Wannier functions. In analogy, the
approximation Eq. (14) for @„p(z)for the case of our
superlattice is included in Fig. 5, where z is assumed to
be continuous (dashed lines). Since only the envelope is
shown, the lattice periodic parts are suppressed and the
wave functions smoothed out, but the essential shapes of
the wave functions remain unchanged. As expected, the
approximation Eq. (14) is very good in the vicinity of
the low-energy classical turning point (positive z values)
for low-field values, where the complete Kane states, as
well as the oscillation periods of the envelope vP„p(z),
are extended over many superlattice periods. However,
it is interesting to note that it does not become too bad
even in the case of high 6elds and strongly localized wave
functions.

An analogous treatment can be applied to a band ex-
tremum at k, = +n/d [which is, for the lowest (mini-)
band, the upper (mini-) band edge E"]j If E„.„—peEd
is close to that point, E (k, ) can be expanded,

E (k)=E()+ "(,
with

E( ) = E„(vr/d),

where m(~) is the effective (mini-) band mass at that
(mini-) band edge. The coefficient function g „(pd),in
this case, is given by (see Appendix A)

with

pe+ d —!E„„—E.'")&

)

(is)

(,) ( (eEh) 2 )
q

2m(') )
Again the main part is the Airy function establishing
the semiclassical Franz-Keldysh limit. There is an addi-
tional change of the sign for every step &om one to the
next lattice site, which reBects the behavior of the Bloch
functions around k, =

&
that are the main constituents

of the Kane functions in the vicinity of the considered
band extremum. This behavior is clearly visible at the
high-energy classical turning point (positive z values) f'or
the wave functions in Fig. 5. It was neglected in the orig-
inal treatment of the FK effect, because the derivation
based on a real space Wannier equation was implicitly
restricted to band extrema at k = 0. However, this does
not affect the results of the dielectric function, as we will
show below.

From Eq. (10), one can also derive an expression for the
approximate spatial extension of the Kane states. The
values of @ „(pd)remain high, as long as the exponential
has a point of stationary phase. This is the case for

E„'—E„p E„"—E„p
(20)

If (v —p)d is outside this range, the amplitude Q „(pd)
will drop off rapidly. This result con6rms our previous
considerations about the extension of the wave functions
resulting &om a classical picture of carrier motion. Due
to the pronounced asymmetry of the miniband disper-
sion, with respect to E~q 0, i.e., E"j —E~q 0 ) E~i 0 —E ~

(cf. Table II), the extension of 4,q p in the negative z
direction is larger than in the positive z direction. This
is also obvious in Fig. 5.

B. Absorption spectra

(2i)

where the transition amplitudes p, „(p)are

1
~-(c) = g Q!u.~. lu-~. )N

x exp e,„(k,') —e,„—peEd) dk,'er o

(22)

with

@c0 Ee0 )
00

e,„(k,') = E,(k') —E„(k'), (23b)

and an energy-independent two-dimensional in-plane
density of states has been assumed.

In the case of tight-binding (mini-) bands,

In order to discuss the optical absorption spectra, one
can assume as a first approximation that the hole wave
functions are mostly localized inside one well for the most
relevant 6eld range. This is a good approach for the
heavy holes, the Kane functions of which become strongly
localized at comparatively low fields, due to their small
miniband width resulting &om the high effective mass.
However, as shown below, the essential results of the fol-
lowing discussion will not be affected even if this approx-
imation fails. It will, therefore, also be valid for the light
holes with certain modifications.

Under the present assumption, the oscillator strength
of a certain WS transition p ~ v, which is proportional
to the square of the overlap integral of the hole and the
electron wave function, is only determined by the square
of the electron wave function 4

„

in the well p, that is
the envelope l@,„(pd)l2. The spectrum of the optical
transitions, therefore, is mostly an image of the shape of
the electron wave functions.

A direct calculation of the absorption for one pair of
electron and hole (mini-) bands (labeled by c and v)
yields
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ZE~
e~~(k~) = e~~ — cos(k~d),

2
(24)

where b,Eg is the combined electron-hole (mini-) band
width, the overlap integral of the Bloch functions
(u,~ ~u„i, ) is constant, and Eq. (22) reduces to a Bessel
function-20 15

(25)

1

c l,hh1
00
cl,hhl cl,hh1

If, in general, the small and monotonous variation of
(u, t,, ~u„i, ) with k is neglected, the expression for p,„(p)
obviously has exactly the same shape as that for the wave
function coefficients @ o(pd) in Eq. (10), except that the
one-(mini-) band energies E (k, ) and E o have to be
exchanged for the inter-(mini-) band energies s,„(k) and

Therefore, the above discussion for the squares of
the envelope coefficients ~vg„o(pd)~ can immediately be
applied to the oscillator strengths of the WS transitions.

Figure 6 shows a plot of spectra of the differential
absorption cIo.(w)/cIw over a wide field range for the
11 ML/1 ML GaAs/AlAs superlattice discussed here, cal-
culated with the use of Eqs. (21) and (22). A finite Gaus-
sian broadening (FWHM = 24 meV) has been added,

which has a similar amount as that observed in the ex-
perimental spectra. The differential absorption has been
plotted instead of the absolute values in order to resolve
the structures more clearly. Only the lowest electron (cl)
and the uppermost heavy hole miniband (hhl) have been
taken into account. Due to the strong interwell coupling,
the electron miniband has a width of LE,z

——332meV,
the heavy hole ininiband yet AEI, I,i ——50 meV (Table II).
As shown above (Fig. 4), the E„(k,) dispersions are re-
markably asymmetric, with respect to the lower and up-
per miniband edges, due to the use of the Kronig-Penney
instead of a tight-binding model. Therefore, the "center
of mass" of the minibands, which is equal to E 0, respec-
tively, E„rjdefined by Eq. (6b), and the energy e, io &&i of
the p = 0—WS transition are shifted towards the I'-point
miniband edges. Also, the miniband effective masses at
k, = 0 are higher than at k, = vr/d (cf. Table II),
which causes an enhancement of transition strengths at
the lower miniband edge, as compared to the upper one.
Similar to the behavior of the wave functions, the transi-
tion strengths decay exponentially as soon as the transi-
tion energies are outside the combined miniband range.
This is the reason why WS transitions cannot be resolved
in superlattices with very small miniband widths, i.e., in
multiple quantum well structures.

In a way similar to the behavior of the wave functions,
the modulation of the WS transitions causes an infinite
series of zeros of p „(p),with a decreasing electric field
for each transition p. The erst zero occurs at a critical
value E„;i(p)of the electric field, which can be estimated
by using the tight-binding approximation (25) and cal-
culating the first zero xi(p) of the Bessel function J~,

PEP + aEg
2edxi (p)

(26)
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FIG. 6. Calculated differential absorption spectra Bo./Bu
for the c1-hh1 transitions of the investigated superlattice for
a broad range of fields. cz~ gg~& cz~ ggi& and ~~~ i,g~ are thet4 00

positions of the lower and the upper combined miniband edge
and the p = 0—% S transition.

At a certain field value beyond F„;i(0),the "classical"
hierarchy of WS transition strengths occurs (in our case
at I' = 400 kV/cm, cf. Fig. 6) and is retained for in-
creasing field ("high-ffeld range"). For decreasing field, a
complicated distribution of transition intensities occurs.
In order to show the Geld and energy dependence more
clearly, the spectra in the lower part of Fig. 6 have been
plotted again in the gray scale plot of Fig. 7.

The zeros of p,„(p)create a regular pattern (dashed
lines) superimposed on the WS transitions (full lines),
consisting of structures originating at the p = 0 transi-
tion and moving towards both the lower and upper mini-
band edges. In this way, a triangular section of the 6eld-
energy plane is formed —the energy axis making up its
baseline —in which the modulation of the WS transitions
occurs ("intermediate-field range"). From a certain value
of the electric Beld, individual WS transitions cannot be
resolved any longer (here for I' & 40 kV/cm), due to
6nite level broadening. In this case, only the structure
due to the modulation of the oscillator strengths, which
changes more slowly with photon energy, remains ("low-
field range"). This is also the situation in bulk crystals,
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FIG. 7. Gray scale plot of the calculated differential absorption spectra in the coexistence regime of the WS and FK effects.
Solid lines: fan of WS transitions; dashed lines: fan of FK oscillation minima both near the lower and upper combined miniband
edges; dotted lines: combined miniband edges.

where no reliable observation of the WS ladder has been
reported yet.

In order to discuss the low-Geld range, we assume an
Mo critical point at the lower and an M~ critical point at
the upper combined electron-hole miniband edges, i.e.,
the situation valid for the lowest electron and uppermost
hole miniband. Again, we neglect the k dependence of
(u,y ~u„A, ). Then we can use an analogous treatment as
applied to the wave functions near A:, = 0 to evaluate
Eq. (21) and (22) and obtain for the absorption near the
lower combined miniband edge,

n,„(ur)oc )1 . feEd)

(Acct ecv
eF~

.2 (—peEd —(e,„—e',„))XA1 he'

we end up with

n „(~)oc —,Ai'2(x) —xAi'(x)

where

1 (1 eE
n,„(~)oc —

~

—— Ai" (x) —xAi2(x) (33)

w~ere

Furthermore, it is possible to show (Appendix B) that
a similar relation holds for the upper combined (mini-)
band edge:

with

((eES)2 l
)

((eEh)2 &

E»" &

50

a —'
eE

A (29)

Using 3

where et„is the energy of the lower combined (mini-)
band edge, pt = (1/mt + 1/mt„) the reduced effective
(mini-) band mass at this point.

If we transform g . . . to jdp. . ., which is possible if
the terms of the sum change slowly with p and the dis-
crete nature of p is concealed by broadening, and change
variables, we immediately obtain

Equations (31) and (33) are identical to the expressions
of Aspnes, for the FK absorption around an Mo and Mq
critical point. We have derived them for the case that the
steplike structure of the WS ladder is smoothed out by
broadening (parameter I'), leaving only those structures
in the absorption spectra which are due to the energy
dependence of the transition matrix elements p„„(p=
hsu —e „)

Figure 8 shows the Geld-induced changes of superlat-
tice absorption for several values of the field calculated
exactly (solid lines) and with the FK approximations for
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FIG. 8. Comparison between the calculated Geld-induced
absorption changes in the exact model (solid lines) and the
parabolic dispersion approximations for the lower (dashed
lines) and the upper (dotted lines) combined miniband edge.

Eqs. (31)/(32) and (33)/(35) constant at the zeros of the
Airy function. For the lower miniband edge, the use of
the nominal efFective masses gives a very good descrip-
tion for the position of the oscillation minima, even for
higher electric Gelds. For the upper miniband edge, how-
ever, a modified miniband effective mass has to be used,
since the parabolic approximation for the E(k, ) disper-
sion is only valid in a small range around k, = +m/d (cf.
Fig. 4).

In spite of the additional structure, due to the WS lev-
els appearing for eFd & I', the "envelope" of the absorp-
tion spectra still resembles the spectra obtained in the
FK approximation. Thus, apart &om the discrete nature
of the WS transitions, the shape of the absorption spec-
tra is entirely determined by the spectral dependence of

00
the transition matrix elements p „p= &&",which,

in turn, only depend on the (mini-) band dispersion and
lead to the FK efFect in the low-field limit. Therefore, we
call this Geld-induced modulation of the transition ma-
trix elements a generalized Franz Keldysh -Egect. This
interpretation is supported by the fact that it is exactly
this phenomenon that was addressed by Franz, Keldysh,
and Aspnes, for the specific case of an infinite parabolic
band dispersion.

the lower [Eq. (31), dashed lines] and upper [Eq. (33),
dotted lines] combined miniband edges. The approxi-
mations are good, as long as (i) the combined miniband
dispersion e,„(k,) can be considered parabolic and (ii)
the broadening exceeds the spacing of the WS ladder.
Both conditions are fulfilled for the low-Geld values at
the lower combined miniband edge. At the upper mini-
band edge, the parabolic region of the dispersion is only
small and deviations, due to dispersion nonparabolicity,
occur.

The structure in Figs. 6 and 7 can now be inter-
preted as the WS transitions being modulated by FK
oscillations. The zeros of the WS transition intensi-
ties are equivalent to t;he zeros of the FK oscillations.
For decreasing Gelds, each WS transition is modulated
by FK oscillations of steadily increasing order, originat-
ing either from the lower or the upper combined mini-
band edge. Vice versa, in the intermediate-Beld range

( 40. . . 150 kV/cm) the FK oscillations for a constant-
Geld value exhibit fine structure resulting from the dis-
crete WS transition energies. However, the series of the
FK oscillations from the lower and the upper combined
miniband edge do not interfere with each other as one
would expect if the band edges could be treated indepen-
dently. On the contrary, the two sets of FK oscillations
move towards each other with increasing Geld and each
pair of oscillation minima of the same order merges into
one at a certain value of the Geld and ceases to exist for
higher field values.

The positions of the Grst three minima of the FK os-
cillations, both near the lower and upper miniband edge,
have also been marked in Fig. 7 by dashed lines illustrat-
ing this behavior. The energies have the characteristic
E / dependence, which is obtained from keeping x in

IV. EXPERIMENTAL RESULTS

U~ —UI n

cdi
(36)

where Ut„.= 1.75 V and d; = 2748 A. .
The critical field for the transition to the classical WS

limit; for heavy hole-electron transitions, according to
Eq. (26), is F„;t(0)= 234 kV/cm corresponding to a
reverse bias of U„=—4.7 V. Thus, a broad range of
intermediate fields, where the interference of WS tran-
sitions and their modulation by FK oscillations occurs,
should be visible.

Figure 9(a) shows a set of absorption spectra for vari-
ous values of the applied voltage obtained &om photocur-
rent measurements at T = 77 K. For high reverse bias,
a series of WS peaks can clearly be seen near the lower
miniband edge and in the upper half of the miniband.
From the energetic positions, they can be identified as
hhl-cl transitions. Light hole transitions cannot be ob-
served in the field range investigated. This is reasonable,
since they should be weaker by a factor of 3, due to the re-

The measurements have been performed on a superlat-
tice structure as discussed above, consisting of 80 peri-
ods of nominally 11 ML/1 ML GaAs/AlAs, sandwiched
between a highly n-type doped Alo 45Ga055As bottom
layer and a highly p-type doped Alo 45Gao 55As top layer,
grown on (100)-oriented n+-GaAs substrate. A voltage
U„was applied to contacts on top of the sample and
on the n+-GaAs substrate. Self-consistent potential cal-
culations in a Thomas-Fermi model have confirmed the
high accuracy (better than 1% for Uz~ ( 0 V, 10% forU„(1.2 V) of a linear relation between the internal
Geld and the applied voltage,
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FIG. 9. Field-dependent experimental (a) and theoretical
(b) absorption spectra for the investigated superlattice at
T=77 K. The dashed lines indicate the region of coexistence
of WS and FK effect for the c1-hh1 transitions.

spective values of the bulk momentum matrix elements.
An additional factor of about 1.5 arises &om the fact
that the total oscillator strengths of the light hole tran-
sitions are distributed among the range of the combined
electron-light hole miniband energies, which is about 1.5
times as large as that of the heavy holes.

For decreasing fields, the formerly monotonous changes
of the WS transitions become now modulated by the FK-
type osciBations. The first FK minimum can clearly be
identified both near the lower and the upper combined
miniband edges. The triangular section of interference
between WS transitions and FK oscillations discussed
above is obvious and marked by dashed lines in Fig. 9(a).

For comparison theoretical absorption spectra, includ-
ing only hhl-cl transitions, are shown in Fig. 9(b). The
application of a Kronig-Penney model for the superlat-
tice potential might be doubtful, since the assumption of

rectangular barriers consisting of exactly one monolayer
of pure A1As may not be satisfied for the real structure.
Schneider et aL, however, have demonstrated for the
same superlattice as considered in this work that the elec-
tronic structure is rather insensitive to the actual shape
of the barrier, as long as the total barrier width dg is
small compared to the period and the integrated bar-
rier potential j& V(z) dz remains constant. Therefore,
it is possible that our 1 ML A1As barriers actually con-
sist of, e.g. , 3 ML of Alp 3gGap 67As or, more realistic,
an alloy with continuously varying Al content, peaked at
the nominal position of the barrier and smeared out over
a few monolayers. However, since the positions of the
miniband edges and the center of the miniband in the
direct and the double difFerential (see below) absorption
spectra are in good agreement with the theoretical val-
ues, we conclude that at least the effective barrier width
in the sense of the integrated barrier potential has to be
1 ML. If, e.g. , the real barrier widths were assumed to
be 2 ML, the energies of the combined miniband edges
would be E'

y 1,1,y: 1.682eV and e"z &b&
——1.899eV, for

the heavy hole transitions and E'
y ]1,~ ——1.706eV and

2.049 eV, for the light hole transitions, which
does not agree with the experimental data.

As before, a Gaussian broadening function with
FWHM = 24 meV has been used to mimic the experimen-
tal linewidth near the absorption threshold. The large
value of the FWHM is probably due to small fIuctua-
tions of the effective well and barrier widths, which do not
necessarily have to be integer multiples of 1 ML if alloy
formation is assumed as discussed above. The interplay
between WS transitions and FK osciBations observed in
the experimental spectra are obvious in the theoretical
spectra as well. However, the line shapes are somewhat
different, in particular, in the vicinity of the lower ab-
sorption edge. This is due to excitonic effects, ' which
shaB not be discussed here.

In the experimental absorption spectra, the WS and
FK structure is superimposed on a large background ab-
sorption, making a clear identification of more than a
few details difficult. Moreover, additional smooth oscil-
lations are present, which result Rom optical resonances
inside the layered structure and are nearly field indepen-
dent. In order to eliminate these undesired structures, it
is favorable to consider the second derivative of the ab-
sorption coefficient 82nj(8wBI') (or the photocurrent),
both with respect to the photon energy and the electric
field. Such a signal can be measured directly by a recently
developed modulation technique, the double differential
photocurrent spectroscopy (DDPCS). In an appropriate
experimental setup, both the voltage and the wavelength
are modulated simultaneously by small ac components of
different &equencies superimposed on certain dc values.
The ac component of the photocurrent at the sum &e-
quency, which is immediately proportional to the desired
signal, is measured directly using lock-in technique. This
method is extremely sensitive, since it does not require
numerical or electronic difFerentiation of dc signals. The
details of this technique wiB be described elsewhere.

A set of DDPC spectra and the corresponding theoret-
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ical spectra are shown in the gray scale plots of Fig. 10.
In both plots, the structures arising &om WS transitions
and FK oscillations are clearly visible and in excellent
agreement. A symmetric fan of WS transitions from

p = —10 to p = +10 (solid lines) can be identified outside
the triangular coexistence region of FK and WS efFect.
Several periods of FK oscillations originating &om both
the lower and the upper miniband edges (dashed lines)
are observed inside the coexistence region. As expected
&om the theory, there is a low-Geld range in which only
the FK-type structure is observable (between U„=1.1

V and 0.6 V), followed by an intermediate-field range
with its characteristic superposition of FK oscillations
and WS transitions. The high-Geld limit is beyond the
accessible voltage range. Both in theory and experiment,
the spatially direct WS transition (which corresponds to
the "center of mass" energy of the miniband) is closer
to the lower miniband edge, which reveals the deviations
&om tight-binding minibands. The difference in the slope
of the lines tracing the positions of the FK minima near
the lower and the upper miniband edges gives an addi-
tional hint for this conclusion. The slight redshift of the
p = 0 WS transition, with increasing field, is partly due
to the quantum confined Stark effect (QCSE) inside the
wells and partly to an increase of the excitonic binding
energy as the character of the states transforms &om 3D
to 2D. The QCSE results from the inter-miniband cou-
pling terms of Eq. (1), the excitonic effect is caused by
the electron-hole Coulomb interaction. Both efFects are
not included in the calculations. Therefore, in our the-
ory, the position of the p = 0 transition is strictly field
independent.

The solid and dashed lines in the calculated as well
as in the experimental spectra mark the theoretical po-
sitions of WS transitions and FK oscillations. In spite
of the good general agreement, we note that the experi-
mental energetic position of the structures is somewhat
lower, in particular, in the upper half of the miniband.
There is also a slight difference in the Geld values of cor-
responding structures between experimental and theo-
retical spectra. Both deviations indicate that the actual
miniband widths are by some 10 meV smaller than cal-
culated. The differences may arise &om nonparabolicity
effects of the bulk dispersions, as well as &om somewhat
larger effective barrier widths. Similar to the absorption
spectra of Fig. 9, the structures in the lower half of the
miniband are strongly enhanced in comparison with the
upper half in the experimental spectra, whereas theory
predicts comparable values. This is again an excitonic
effect, which is due to the formation of bound states
and a redistribution of oscillator strength to lower ener-
gies. However, excitonic effects do not significantly alter
the WS transition energies and the positions of the FK
oscillations on the energy scale relevant here, since the
Coulomb energies are by nearly two orders of magnitude
smaller than the combined miniband width.

V. CONCLUSIONS

1.6—
1

c l,hh1

1.5
Ub, -1

Up„(V)

FIG. 10. Gray scale plot of the DDPC spectra (a) and the
calculated Bn /OcuBP spectra (b) for the investigated super-
lattice. In both plots, the theoretical fan of WS transitions
(full lines) and FK oscillations (dashed lines) and the com-
bined miniband edges (dotted lines) are included.

We have investigated the electroabsorption character-
istics of semiconductor superlattices with applied electric
fields ranging continuously from the "miniband regime"
to the "Wannier-Stark regime. " It has been shown that
a single-miniband crystal momentum representation, us-
ing the E(k, ) dispersion of the superlattice as the dom-
inant input parameter, is able to describe the structures
observed in the absorption spectra over the whole field
range.

In principle, Wannier-Stark transitions are present at
any value of the field, even if their discrete nature is ob-



52 COEXISTENCE OF THE FRANZ-KELDYSH AND WANNIER-. . . 17 363

scured by level broadening. However, the classical hi-
erarchy of transition intensities consisting of decreasing
oscillator strengths, with increasing energetic distance
&om the p = 0 transition, is valid only in the high-
Geld range. For lower Gelds, the transitions are mod-
ulated in a systematic way. When the spacing eEd of
the WS levels becomes much smaller than the combined
electron-hole miniband width LE + LE, the spec-
tral dependence of the transition intensities obeys the ex-
pressions, as obtained for the Franz-Keldysh e6'ect in the
vicinity of the lower and upper combined miniband edge,
corresponding to the case of an M0 and an Mi critical
point, respectively. In consequence, pure Franz-Keldysh
oscillations can be observed near the lower and upper
combined miniband edges, as long as the broadening I'
inherent in the absorption spectra exceeds the spacing
eFd of the Wannier-Stark levels (low-field range). This is
completely the same situation as in bulk material, where
Wannier-Stark transitions have never been observed thus
far. It is physically equivalent to the picture that a car-
rier accelerated in the field is always far from completing
one coherent Bloch oscillation cycle, because the mean
scattering times are smaller than one Bloch period. In
other words, the lower and upper miniband edges are
decoupled with respect to carrier kinetics.

However, with increasing Geld, a situation can occur
where the relation I' ( eEd &( LE, + LE holds. In
this regime, Wannier-Stark transitions can be resolved,
but their intensities are modulated in a way characteristic
for the Franz-Keldysh effect (intermediate-field range).
This is the range of coexistence of the Wannier Stark
and the Franz-Keldysh efFect and covers a roughly trian-
gular section of the Geld-energy plane. On the low-field
side, its baseline coincides with the constant-field line
eEd = I', on the high-Geld side its vertex is formed by
the point, where the p = 0 transition has its last zero
crossing, that is for F = F„;t(0)[Eq. (26)]. It should be
emphasized that the low-Geld condition is not an intrin-
sic property of the electronic states. Thus, a coexistence
regime of Franz-Keldysh and Wannier-Stark effect is, in
principle, present in every superlattice, but may be un-
observable due to broadening. Some further refinement

of these conclusions may be necessary if the miniband
widths are comparable to exciton binding energies, ~4 but
this is not considered in this work.

An obvious proof of our theoretical results has been
given by optical experiments on a strongly coupled
GaAs/A1As superlattice. Due to the use of a highly
sensitive technique of modulation spectroscopy, the dou-
ble differential photocurrent spectroscopy, it has been
possible to observe the theoretically expected structures
clearly and with unprecedented resolution. In a contin-
uous Geld range, Wannier-Stark transitions with indices
between —10 and +10 have clearly been identified for
high fields, as well as several periods of Franz-Keldysh
oscillations originating &om both the lower and the up-
per miniband edge for low Gelds. In the intermediate-Geld
regime, the modulation of Wannier-Stark transitions by
Franz-Keldysh oscillations or, vice versa, a Gne structure
of the FK oscillations, due to the Wannier-Stark tran-
sitions, is clearly visible. Excellent agreement with the
theoretical simulations of the spectra has been found.

APPENDIX A

In this appendix, we derive Eq. (18) for the low-field
limit of the coefficients @„„(pd)near a (mini-) band ex-
tremum at k, = m/d. We start from Eq. (10) and imme-
diately transform it into an integral representation

+~/e (
vP„„(pd)= — exp [E„(k',)

2vr gg I
eF o

E„„+peFd—] dk,' dk .

The outer integral can be split into two parts ranging
from —vr/d to 0 and 0 to m/d. If the integration limits
of the first part are shifted by 2m/d, the result will be
unafFected, as can be shown by direct calculation using
Eq. (6b) and the fact that E„(k,') is periodic with 2vr/d.
We, therefore, change the integration limits to 0 to 2n /d.
The inner integral can be transformed to

[E„(k,') —E„„+peFd] dk,'
m/d

[E (k,') —E „+peFd] dk,' = [E (k,') —E „+peFd] dk,'+
0 +~/d 0

A;

[E (k' ) —E „+peFd] dk' + (p —v) eF7r,
+~/d

by the use of Eqs. (6a) and (6b). This leads to

2m/d

g„„(pd)= exp[ivr(p —v)]-
2Ã 0

+~/d—
( 1)(i -~)

2' ~/d

k,
exp ]E„(k,') —R„„ypened] dk,'l dk,

eE
A:

exp E„I.'+ — —E„„+I end dI.'eP 0 - d

If Eq. (17) is inserted, a calculation analogous to the derivation of Eq. (15) from Eq. (13) yields Eq. (18).
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APPENDIX B

Here, we derive Eq. (33) for the low-field limit of the absorption near an Mi critical point at the upper combined
miniband edge.

We 6rst evaluate

2k,) —) exp [e,„(k',) —e „—peFd] dk,'

p k. eE 0

~ k q k 2) exp e,„(k,', ) dk,' — e „(k',) dk,' + E,„(k,—k„)I ) exp[ipd(k„—k„j]
0 0k, ~,k, ~ P

since

) exp[ipd(k„—k„)]= Nbk
P

(p and k, can have N difFerent values).
Using this result, Eq. (21) can be written as

o. „oc 1 — ) [p&~)[

Accp —e OO

eFd

p, „~can be calculated applying the procedure used in Appendix A, for the respective wave function. One obtains

I . (eland) ' ., (peI'd —(e,„—e",„))
Cled OC 1— Ai(ao-) E

t'e" )54J —e
eFd

Transforming the sum over p into an integral, changing variables and using Eq. (30), one easily obtains Eq. (33).
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