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Two-dimensional electrons in lateral magnetic superlattices
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The properties of electrons moving in two dimensions under the in6uence of a perpendicular
magnetic-6eld of arbitrary strength and which is periodic in one direction are investigated. The
magnetic-6eld modulation is such that the average magnetic-6eld strength is zero. Four different
situations are considered: (1) a magnetic Kronig-Penney system in which the magnetic-field profile
consists of a periodic array of b functions with alternating sign, (2) a periodic array of magnetic-field
steps, (3) a sinusoidal magnetic-field profile, and (4) a sawtooth magnetic-field profile. In contrast
with the usual potential modulated case, the present systems are not separable and are inherently
two dimensional. We found that the energy spectrum consists of magnetic minibands. With the
different regions of the energy spectrum we are able to associate particular classical trajectories of
the electrons. The density of states and the different components of the conductivity tensor are
calculated and exhibit a rich structure due to the presence of the magnetic minibands.

I. INTRODUCTION

The wealth of new and interesting information char-
acterizing the behavior of a two-dimensional electron
gas (2DEG) subjected to a perpendicular homogeneous
magnetic-field has, in recent years, provided the stimu-
lus for exploring the novhomogeneous Beld regime. In
Ref. 1 a 2DEG was investigated under the infIuence
of a magnetic step, magnetic-well, and magnetic bar-
rier, and the tunneling of electrons in more compli-
cated systems was found to have interesting wave-vector-
dependent properties. Related to this subject is the work
of Ramaglia et aL who investigated the effect of a lo-
cal magnetic-Geld on the tunneling current through a
thick potential barrier. The magnetic-Geld was localized
strictly within the potential barrier, which led to reso-
nances that were centered within the barrier. Miiller
considered an infinite strip of 2DEG in a magnetic-field
that varies linearly across the strip and showed that the
system has a time-reversal asymmetry and that charge
fIow takes place only in the direction perpendicular to
the Geld gradient. Calvo analyzed the problem of a
2DEG in a smooth magnetic barrier geometry of differ-
ent shape and found that the discrete and the contin-
uum energy spectra of such a system overlap. Foden et
al. investigated electronic transport in a curved 2DEG.
In such a system the application of a uniform magnetic-
Geld results in an effective nonuniform magnetic-Geld. As
a consequence, for the case of a cylinder, those authors
predicted effective one-dimensional (1D) transport.

A number of papers considered quantum transport
of a 2DEG in a unidirectional weak magnetic-Geld mod-
ulation where commensurability effects come into play.
In most of the latter cases the magnetic-Geld is modeled
by a small sinusoidal component on top of a constant
background. This modulation was taken to be small
such that one can use perturbation methods to obtain

the energy spectrum [7]. Recently, this system was real-
ized experimentally and the predicted [7] semiclassical
commensurability effect, which occurs when the classical
cyclotron diameter equals an integer number of periods
of the potential, up to an additive constant phase factor,
were observed.

In this paper we carry the works of Refs. 1 and 7 a step
further and study the case in which we have a magnetic
Geld of arbitrary strength that is periodic in one direc-
tion. The difference with Ref. 7 is that here there is no
uniform background Geld and consequently the average
magnetic Geld is zero. This implies that electron states
can be extended. I"urthermore, in contrast to Ref. 7 per-
turbation theory cannot be used. Recently, the problem
of the motion of ballistic electrons in nonhomogeneous
magnetic Gelds has become important for the compos-
ite fermion picture of the &actional quantum Hall effect
(FQHE). For a density modulated 2DEG, which is in the
FQHE regime, the problem can be mapped into that of
ballistic motion of composite fermions moving in a peri-
odic magnetic field.

The experimental system that we have in mind is one
in which a ferromagnetic thin film is deposited on a het-
erostructure and patterned such that the magnetic do-
mains consist of parallel strips with magnetization per-
pendicular to the thin film and that change sign from one
strip to the next. The magnetic-Geld emerging &om the
patterned film will interact with the carriers in the un-
derlying semiconductor structure. This physical system
is sketched in Fig. 1(a) together with the correspond-
ing inagnetic-field profiles [Fig. 1(b)] in the plane of the
2DEG for different distances zo between the ferromag-
netic thin film and the 2DEG (see also Ref. 13). The
calculation of this magnetic-Geld profile is given in the
Appendix. An alternative route might be through the
integration of lithographically patterned superconduct-
ing materials on top of the heterostructure. When sub-
merged in a magnetic field this produces a periodic mag-
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netic field profile at the 2DEG. But in this case (B) g 0
and such cases will not be considered here. A difFerent
technique was used recently, by Leadbeater et al. who
applied regrowth technology on a substrate in which a se-
ries of facets were etched in order to vary the topography
of the 2DEG. When a magnetic field is applied to such a
shaped 2DEG, the angle between the field direction and
the normal to the 2DEG depends on the facet direction.
This leads to diferent shapes of the normal magnetic
Geld proGle. A periodic area of such facets results into a
periodic efFective magnetic Geld for the 2DEG.

In this work four difFerent magnetic field proGles are
considered: (1) magnetic Kronig-Penney system, (2) pe-
riodic array of magnetic steps, (3) a sinusoidal magnetic
field profile, and (4) a sawtooth magnetic field profile. In
all of these cases the total average magnetic Geld over the
whole 2DEG plane is zero.

This paper is organized as follows. Section II gives a

short overview of the general problem of periodic mag-
netic Gelds. In Secs. III—VI the energy spectrum for each
of the considered systems is given. The density of states
and electric conductivities are presented in Sec. VII. Our
conclusions are presented in the last section.

II. PERIODIC MAGNETIC FIELDS

Consider electrons moving in a two-dimensional (2D)
plane (x, y) in the presence of a perpendicular magnetic
field (along the z direction). The magnetic field is taken
homogeneous along the y axis and varies along the x axis.
Such a magnetic Geld 8 = V x A is described, in the Lan-
dau gauge, by the vector potential A = [0, A(x), 0]. In
the single-particle approximation, the Hamiltonian de-
scribing such a system is

H= p+ —A = p + py+ —Ax

2d :.-,"::,=".::"'-"'."::.::"j,- 2 D EG ~:i:.:,.'"','i~:Kj":;I",:

:X

where m is the mass of the electron and —
~e~ = e its

charge. Since the y component of the &ee-electron mo-
mentum operator commutes with the Hamiltonian, i.e. ,
[H, Ii„] = 0, the problem is translational invariant along
the y direction and the corresponding wave vector k„ is
a conserved quantity. Therefore, the wave function can
be written as a product:
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where hA:„ is the expectation value ofp„ in the y direction.
The wave function i!)(x) satisfies the one-dimensional
(1D) Schrodinger equation

d2 e 2 2mE
ky + —A(x) + @(x) = 0.
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I et us introduce the cyclotron frequency ur, = eB()/mc

and the magnetic length I~ = /he/eBo where Bo is
some typical magnetic field strength in the problem. We
express all quantities in dimensionless units: (1) the mag-
netic field B(x) ~ BoB(x), (2) the vector potential
A(x) M BoIr3A(x), (3) the time t M t~„(4) the po-
sition coordinate r M E~r, (5) the velocity v + I~a,v,
and (6) the energy E ~ Aced, E For GaAs an.d an esti-
mated Bo ——0.1T we have Er3 = 813 A. , Ru, = 0.17 meV,
and l~~, = 1.4 m/sec.

The above Schrodinger equation can now be written in
the dimensionless form

I i i i i I—2
0 1 2 3 4

x/t

FIG. 1. The proposed physical system (a) and the resulting
magnetic-field profiles B(x) in the plane of the 2DEG (b), for
different setback distances of the 2DEG. In (c) the magnetic
field pro6les in the 2DEG are shown in the case the ferromag-
netic strips have in-plane magnetization along the x direction
but alternating in sign.

(
d2

~ + 2E —2V(2:, k„))@(T) = 0,

with the expression

V(x, k„) = [k„+A(x)]'/2, (5)

which can be interpreted as a k&-dependent efFective po-
tential. Note that the effective potential for electron mo-
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tion in the x direction depends on the electron wave vec-
tor for motion in the y direction. The magnetic field can
also be expressed as B(x) = [dV(x, k&)/dx]/+2V(x, k&).

In Refs. 1 and 2 the above problem was studied for
B(x) profiles of finite extent in the x direction. Here
we will investigate B(x) profiles that are periodic in x
and such that (B(x)) = 0. The resulting potential is
therefore periodic V(x, k&) = V(x + nl, , k&) with period I
and consequently it is sufBcient to find the solution only
in one period and use Bloch's theorem to propagate this
solution throughout the lattice. The total wave function
for the 2D electrons, up to a normalization factor, is given
by 4 i, (r) = e' 'Q„,i,(x) where r = (x, y), k = (k, k„),
and g i, (x) is the Bloch function, which can be expressed
in terms of the solutions of Eq. (4) with band index n
and 2D wave vector k. Here k is the Bloch electron wave
vector in the x direction. Note that because l is expressed
in units of E~, increasing the period l at constant Bo is
equivalent to increasing the strength of the magnetic field
Bg for a fixed period l.

III. THE MAGNETIC KRONIG-PENNEY MODEL

The solid curve of the magnetic field profile in Fig.
1(c) is modeled by a series of equally spaced h' func-
tions with alternating sign along the x axis: B(x)/Bo ——

(—1) b'(x —nt/2) (see Fig. 2). This is the mag-
netic analogue of the well-known electrostatic Kronig-
Penney model (EKP) and we will call it here the magnetic
Kronig Penney mod-el (MKP). ' The vector potential
is a step function and can be taken as

A(x)/Ao ———sgn[sin(2xrx/I)].

The resulting effective potential (5) is also stepiike and is
depicted in Fig. 2 for two diferent values of the wave vec-
tor: (i) k& ———1.5 (solid curve), and (ii) k„= 2 (dashed
curve). The solution of the Schrodinger equation (4) with
this potential (5) consists of plane waves in the well and
the barrier regions when the energy E & V „, where
V~a~ = (~kxr~ + 1/2) /2 is the barrier height. Require-
ments of the continuity of the wave function and its first
derivative at the edges of the unit cells and imposing the
Bloch periodicity on the wave-function results in the fol-
lowing relation between the electron energy E and its
wave vector k = (k, k„)

cos(kl) = cos(al/2) cos(Pt/2)
—[( '+ &')/(2 &)] ( ~/2) («/2) (7)

with n = /2E —(k„+ 1/2) 2 and P
+2E —(k„—1/2)2. For E ( V „ it is to be un-

derstood that o. becomes imaginary and the correspond-
ing trigonometric functions sin and cos have to be re-
placed by their hyperbolic counterparts sinh and cosh.
The above relation (7) has the same analytic form as the
one for the classical EKP system with the difFerence that
here there is an explicit dependence on k„ in the poten-
tial and consequently also in the dispersion relation. The
latter emphasizes the fact that the problem is essentially
two dimensional in nature.

The potential V(x, k„) is shown in Fig. 3, where it is
apparent that as ~k„~ increases the wells become deeper
(depth= V~~„—V~;„= ]k„]). Accordingly, in the limit
~k„~ -+ oo the energy spectrum will approach that of the
infinite quantum well. Note also that, in marked contrast
with the EKP system, the profile for V(x, k„) becomes
fiat at k„= 0, and Eq. (7) reduces to the simple form
E = (k2+ 1/4)/2, implying that motion in the x direction
is &ee and there are no band gaps in the spectrum. This
is apparent in Figs. 4-6 where we show the numerical so-
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FIG. 2. The profiles for the xnagnetic field B(x), the vec-
tor potential A(x), and V(x, k„) for k„= 2 (dashed) and
k„= —1.5 (solid) for the magnetic Kronig-Penney systexn.

FIG. 3. The effective potential V(x, k„) for the magnetic
Kronig-Penney system with period l = 8.
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FIG. 6. Energy vs period / for a fixed k„= 4. The shaded
regions are the allowed energy bands of which o'nly the lowest
six are shown. The dash-dotted lines are the maxima and
minima of V(x, k„).
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lution of Eq. (7) for E versus k (Fig. 4), E versus k„(Fig.
5) and E versus l (Fig. 6). The energy as a function of the
wave vector k for motion perpendicular to the superlat-
tice potential (Fig. 4) has the usual appearance of energy

FIG. 4. Energy vs k dispersion curves for I = 8 and (a)
k„= 0, (b) k„= 0.5, (c) k„= 2.0 and (d) k„= 5.0. Only
the lowest six bands are shown.
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minibands in which allowed energy bands are separated
by forbidden gaps. The widths of the bands and the gaps
between them depend on k» which is not so in the case
of the EKP system. In the latter the Schrodinger equa-
tion is separable and the energy spectrum has the form
E„(k,k„) = E„(k) + h k„/2m where E„(k) exhibits a
miniband structure similar to that shown in Fig. 4. As
Ik„~ increases [in Fig. 4: (a) k„= 0, (b) k„= 0.5, (c)
k„= 2, and (d) k„= 5] the lower bands become narrower
and consequently the corresponding states are more lo-
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FIG. 5. Energy vs k„dispersion relation for the MKP sys-
tem with period l = 8. The shaded regions are the lowest
six allowed energy bands. The dash-dotted curves show the
maxima and minima of V(z, k„). Inset: The same for I = j6.

FIG. 7. The bottom of the lowest-energy band (top), the
drift velocity (middle), and the efFective mass (bottom) vs k„
for three diferent periodic lengths l = 6, 10, 14, for the MKP
model.
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calized in the x direction. This is clearly shown in the E
versus k„curves (Fig. 5) where the width of the shaded
region corresponds to the height of the miniband along
k (i.e. , the x direction). Notice that the energy levels
that are below the maximum of the potential have a very
small miniband width [the minimum and maximum of
the potential V(x, kv) are indicated by the dash-dotted
curves in Fig. 5]. Electrons with large kv correspond
to states that are predominantly conBned to move par-
allel to the y axis with vanishing v component (i.e. , 1D
wire states). Note that the states with motion in the +y
and —y directions are localized in separate regions of the
(x, y) plane, as can be easily inferred by looking at the
potential proflle V(x, k„) (see Fig. 3). Indeed, the po-
tential wells for k„values of opposite sign are separated
by half a period I/2. Note that this behavior is similar
to edge states in quantum wires in the presence of a per-
pendicular homogeneous magnetic field where the k„and
—k„edge channels are located at the opposite edges of
the quantum wire.

The dependence of the energy spectrum on the period l
is shown in Fig. 6 for a fixed k„value. The areas between
the bottom and top of the energy minibands are shaded.
Notice that as the period increases the miniband width
decreases and this leads to energy levels of isolated wells.
The latter are well approximated by (m h2/2ml2)n +
V;„. In fact in this limit the problem reduces to the
one of isolated quantum wires. From Figs. 5 (E versus
k„) and 6 (E versus t) we notice that bands cross at
certain points. This degeneracy occurs when both o.l and
Pl are integer multiples of vr, which leads to k = nor/l,
E = [(nor/l) + (~k„~ + 1/2) ]/2, with the integer n ) 1.
The physical meaning is that for those particular values
of the energy, the period and the wave vector k» there
is a Fabry-Perot efFect for the electron waves in both the
well region and the barrier region.

From Fig. 5 and. the inset of this Bgure, we notice a
peculiar behavior of the energy spectrum around k„= 0.
To understand this we expand relation (7) in powers of
kv around (k, kv) = (0, 0), which leads to

E(k = 0, k„) = ao + a2k„+ a4k„+ (8)

where ao —— 1/8, a2 —— 1/2 —0.01042l2, and a4
0.5167 x 10 l . For l = 0 the parabolic dispersion of
the &ee 2DEG is regained. For a2 ( 0, which occurs
when I/l~ ) 9.8, the energy has a local maximum at
k„= 0 and a double minima at k„= +~a2/2a4 (see
Fig. 7). At these three extremal points the drift veloc-
ity v„= OE/Bk„vanishes and it reverses its sign. The
electron efFective mass, m*/m = 1/(02E/Ok„), exhibits
a singular behavior as it changes its sign discontinuously
&om negative to positive at k„= +g—a2/6a4, where
the drift velocity v„attains a local maximum (see Fig.
7).

Most of the qualitative features of the present system
can be understood &om a study based on classical trajec-
tories. The classical equations of motion are v = —w v„
and v„= u,v, where w = eB/mc. The interaction
of the electron with our b-function magnetic Beld pro-
file results into a change of the direction of motion of

p

FIG. 8. Possible classical trajectories with the same initial
position but different initial velocities for the MKP model.
Two trajectories, which have energies below the barriers, are
confined to move in two separate regions in z space but in
opposite y directions and which have (v ) = 0.

the electron: (v, v„) ~ (v', v„') with v = v2 + v2 =

v

IV. PERIODIC STEP MAGNETIC FIELD

When in the physical system of Fig. 1 we consider the
limit of a small distance between the 2DEG and the fer-
romagnetic thin film a periodic step magnetic Beld proBle

v'2 + v„'2. We have the following possibilities: (1)
v & 0: (a) when v & 2vv~ + u2 we have transmis-
sion through the barrier with v„' = v„+ u„while (b)
v2 ( 2v„u~ + u results in reflection: v' = —v~ and
v„' = vv,'(2) v ( 0: (a) when v ) u —2vvu, we have
transmission with v„' = v„—ur„while (b) v ( u, —2v„ur,
leads to reflection. For scattering with the opposite bar-
rier B = Bo8(x) the —results are similar as above, but
now we should replace u by —u .

In the case of our superlattice we find that in this clas-
sical treatment, the starting point of our electron is im-
portant whether or not we have reHection. For an initial
position 0 ( z ( l/2 (modulo I) and an initial velocity
v = (v, v„) we have reflection between the two barriers
when v ( —2~~v„+ u, which results in the average
velocity (v) = (0, v„) and which corresponds to the flat
bands in Fig. 4, while for v & —2m~v„+u there is trans-
mission through all the barriers with average electron ve-
locity (v ) = (v +Qv2+2vv(u ~ ) (vv): vv

when v ) 0, and (v ) = ~(v + gv2 —2v„u, —w),
(v„) = v„+ 2~, when v ( 0. When the starting posi-
tion is such that I/2 ( z ( I (modulo l) we obtain similar
results as above but with v„replaced by —vy The pos-
sible classical trajectories are illustrated in Fig. 8 with a
common starting position.
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is obtained. The electrons feel an abrupt change in the
Geld direction without an appreciable change in magni-
tude [solid curve in Fig. 1(b)]. We consider the limit of
a periodic step magnetic Geld

B( x)/ Bo= ) ( 1) 0(x —ill/2) 0[(ii + 1)l/2 —x],

which is the parabolic cylinder equation. This equa-
tion has two linearly independent solutions @i(X)
e ~ ~4 i'( E—/2 + 1/4, 1/2, X /2) and @2(X)
Xe ~ i'(—E/2+3/4, 3/2, X /2) where, E, (o, , c;x)
is the conQuent hypergeometric function. Imposing the
conditions of continuity and the Bloch periodicity on the
wave function and its Grst derivative leads to the follow-
ing transcendental equation for the energy momentum
relation:

which results into the sawtooth vector potential, note
that B(x) = dA(x)/dx,

cos(kl) = h(x+)h(x )

2[gi(x+)»(*-) +»(*+)gi(*-)]. (12)

A(x)/Ao — ) (—1)"[x —(2n + 1)l/4]

x 0 (x —nl /2) 9[(n + 1)l /2 —x], (10)

, +E —X'4 X =0,

where 0(x) is the Heaviside step function. The profiles
for B(x) and A(x) are depicted in Fig. 9 together with
the effective potential for different k„values. When solv-
ing the Schrodinger equation we can restrict ourselves
to one period in which the vector potential is given by
A(x) = x —l/4 ( 0 & x & l/2), —x+ 3l/4 ( l/2
x & l). After inaking the following change of variable
X = 11/2[k& + A(x)] the Schrodinger equation (4) is cast
into the following form:

In Eq. (12) we defined h(x) = @i(x)g~(x) + @2(x)g', (x)I
g;(x) = g;(x)g,'(x) and x~ = ~2(ky + l/4).

The numerical solution of relation (12) for E versus
k„ is shown in Fig. 10 for / = 8. In order to under-
stand the energy spectrum we show in Fig. 9 the po-
tential V(x, k„) for difFerent k& values. First, note that
V(x, k„) = V(x + l/2, —k„), which results in spatially
separated motions for the +k„and —k„electrons mov-
ing with E & V „= (Ik„I + l/4) /2. For k„= 0 the
profile for V(x, k„) (see Fig. 9) is a periodic array of har-
monic oscillators with finite depth (= lz/32) and period
l/2. In this case, the first Brillouin zone (FBZ) edge is
at k = 2vr/l and gaps in the spectrum appear only at
k = 2nvr/l, where n is the band index. When k„ takes
values different from zero the periodicity of V(x, k„) be-
comes twice as large and equals E and consequently the
FBZ edge becomes k = vr/l and the number of energy
bands and gaps doubles. For 0 & Ik„I & l/4 the potential
profile within one period consists of a double harmonic
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FIG. 9. The profiles for the magnetic field B(x), the vec-
tor potential A(x) and the efFective potential V(x, k„) for
k„=0.0, 0.4, 2.0, 5.0 in the case of the periodic step model.

FIG. 10. Energy vs k„dispersion relation for the periodic
step model with l = 8. The shaded regions are the lowest
six allowed energy bands. The dash-dotted curves show the
maxima and minima of V(x, k„). Inset: The same for l = 16.
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oscillator in which the middle barrier is smaller than the
side barriers and decreases to zero at ~k

~

= I/4 wherew ere
~&x, k&j~takes the shape of a single harmonic oscillator

in one period with depth= t /8 .The bands with en-
ergy below the barrier height, (the dash-dotted curves
in Fig. 10 indicate the bottom and top of the poten-
tial rofile~p ofile~» i.e., E & V~~» correspond to open orbits
traveling along the y direction and oscillating around the
boundary separating the two magnetic strips. Electrons
at adjacent boundaries move in the opposite y direction.
For ~k„~ ) l/4, the profile V(x, k„) becomes increasingly
V shaped with minima at V;„= (~k„~ —I/4) /2 and
maxima at V „=(~k„~ + l/4) /2. The 1D states below
V~~„are similar to the so-called magnetoelectric states
(i.e., linear combinations of Airy functions). Here alsere, a so,
the electron motion along the +y directions are spatially
separated by half a period I/O.

Figure 11 shows E vs I (at fixed k& ——2), which illus-
trates the critical balance between k„and l/4 and the
concomitant dimensional transition &om OD closed-orbit
I,andau states present for large l (the homogeneous field
limit) to the free 2DEG at I = 0 (zero field limit). In
between the system passes through the 1D states (the
inhomogeneous field regime) near l/4 = k„, the value at
which the center coordinate lies exactly on the bound-
ary line separating the +B0 and —B'0 regions, which re-
sults into the open-orbit states. For ~k„~ = I/O, we have
V;„= 0 and the separation between the energy levels
equals Lu . Notice that for / —+ oo we recover the ho-
mogeneous field limit E = (n + 1/2)Ru, which is essen-
tially different &om the result for the MKP model where
the energies of a particle in a box were obtained. The
twofold degeneracy of levels for k„(& t/4 (see inset of
Fig. 10 and Fig. 11 for large I) can be understood as
follows: for the lower-energy states when k„« l/4 the
cyclotron orbit of the electron is completely contained
within the boundaries of a single domain strip. In one
period we have two domain strips, one with +B0 and the

IJJ 4

2

*/r,

FIG. 12. Possible classical trajectories with the same initial
position but diBerent initial velocities for the periodic step
model.

second with —B0, and for the same energy the electron
traverses the cyclotron orbit in one direction in the first
strip and in the opposite direction in the second strip
hence the twofold degeneracy of this energy state. At
larger k„values the center coordinate of both cyclotron
orbits becomes close to the boundary line between +B0
and —B0, and the electron states become open orbits
that are traveling states wiggling around the boundary
line. Now, the potential profile V(z, k„) in one period
becomes a double harmonic oscillator with two minima
and a middle barrier that is smaller than the side barri-
ers. When the energy of the electron is close to the top
of the middle barrier tunneling between the two regions
becomes possible, resulting in the energy splitting of the
originally degenerate energy states (see inset of Fig. 10).
Because the strength of the middle barrier depends on
the value of k& this splitting occurs at different k„values
for the different energy bands.

In Fig. 12 samples of the three kinds of possible clas-
sical orbits are given: (1) OD cyclotron motioii, which
occurs when the electron. energy is suFiciently small that
its cyclotron diameter is less than the width of the mag-
netic strip. This state is absent in the MKP system. (2)
1D drift parallel to the magnetic strips for states with the
center of their cyclotron orbit near the interface between
the +Bp alld Bp regio—ns. (3) 2D motion in the plane
when the electron energy is larger than the magnetic field
barriers which results in a cyclotron diameter larger than
the width of the magnetic strips.

'l0

period l (its)

FIG. 11. Energy vs periodic length I, at a fixed k„= 2. The
shaded regions are the allowed energy bands of which only the
lowest sjx are shown. The dash-dotted curves are the maxima
and minima of V(x, k„).

V. SINUSOIDAL MAGNETIC FIELD

The physical system depicted in Fig. 1 has a sinusoidal
magnetic-field profile in the plane of the 2DEG when the
distance between the 2DEG and the ferromagnetic thin
film is sufficiently large [see dotted curve in Fig. 1(b)j.
In such a case only the first term of the Fourier series is
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system is obvious. But notice that now, e.g. , the fully
closed cyclotron orbit is no longer a circle.

VI. SAWTOOTH MAGNETIC FIELD

The system considered in Ref. 4 is a 2DEG, which
is constrained by rigid walls in the x direction ~x~ = 1/2,

but which is infinite along the y axis. A nonhomogeneous
magnetic field B(x) = Bpx directed perpendicular to the
(x, y) plane was applied. Here we make a superlattice
out of this system by removing the rigid-wall condition
and repeating the geometry indefinitely along the x axis.
Thus we consider the following magnetic field profile

B(x)/Bp = (2/l) ) [x (n + 'I./2)l]8[x (n + 1)l]8(x —ril) (18)

with the corresponding vector potential

A(x)/Ap = (1/l) ) [x —(n + 1/2)l] 8[x —(n + 1)l]g(x —nL), (1g)

which are depicted in Fig. 16. Because of Bloch's theo-
rem, the Schrodinger equation (4) has only to be solved
within one period, which reduces to the 6nite anharmonic
oscillator problem

(2O)

with a quartic anharmonicity term x4/4. To generate
the energy spectrum, we again made use of the method
of Ref. 18. Once the energy spectrum is found the
wave function can be obtained by substituting Q(x) =
e ) ~ P p c x into the above equation, which yields
a recurrence relation for the coefFicients c, which can be
determined iteratively.

It is not easy to imagine how to realize this system
experimentally. One possibility is to use the technique

2 I ( I I
I

I I I l
I

I I I I
I

I I f I
I

I I I I I I I
I

I I I I
I

i I I I
I
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suggested in Ref. 6 where either the ferromagnetic thin
film or the semiconductor interface containing the 2DEG
is grown on an etched substrate in such a way that the
distance between the 2EG and the ferromagnetic thin
61m is varied periodically to produce the desired mag-
netic field pro6le in the 2DEG. Alternatively, regrowth
techniques as used in, e.g. , Ref. 14 can be used on a pat-
terned substrate with a parabolic periodic pro6le. When
a magnetic 6eld is applied parallel to the x axis and a
2DEG is grown with a topography that is a periodic rep-
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FIG. 15. Possible classical trajectories with the same initial
position but di8'erent initial velocities for the sinusoidal field
model.

FIG. 16. The profiles for the niagnetic field H(x), the vec-
tor potential A(x) and V(x, k„) for k„=0.4, —0.4, 5.0, —5.0
in the case of the sawtooth magnetic field model.
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ity tensor are calculated concurrently with the DOS and
along the same constant energy contcurs where we used
the expression

I
'

I

I,=8

0.,;/oo = ) v„;v„;dS„,
s

(22)

with v„; = BE„/Bk, th. e drift velocity and 0 is the
Drude conductivity of the &ee 2DEG. This formula is
valid for diffusive type of transport at zero temperature.
Notice that because there is no net magnetic field, i.e. ,

(B) = 0, we do not expect any Hall resistance and con-
sequently o.~„=0.

The density of states for the MKP system (Fig. 19)
is predominantly a &ee 2DEG except for singular points:
(1) resulting from the edges of the minibands, which oc-
cur for k = (2n+ 1)vr/l, n = 0, 1, 2, 3, . . ., and (2) result-
ing &om the local minima in the energy spectrum (see
Fig. 5), which occur for small k„values where v„= 0.
At these points in momentum space the conditions for
Bragg reBection are met for motion in the x direction
and the average velocity in the y direction is zero. Elec-
trons with these energies and wave vectors form stand-
ing waves with zero average velocity. This eKect results
in dips in the er conductivity (Fig. 19). Note that
no such clear structure is apparent in the o» conduc-
tivity because motion in the y direction does not exhibit
this Bragg reQection. Between the dips, o exhibit lo-
cal peaks at which o.~~ —o.». This is easily understood
6.om Fig. 5 where we see that at those energy values
minibands touch each other and the energy gap between
the inner minibands disappear. As a consequence, for
those energy values the eKect of the periodic magnetic
field on the electron motion is minimal and consequently
the di6'erence between o~~ and o» will be minimal.

The energy spectrum, the density of states, and the di-
agonal components of the conductivity tensor for the pe-
riodic step model are depicted in Fig. 20. The structure

s I I i I i i i s I0—3 —2 —1

ai, (&/es)
2 4 0 2 4 6 8

D(E)/D. o (E)/a,

in the DOS can be understood in the light of the E versus
k„relation. The first singularity in D(E) occurs at the
onset of the allowed energy bands and corresponds to 1D
states [notice that the miniband width (shaded area) is
zero] where motion is only possible along the y direction
and consequently o = 0. The second and third peaks
in the DOS, which are symmetric about zLo, originate
&om the edges (saddle points) of the lowest Landau level,
which is broadened by the finite tunneling to neighbor-
ing strips. Beyond the third peak there are no states
available for motion along the x direction because of the
energy gap where motion is possible only along the y di-
rection and consequently o 0. For larger energies the
structure in the DOS gradually diminishes due to the en-
hanced tunneling probability near the top of the barriers
and the availability of 2D states above the barriers where

FIG. 20. The energy dispersion curves (left panel), the den-
sity of states (middle panel), and the diagonal components of
the electric conductivity tensor (right panel) for the periodic
step system for / = 8.

60 8

b& 40
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w 20

0
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0 2

FIG. 19. The density of states and the diagonal compo-
nents of the electric conductivity tensor vs Fermi energy for
the magnetic Kronig-Penney system with / = 8.

FIG. 21. The density of states and the diagonal compo-
nents of the electric conductivity tensor vs Fermi energy for
the sinusoidal system with / = 8.



17 332 I. S. IBRAHIM AND F. M. PEETERS 52

VIII. CONCLUSION

6

0
C5

2

0
0 2

E (A,(u, )

FIG. 22. The density of states and the diagonal compo-
nents of the electric conductivity tensor vs Fermi energy for
the sawtooth system with l = 8.

the DOS approaches its limiting value for the free 2DEG.
In this case motion along the x direction is possible and
o. becomes substantially difFerent from zero. Note that
we always have o & oyy.

The DOS and 0;, for the sinusoidal system (Fig. 21)
are seen to have a structure closely resembling that of the
periodic step system. In Ref. 21 these quantities were
already calculated using difFerent techniques. Our results
are very similar and therefore we refer to Ref. 21 for a
discussion of it.

The sawtooth case (Fig. 22) can also be understood
in terms of its E versus ky dispersion relation where the
structure in the DOS consists of energy regions domi-
nated by the contributions of the 2D states (the shaded
areas in E versus k&) alternating with energy regions
where the dominant contribution is &om 1D states corre-
sponding to the energy gaps between the shaded regions.
At high energies the DOS for all systems considered con-
verge to Do the DOS for the free 2DEG.

In general, we found that the components of the electri-
cal conductivity tensor o.;, versus the Fermi energy show a
universal behavior in all of the systems considered. The
0 yy conductivity is obviously the least afFected by the
presence of the magnetic Geld modulations along the x
direction, since there are always states available for mo-
tion along the y direction regardless of the Fermi energy.
Furthermore, the number of these states increases with
increasing energy. In contrast, the miniband structure
has a pronounced efFect on the o component due to
the existence of energy gaps for motion along the x di-
rection, where o shows downward dips corresponding
to the edges of the Brillouin zone where v —0. The
magnitude of u does not become appreciable until the
Fermi energy is near or above the magnetic potential bar-
rier at ky: 0 The o~~ is always less than oyy even for
high energies. The reason is that the efFect of Bragg re-
flections, which does not influence o yy ~

persists up to high
energies, which is a purely quantum-mechanical efFect.
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APPENDIX

We calculate the magnetic field resulting f'rom a fer-
romagnetic thin film in which the magnetic domains are
in the form of a periodic array of parallel strips [see Fig.
1(a)j. The magnetization of each domain strip can either
be in the plane of the film or perpendicular to it. Since
no currents are involved, Maxwell's equations are

V xH=O, (A1)

where B = pa(H + M) and M is the magnetization.
H can be written in terms of the gradient of a sealer
potential H = —V4, which leads to

V 4 = —V. H=V'-M. (A2)

If we define a magnetic charge density by p = —V M,
the above equation leads to Poisson's equation

V C = —p (A3)

which can be solved by the standard methods of elec-
trostatics. The magnetic field can be given directly by
Coulomb's law

We have investigated the energy spectrum for a 2DEG
in a periodically modulated magnetic field along one di-
rection with zero average in the plane (ferromagnetic ar-
rangement). It is shown that many features of these sys-
tems are difFerent from the electrostatically modulated
ones or the ones considered in Refs. 7—9 with a con-
stant background magnetic field. For example, the band-
widths, the efFective mass, and the drift velocity along
the y direction all have a ky dependence. The period-
icity of the effective potential V(x, k„) may change or
completely vanish at ky ——0 with the corresponding re-
duction or disappearance of energy gaps. Depending on
the value of the periodic length the lowest-energy bands
may have double minima at a finite value of k„where
the drift velocity can be zero and the efFective mass may
exhibit a divergent behavior. The density of states and
components of the electric conductivity tensor were also
calculated for these systems. They exhibit a structure
that is related to the behavior of the electrons near the
edges of the magnetic minibands. oyy is not much influ-
enced while o. exhibits a strong increase each time the
Fermi energy crosses a new magnetic miniband. At the
upper edge of this miniband o decreases substantially.
In all cases we found o~& & oyy.
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p,pM „,p (r ')(r v—')
4~ fr r'—]s

(A4)
the contributions of each of the individual domain strips
at that point. In particular for the situation of Fig. 1(a)
we have

p = —V'. M = M[h(z —d) —b(z+ d)]
x[8(x + a) —0(x —a)], (A5)

First, we consider the case depicted in Fig. 1(a) but
where we consider only a single magnetic domain strip
with magnetization perpendicular to the (x, y) plane with
boundaries x E (—a, a), y C (—oo, oo), z E (—d, d), which
implies

Bt t ~(r) = ) (—1) B[x —nl/2, y, z], (AIO)

where B(r) is given by Eq. (A6) and the period I
4a. Using Poisson's method for the summation of inGnite
series we can write the z component of this expression
also as

and the magnetic Geld at the point r is obtained &om
Eq. (A4) as B,(r) = ) B (k z) cos(k x), (A11)

B(r) = [B,(x, y, z + d) —B,(x, y, z —d)], (A6) with

where B (kz) = (e ""—e"")e " e„
(2n+ 1)

(A12)

1 f (x + a)' + z' 5

2 g(x —a)'+ z')
(x+ al (x —al+ arctan

/ /

—arctan
/ /

e, . (A7)
z z

For in-plane magnetization the solution can be ob-
tained by simply rotating the magnetic strip by 90
about the y axis with the corresponding interchange of
the x and z coordinates in the previous expression for
the magnetic field; i.e. , Eq. (A6) and (A7) become, re-
spectively, Bf t ](r) = ) (—1)"B[x—nl/2, y, z], (A13)

where k = (2n + 1)27r/t. This result agrees with the
solution obtained directly from Poisson's equation (A3)
using the Fourier series expansion for p and the method
of separation of variables. The resulting magnetic Geld
profile is shown in Fig. 1(b) for difFerent values of the
distance zo &om the area of the magnetic strips.

In the case the magnetic domains are aligned in the
plane, but with alternating direction, we have

B(r") = [B,(x+ a, y, z) —B,(x —a, y, z)], (A8)

where

but where B(rg is now given by Eq. (A8). Using Pois-
son's summation method we Gnd the z component to be

x + ('+ &) l~;
2 (x2+ (z —d)2)

(z+ d'l (z —dl+ arctan
~

~

—arctan
~ ~

e . (A9)) * ).
The magnetic Geld proGle resulting &om a periodic ar-

ray of ferromagnetic domain strips is the superposition of

B,(r) = ) B„(k„z)sin(k„x),
n=0

(A14)

with k and B (kz) identical as given above. The re
suiting magnetic field profile is shown in Fig. 1(c) for
dift'erent values of the distance zo from the area of the
magnetic strips.
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