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We examine the relationship between atomic and excitonic superradiance in thin and thick
slab geometries. We demonstrate that superradiance can be treated by a unified formalism for
atoms, Frenkel excitons, and Wannier excitons. It is well known that in suKciently thick slabs, the
normal modes of the system are polaritons, a superposition of the slab exciton, and photon modes.
We specifically examine the crossover from superradiance to polariton modes and derive both the
crossover slab length and the maximum superradiative decay rate. We show that the exciton and
polariton pole approximations, which give simple expressions for superradiance and polariton mode
decay rates, give excellent agreement with the exact expressions for the pertinent thicknesses for
which the approximations are valid.

I. INTRODUCTION

Atomic superradiant decay was proposed by Dicke as
a way for mutually phase-coherent atoms to decay at a
substantially faster rate than the single atom decay rate.
If N coherently evolving atoms are located in a volume
much smaller than a wavelength cubed, the radiative de-
cay rate can be increased by a factor N provided their
dipole moment evolves in phase. If the atom's respec-
tive dipole moments are mutually out of phase, Dicke
also showed that the radiation may be totally quenched.
Such an atomic state is called a dark state or a radia-
tion trapped state. Several groups subsequently cal-
culated the superradiant decay rate for systems where
the atoms have a spatial distribution larger than a wave-
length cubed. They found that in general the superra-
diant decay rate is smaller than the factor N due to the
fact that any two atoms separated by more than the dis-
tance of an inverse wave vector cannot emit radiation
in phase (or cooperate) in all spatial directions. How-
ever, in their formalisms no upper limit for the superra-
diant decay rate enters explicitly. About the same time
Arecchi and Courtens warned that, used without cau-
tion, superradiance calculations would predict impossibly
large decay rates, e.g. , decay rates larger than the opti-
cal transition frequency. Arecchi postulated a maximum
cooperativity distance, and with that most of the work-
ers in the Geld seem to have been content. In geometries
thinner than the longitudinal cooperativity distance, this
problem does not arise. Quite early I.ee and I ee calcu-
lated superradiant decay rates in thin molecular films
and Hanamura calculated the decay rate for semicon-
ductor excitons in microspheres and in planar geometries.
Recently Knoester ' pointed out that in superradiance
calculations the radiation reaction (absorption of emitted
radiation) is usually ignored. This is the so called exciton
pole approximation. In the exciton pole approximation,
radiative shifts are also often ignored, although they do
not have to be. In reality, superradiance is accompanied
by radiative shifts, as pointed out in (Ref. 11). However,
Knoester's main objection to the exciton pole approxi-
mation coincides with that of Arecchi and Courtens; the

thin-film results cannot be extrapolated to thick slabs
with impunity. Knoester derived the proper (no pole ap-
proximation) equation of motion for the normal modes
of a crystal slab. He demonstrated that the fundamen-
tal, k = 0 mode shows superradiant behavior and that
it has a maximum radiative decay rate when the crystal
slab thickness is half a wavelength. He also predicted
that higher-order modes had larger decay rates, but no
result was presented. However, he showed that in sufB-
ciently thick slabs the normal modes of the system are
the radiatively stable polariton modes.

In this paper we demonstrate that Arecchi and
Courtens' postulate arises naturally in Knoester's pole
approximation-free theory. Recently several authors
have pointed out that exciton superradiance can be en-
hanced by enclosing the superradiant slab in a planar
microcavity. In (Refs. 13, 14, 16, and 17) the exci-
ton pole approximation was not employed, and the re-
spective treatments show that the excitonic superradi-
ance gives way to microcavity excitonic polaritons as
soon as the microcavity mirror reHectivity becomes suK-
ciently high, provided that the excitons are not localized,
e.g. , by impurities. In Refs. 16 and 17 the mirror reHec-
tivity needed for the superradiance to exciton-polariton
crossover to occur was explicitly calculated. In Ref. 15,
on the other hand, a generalized treatment applicable
to atoms, Frenkel excitons, and Wannier excitons was
used, and so was the exciton pole approximation. In
Ref. 15, it was predicted that the crossover would occur
when the microcavity-enhanced superradiant decay rate
exceeded the cavity decay rate. It was demonstrated that
the maximum microcavity-enhanced superradiant decay
rate was roughly equal to the Rabi Hopping frequency.
This was confirmed by Savona et aI,. From the treat-
ment in Ref. 15, it, is clear that all superradiant atomic
and excitonic processes, microcavity-enhanced or not, es-
sentially are a manifestation-of the same physics, naxnely,
the formation of macroscopic (larger than a wavelength)
dipole m.oments. The reason atomic and Wannier exci-
ton superradiance previously have been treated as sepa-
rate entities seexns to be that in the former the atomic
wave functions are highly localized, whereas in the case
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of Wannier excitons the exciton wave functions are highly
delocalized. However, if the atomic density is suKciently
high (the number of atoms per square wavelength in a
thin film )) 1), the collective wave function of the atoms
is also delocalized, and the constituent atoms' respective
wave functions cannot be resolved by an electromagnetic
wave. Therefore, the two systems are equivalent in most
respects.

In this paper we will concentrate on the weak excita-
tion regime. For an excitonic system this is equivalent to
keeping the exciton density much below the Mott den-
sity. For an atomic system it is equivalent to keeping the
atom inversion very low. In the Bloch sphere picture, the
Bloch vector must be kept close to the south pole (ground
state). Hence every atom initially is assumed to be in a
superposition of the ground and excited states, with the
ground-state probability being dominant. In both the ex-
citon and the two-level atom cases, the weak excitation
will allow us to neglect the Coulomb-Coulomb interac-
tion and exchange interaction. Effectively the system,
even a collection of two-level atoms, can be treated as
a single bosonic mode, and none of the nonlinear efFects
present in strongly excited two-level atomic systems
will be seen. It is worth pointing out that the superra-
diant decay rate for such a system is independent of the
ex.citation level.

Rehler and Eberly early predicted that the maximum
superradiant decay rate would be obtained when the
photon-mode wave vector matched the atomic-state wave
vector. In spite of this, most calculations of bare super-
radiant slabs have been focused on the slab fundamen-
tal k = 0 mode. The reason seems to be that for thin
slabs (thinner than a wavelength) this xnode most closely
matches its wave vector with the wave vector of the pho-
ton. Below we shall see that for thicker slabs, higher-
order modes can have much larger decay rates. We shall
also see that the radiative stability of the polariton mode
in very thick slabs is a consequence of the fact that the
higher-order atomic (excitonic) modes break the longitu-
dinal symmetry of the slab.

the oscillator strength per unit area (or volume) for ex-
citonic emitters with is Axed for a given material. The
interesting quantities for our purposes are N and p.

To compute the radiation pattern it is also convenient
to define a wave-vector-dependent cooperativity factor I
de6ned by

'(k, ki) = ~(exp[i(k —ki) r])

where the average is to be taken over the positions r of
the atoms, and k, kq are the wave vectors of the radia-
tion and the excited atomic system, respectively. In this
section we shall assume that ~k~ = n~/co, where Ru is
the atomic (excitonic) transition energy, and n is the in-
dex of re&action in the slab. From Fig. 1 and &om (1)
we see that exp[i(k —ki) r;] is the phase of the field
emitted by atom (dipole) i as seen Rom a far-field ref-
erence point 0 in the k direction. If the total atomic
system is contained in a volume much smaller than a
wavelength cubed, I'(k, ki) = 1, but if the system ex-
tends over distances much larger than the wavelength,
I' becomes angularly dependent. In the direction where
the radiation wave vector coincides with the atomic-state
wave vector (if any such direction exists), so that k = ki,
I' is still equal to unity for a large system, but in most
directions the emission &om the individual excitons will
deconstructively interfere to some extent, bringing down
the net superradiance of the system.

In this paper we shall mainly be interested in polarized
excitations such that k~ is normal to the slab. Such ex-
citations have no dipole-moment component in the slab
normal (z direction), and the unit dipole radiation inten-
sity at time t = 0 can be written as

3(cos2 y+ sin &pcos2@)IoI p)
Sar

The radiation intensity has been normalized so that in-
tegrated over all solid angles at time t = 0, J' I(k)dA" =
Io = Rd/To. The factor p is a measure of the net (direc-
tionally averaged) cooperativity. It is defined as

II. FRENKEL EXCITON SUPERRADIANT
DECAY IN THIN SLABS

1 1
p = — I(k)I'(k, ki) dOy ——.

Ip N

In this section we will adopt a model of superradiance
originally due to Rehler and Eberly and developed for
calculation of superradiant decay of Wannier excitons in
single quantum wells by Bjork et al. In order to con-
serve space and in order to facilitate for the reader, we
will omit the derivation of the model which is well de-
scribed in Refs. 4, 6, and 15 and we will closely follow
the notation in this section with that in Refs. 4, 6, and
15.

The superradiant decay rate in this model, which is
based on the exciton pole approximation, can be esti-
mated &om three numbers: The number of efFective os-
cillators N, the "shape factor" p & 1 describing the ef-
fect of the spatial distribution of the oscillators and the
atomic (excitonic) state, and the "fundamental oscilla-
tor" lifetime Tp. The lifetime 7p is directly related to

For small samples in which all atoms are contained in a
volume « A the factor is always very close to unity since
I' is unity. In larger samples p is smaller than unity and
in one- and two-dimensional sample geometries, p and N
have mutually inverse dependence on the system size.

The decay rate can, to a high accuracy, be approxi-
mated by pN/7o. Below we shall initially compute the
decay rate for Frenkel excitons in a crystal slab or molec-
ular films. For simplicity we shall assume that the lattice
is cubic with a lattice constant a and with the possibility
of harboring one Frenkel exciton in each unit cell. Later
we shall generalize the result to a slab of disordered atoms
with a well-de6ned mean density, and to Wannier exci-
tons in a quantum well or a crystal slab. The sample
geometry we assume is depicted in Fig. 1.

The crystal slab is assumed to have a thickness 6 and
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FIG. 1. Schematic drawing of the assumed. geometry. The
m axis is oriented along the polarization of the slab. The
vector r; goes from slab matrix site i to the observation point
O.

2ire, /A case I,
G case II. (5)

Below we shall come back to the cases of Wannier exci-
tons and randomly ordered atomic systems.

Next, let us compute I'. For reasons that will become
apparent later we shall derive I' for two specific cases of
excitation. One is the excitation of the excitonic mode
with a wave-vector length equal to that of radiation at
the exciton resonant energy. This mode can easily been
excited by a short pulse of light propagating along the
slab normal. The other interesting case is that with zero
kq vector. In the following we will refer to them as case
I and case II. The assumptions in the two cases can be
stated

a radius r )) A. At time t = 0 the system is assumed
to be excited, e.g. , by Hashing a short pulse of light with
constant intensity across the slab. It is important to note
that in most experiments r is not given by the physical
size of the molecular film, but rather by the radius of
the pump pulse. The excitation pulse wave vector is as-
sumed to be normal to the quantum-well plane (ki !!z).
However, we shall let the wave vector of the atomic (exci-
tonic) system be different from that of the emitted radia-
tion (!k!g!ki!).Creating an excitation with the exciton
resonant energy but an arbitrary wave vector can in prin-
ciple be accomplished by two-photon absorption. In the
following we shall neglect the fact that such an excitation
can only be set up over lengths (in at least one direction)
comparable to the resonant energy wavelength. This is
not particularly important in view of the fact that such
a mode is only dominant for slab thicknesses comparable
to half an emission wavelength anyhow.

The factor N is now trivial to compute. For Frenkel ex-
citons it is given by the number of lattice cells in our sys-
tem since each cell can host one Frenkel exciton. Hence

mhr2

G

where M is the number of monoatomic layers in the film.

In Fig. 2 the excitation of the system is schematically
shown. The Frenkel excitons in the slab matrix are de-
picted as circles. The Frenkel exciton dipole-moment
phase is depicted as a clock hand. In (a) the phase rotates
by 2' &om one side to the other of the wavelength thick
slab (case I), whereas in (b) all excitons have the same
phase (case II). In (c) the case I excitation is depicted
for a thinner slab. In (d) we have depicted a case where
!ki!)) !k!.In (e), finally, we have depicted a case where
kq is not perpendicular to the slab. This case can easily
be treated with the formalism in this section, but we will
not do it in this paper. Note that to conserve space in
the figures, the slab thicknesses (along the z direction)
exceed the slab widths in (a) and (b). In our model we
always assume the opposite is true.

When computing F we need to sum over all the exci-
tons in the film. According to our assumptions, r )) h =
Ma and A )) a so we can approximate the discrete sum
over all the excitons in a monolayer film plane by an in-
tegral, assuming that the excitons have a continuous lat-
eral distribution. In both cases I and II, the phase of the
excitons is constant throughout the 61m plane. This inte-
gral is efFectively the normalized two-dimensional spatial
Fourier transform of a circular disk i.e., a Bessel func-
tion. Summing over all the film planes we arrive at the
expression

('2Ji [2m' sin(@)/A] l
27rr sin(@) /A

(2Ji[2vrr sin(g)/A] l
2vrr sin(@) /A

!
( sin(vraM [1 —cos(vP)]/A)

(M sin(7ra[1 —cos(@)]/A)
( sin[vraM cos(g)/A] )
(M sin[vra cos(@)/A] )

case I,

case II,
(6)

where Jq is the 6rst Bessel function of the first kind, and
we have expressed the directional coordinates of k in the
cylindrical caordinates p and g. (Since the system has
rotational symmetry, the expressions are independent of
the coordinate p.) It is clear that far a monolayer film,
M = 1, the expressions (6 I) and (6 II) coincide. However,
as the film gets thicker, (6 I) predicts superradiance dom-
inantly in the forward (@ = 0) direction and less in the

backward (@ = vr) direction, whereas (6 II) predicts equal
(but smaller) effects in the forward and backward direc-
tions. This follows &om the symmetry of the assumed
initial condition in (5 II). In Fig. 3 emission patterns for
the two cases and for various 61m thicknesses are plotted.
Equation (5I) effectively assumes a coherent transfer of
the excitation energy &om the excitation pulse to the ex-
citons. Therefore, as the 61m thickness gets thicker and
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the localization of the excitons in this direction is gradu-
ally lost, Heisenberg's uncertainty principle suggests that
the momentum in the direction normal to the film will
be conserved with increasing accuracy. This is the phys-
ical basis for the dominant forward emission in this case.
The finite lobe width exists even for thick slabs because
we have assumed a finite radius slab (r = 2A) in the
calculation of the patterns. (The lobe full width at half
maximum is roughly A/2r. ) A slab with larger diameter
would emit in a narrower lobe, but the essential point
in this plot is the gradual increase of unidirectional cou-
pling between the excitons and the radiation modes in
case I. The excitons in case II, on the other hand, grad-
ually lose their emission directionality as the film gets
thicker. One interpretation of this behavior is that the
initial condition of case II does not correspond to a min-
imum position-momentum uncertainty state. Further-
more, as can be deduced from the magnification scales
indicated on the plots, case I represents a superradiant
state even for thick slabs, whereas case II represents a
superradiant state only for thin (( a wavelength) slabs,
and becomes subradiant in thicker slabs. As can be seen

from the figure, the radiation rate per exciton for a 5-
wavelength-thick slab excited with !ki! = 0 approaches
the rate of a monolayer-thick slab.

In (6) above we actually neglected that the Frenkel ex-
citon state in an ideal slab matrix has a quantized k»
vector component in the direction normal to the crystal
slab or thin film due to the periodicity of the film and the
film boundary conditions. In a film M monolayers thick
there will be M modes with ki vectors ki ——2n'm/Ma,
where m = 0. . . M —1 is the mode number. Strictly
speaking, the transverse k vector should also be quan-
tized, but due to the large lateral system size one can
approximate the closely spaced quantized modes with a
continuous distribution of transverse k vectors. Hence (6)
above really describes spatially disordered systems (with
a mean dipole density of a s) better than Frenkel exci-
tons in a crystal or molecular film matrix. However, in
order for (6) to be valid the disorder Huctuations should
be negligible on a spatial scale equal to or larger than a
wavelength. Taking the periodic structure of the crystal
slab in the normal direction into account, Eq. (6) will be
modified as

/2Ji[2mr sin(vP)/A] 5 ( sin(vr[m —Macos(@)/A])
27rr sin(@)/A ) (M sin(vr[m/M —acos(@)/A))) (7)

Note that for m = 0, i.e., !ki!= 0, Eq. (7) reduces to (6II). For a q-wavelength-thick slab, where q is an integer, Eq.
(7) reduces to (6I) for the m = q mode. In Fig. 2 the m = 0 mode is depicted in (b) and the m = 1 mode is depicted
in (a) and (d) for two difFerent slab thicknesses.

To calculate the decay rate of the superradiant excitons we have to calculate the parameter y, . Using (3), the unit
dipole radiation patterns (2) and (6), and using the transformation x = cos(@), the shape factor is given by

r' sin(~aM[1 —x]/A( )
p = ——+1 3 dx(1 + x )Ji (2mr[1 —x ] ~ /A) gM sin(ma[1 —x](A) )

N 2(2vrr/A) 2 1 —x2 ( sin(7raMx/A) )
(M sin(m ax/A) )

case II.

In the limit r && Ma this integral is solvable analytically, and the final expression for p is

1 3
N 2(27rr/A) 2

case II.

( sin(2vraM/A) )1+ case I,
g M sin(2ma/A) )

f' sin(aaM/A) l
qM sin(7ra/A) )

If we keep the excitonic inodes quantized and calculate p &om I given by (7) we arrive at the expression

1 3 ( sin(7r [m —Ma/A]) ) f sin(m[m + Ma/A])
p ~ +N 2(2vrr/A) 2 (M sin(m. [m/M —a/A]) ) (M sin(m. [m/M + a/A]) )I

+I ! (10)

7»

1+pN
7(}

3 (A)'
47r~p (a)

Equations (9) and (10) are the final results that allow us
to calculate the decay rate of the excitons in a resonantly
excited thin film. The decay rate for a monolayer film can
be written as

for all cases, since in this case only the m = 0 mode
(with zero wave vector) exists. Hence the superradiant
enhancement can be written as 3vr(cp/u~„an), where cp
is the speed of light in vacuum and n is the refractive
index of the thin film. This factor is identical to that
derived in Refs. 9 and 10 as will be shown below. This
factor can be rather large, of the order of 10, since the
ratio A/a can be of the order of 10s. The decay rates for
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(b)

In Fig. 4 we have plotted the superradiant decay rate
normalized to the monolayer superradiant rate I/wq as a
function of the number of layers for the two cases. For
case I, it can be seen that the decay rate is proportional
to M for large M:s. The decay rate is predicted to in-
crease without bounds as the film gets thicker. For case
II (m = 0), Knoesters ~o pointed out that there is an op-
timum decay rate of 0.23'/awq when h = 0.37%. For large
M, (12II) predicts that, the decay rate approaches zero
as 1/M. It is clear from these results that, depending on
the initial conditions of the collective wave function, the
same model predicts completely difI'erent results. This
was pointed out by Dicke in his original paper. One may
create both superradiant and subradiant states in a col-

(c)
1

(d)
h = a

Ikll = n co/co

xi
Ik11 =0

h=. 'r

FIG. 2. Schematic drawing of various initial wave-vector
states of the excited slab. (a) and (c) represent an initial
condition corresponding to case I. (b) corresponds to case II.
In (d) IkI « Ikq

I

has been assumed, and in (e), the slab wave
vector is not perpendicular to the slab. The phases of the
excitons along a line perpendicular to kq (dashed line) are all
equal.

h = k/4 x 1/250, : h = X/4 ~~
x i/250

films of arbitrary thicknesses can be expressed,

Frenkel

M
271

case II.

( sin(2vraM/A) )1+ case I,
(M sin(2ma/A) )

2
f sin(maM/A) )
(M sin(era/A) )

, h = 2X x 1/2000 h = 2)j. x 2 5

The extension of this result to (10) is trivial. The re-
sult can be rewritten in terms of the oscillator strength
per unit volume f and in this case the prefactor changes
according to

M ~e aMf
2v.1 2nm co

'

.'h = SX x 1/5000 h= 5k x 2

where n is the semiconductor re&active index, e is the
unit charge, co is the speed of light in vacuum, and m is
the electron mass. The two terms in (12 I) have a physical
interpretation, the first term is the radiation emitted in
the forward (k = kq) direction, whereas the second term
is the radiation emitted in the backward direction. In
(12II), these terms are equal due to the initial state sym-
metry; hence the factor 2 to the right of the curly bracket.
It is seen that in case II the radiation in the backward
direction increases with thickness for thin slabs, but be-
comes smaller again when the slab thickness is larger than
about half a wavelength. This is dictated by momentum
conservation.

(d) .

FIG. 3. Radiation patterns for various slab thicknesses.
The plotted entity is the radiated intensity per exciton. In
the left column are the patterns for case I (k = u/c), and in
the right column are the patterns for case II (k = 0). The
number to the right in each 6gure is the plot scaling factor.
Hence, the 5-wavelength-thick case I slab emits 5000 times
more radiation in the forward direction than the monolayer
slab.
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FIG. 4. The normalized decay rate of a slab with super-
radiant Frenkel excitons as a function of the normalized film
thickness h/A. In this and following graphs we have assumed
A/a = 10 and A/u, „=0.01. The solid diagonal line cor-
responds to case I, whereas the solid quasiperiodic curve is
case II (m = 0). The quantized solutions for m = 1, . . . , 3
are drawn as dashed and dash-dotted curves. It is seen that
the case I curve is the envelope function of the decay rates for
the quantized modes. The decay predicted by (12 I) is never
more than a factor of 2 from the correct value.

lection of emitting particles. However, neither (12I) nor
(12II) is correct in the limit M ~ oo. This was first
pointed out by Arecchi and Courtens, who argued that
since retardation eÃects are not correctly taken into the
model, it is incorrect to extrapolate the results to large,
spatially extended systems. In Sec. IV below, we shall see
that Arecchi and Courtens objections to the indiscrimi-
nate use of (12 I) above arise as a consequence of making
the exciton pole approximation in the derivations above.
In Fig. 4 we have also plotted the results for the quan-
tized modes. It is seen that with quantized modes the
decay rate will essentially be increasing as a function of
slab thickness, but with a modulation due to the dis-
cretization of the excitonic modes. In a "classical" optics
picture, this "modulation" of the decay rate (or equiva-
lently, for the time reversed process, absorption) can be
described as a Fabry-Perot efFect due to the susceptibil-
ity mismatch at the slab boundaries. It is seen that for
a slab 2; wavelengths thick, the maximally radiant state
is the mode with an m which minimizes!m —z!. This is
due to k-vector conservation.

can contribute to the superradiance. Therefore, although
on the macroscopic scale the atomic system is spatially
isotropic, the radiation pattern of an excited dipole will
still be anisotropic due to the anisotropic initial condition
and will be given by (2). If the geometric shape of the
atomic system is still slab shaped, (12 I) is also still valid
with aM replaced by the slab thickness h and w~ replaced
by the appropriate constant factor. In this case only
case I is strictly valid since neither the transverse nor the
longitudinal k vectors are quantized. Therefore, strictly
speaking, it is not correct to talk about a!ki!= 0 mode.
The number of atoms is given by N = purr h, where p
is the mean atomic density per unit volume in the slab.
Inserting these replacements in the expressions for 7q one
gets

&Atom

3pAzh f sin(2vrh/A) )
8vr~p q 2vrh/A

!1+! (i4)

~r2h
4vras~/3

3r26
4a~3

which is the slab volume divided by the exciton Bohr
volume (a~ is the exciton Bohr radius). Furthermore,
the decay constant Tp and the oscillator strength f per
unit volume can be tied by the unit radiator dipole matrix
element =. The expressions are

&0

4ne'(us„!:-!'
3hc3

The equation assumes that the atomic density p && A

since the derivation assumes a continuous distribution
of dipoles on the wavelength scale. Also, as mentioned
above, it assumes negligible density Buctuations on wave-
length (and longer) scales. In the equation A is the wave-
length of light in the atomic medium. We see that (14)
predicts a linear dependence of the superradiant decay
rate with atomic density and an essentially linear depen-
dence on the slab thickness h. Both these predictions are
due to the pole approximation.

Next, consider a moderately thick slab of material
which supports Wannier excitons. In this case it is conve-
nient to express the decay rate in the material oscillator
strength and it is quite natural to identify the number of
unit dipoles with

III. EXTENSION TO ATOMS
AND WANNIER EXCITONS

and

2mcu, „!:-!2
@ha~

(17)

The results above easily extend to atomic systems and
Wannier exciton systems as well. Hence, superradiance
in the weak excitation regime has little to do with the
internal structure of the constituent state dipoles and is
mainly determined by the collective state wave function.

The extension to atomic systems is straightforward.
In this case the unit dipole radiator is the isolated atom
which has a well-defined lifetime. In a disordered system,
the atomic dipole moments will be randomly distributed.
However, only the in-plane dipole in a fixed direction

Hence, combining (9I), (ll), (15), (16), and (17) we get

&%Pannier

3z.ezh f (sin(2vrh/A) 5
4nmcp ( 27r h/A )

The equation assumes that the slab is at least a few Bohr
radii thick. If not, the Wannier wave function will be-
come deformed by the longitudinal confinement. In this
latter case, when the slab thickness (or quantum well, in
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other words) is on the order of a Bohr radius the super-
radiant decay rate becomes

2vre~fzD

QW nmco

where AD is the oscillator strength per unit area, as de-
rived in Refs. 15 and 22. In principle it should be possible
to interpolate between the two equations (18) and (19),
but in reality it may be simpler to employ a formalism
such as that developed in Refs. 21 and 23 that derives the
self-energy &om first principles, taking the deformation
of the wave function explicitly into account.

To summarize this section we have shown that within
the pole approximation, the model derived by Rehler and
Eberly can treat atomic and excitonic superradiance of
thin and thick slabs in a unified manner.

IV. THE POLE APPROXIMATION-FREE
EQUATION OF MOTION

(d —Csex —24)EA A
= 0,2 2 (20)

where

Knoester ' derived a more correct description of the
dipole field interaction in a thin crystal slab or molecular
film. Specifically both the static dipole-dipole interac-
tion and the radiation-exciton interaction are properly
included in the theory without resorting to pole approx-
imations. Knoester showed that the coupled exciton-
radiation field dispersion relation can be written

aAz sin(M4 ) . sin(M4+) 2 . 2 —1
F/, I, {M,~) =

z exp( —iMC2 ) —
z exp(iM4+) + ) ((u)/c) —(k + 2vri/a) jsin (c2 ) sin (42+) 2c

(21)

4+ —= a(ki + ~/c)/2. (22)

~ = ~,„+FI,q(M, ~,„). (23)

This is the exciton pole approximation. We shall see
below that in general it has both a real and an imaginary
part. In the second limit, when M —+ oo, the first term of
(21) containing the sine functions tends to zero for long
lengths, and furthermore one can approximate the sum in
{21)by the j = 0 term only. It is found that by doing so,
the dispersion relation (20) becomes an eigenfrequency
equation

The constant A in (21) is a measure of the oscillator
strength. Below we shall express L in oscillator strength
and in the decay rate of a single localized Frenkel exciton.

As pointed out by Knoester, Eqs. (20)—(22) above are
easy to solve in two difFerent limits, namely, for very thin
and very thick slabs. In the former case, one considers
EyA, to be a small perturbation in the exciton dispersion
relation. In this case, one arrives at the excitonlike mode
eigen&equency

2

ex
~ex

=0, (24)

with the approximate inode eigensolutions (angular fre-
quencies)

(d ~ (d~22 + 4/2. (25)
We note that the solutions are radiatively stable (i.e. ,
real) and represent the two (odd and even) polariton
modes in the system. We are now in a position to identify
A as the difFerence in the polariton (aiigular) frequency.
The entity M, expressed in energy or wavelength, is
often referred to as the exciton-polariton vacuum Rabi
splitting.

In order to derive expressions for the decay rates under
the exciton pole approximation, we begin by noting that
F/, /, has singularities when k + 27rj /a = u/c. Otherwise
it is a well-behaved function. Neglecting the umklapp
process contributions to the sum in (21), only the i = 0
term remains. The remaining singularity can be removed,
however, by defining FA,, A,.(M, kc) as

Fg/, (M, kc) = lim F/, /, (M, ~). (26)
m —+kc

One hence obtains

sia(2aaM/2) aas{2aaM/2) aM,ts„ /i s(a2aaM/)2)—i
8u,„ 2~aM/A c ( 2~a/A )

Prom this equation, using the definition of 4,
(28)

and Eq. (16) we exactly recover the result (12I). [Note
that the imaginary part of (27) is the amplitude decay
rate, whereas the rate (12 I) is the excitation (energy)
decay rate. ] Furthermore, by combining (28) above with
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FIG. 5. The normalized radiative shifts (u —u,„ in units
of 10 u,„)of a slab with superradiant Freukel excitons as a
function of the normalized film thickness h/A. The radiative
shifts of the four lowest modes are shown.

(17) we can express the polariton mode difference energy
in an infinitely thick slab in the oscillator strength per
unit volume f as hh. = h(2me f/n m) ~

Equation (27) confirms that at least at the crossing
point, Knoester's formalism, combined with the pole ap-
proximation, is identical to the usual atomic superra-
diance model (12). In fact, if the energy decay rates
(—29(Fs~)) for the the various modes, where 8 stands
for the imaginary part, are plotted as a function of slab
thickness, Fig. 4 is exactly reproduced. However, in ad-
dition to the modified decay rate predicted in Secs. II
and III, Knoester's model also predicts a radiative shift
(R(Egg)). In Fig. 5, the radiative shifts (in units of
10 4m, „) are plotted. Such shifts should of course be

expected &om general principles; their magnitudes have
also been estimated by previous calculations. ~~ 2s Unfor-
tunately, the shifts for slabs of wavelength thicknesses are
so sxnall that they are diKcult to detect experimentally.

We must keep in mind that (27) is an approximation.
In Fig. 6 the dispersion curves for the relevant modes for
10-, 40-, and 100-wavelength-thick slabs are plotted. It
is seen that within the exciton pole approximation, the
dispersion for all three slabs looks like a regular disper-
sion curve, but with increasing decay rates and &equency
shifts. The general solutions to (20) and (21) are diKcult
to get analytically, but are relatively straightforward to
obtain numerically. The exact solution of the excitonlike
solution of (20) for a 10-wavelength-thick slab is equal to
that plotted in Fig. 6(a) to within the resolution of the
plot. The exact dispersion of the excitonlike mode of the
40-wavelength-thick slab differs very slightly &om that
derived within the exciton pole approximation, and it
differs only for the three modes closest to m = h/A. The
cross and the two open circles in Fig. 6(b) show the cor-
rect dispersion points for those modes; for all the other
modes the points in the figure coincide with the exact
dispersion. For the 100-wavelength-thick slab the exact
dispersion is quite different from that plotted in Fig. 6(c).
The exact dispersion for both modes for the three listed
cases is plotted in Fig. 7. One of the dispersion branches
has been interconnected by line segments to guide the
eye. It is seen that for the 100-wavelength-thick slab, the
modes cross over, and the photonlike branch for m ( 100
becomes an excitonlike branch when m ) 100. The dis-
persion curves look remarkably similar to those derived
for microcavity-embedded quantum-well excitonic radia-
tion derived in Ref. 13.
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V. THE SUPERRADIANCE TO POLARITON
CROSSOVER AND THE POLARITON

POLE APPROXIMATION

In Sec. III we derived results showing that the atom
superradiance and Wannier- and Frenkel-exciton super-
radiance are all manifestations of essentially the same
physics in the low excitation regime. The main difFerence
is that the periodic structure in molecular or crystalline
slabs quantizes the k~ vector, whereas in a slab where
the atom location is sufBciently random it is justi6ed to
use m as a continuous (real) number.

It is also clear &om (12) and (27) that in the exciton
pole approximation, the decay rate of the m = h/A xnode
increases without bounds. In this section we show that
the exact solution of (20) actually shows a saturation of
the decay at a 6xed slab thickness.

In Fig. 8 we have d.rawn the eigen&equencies of the
two coupled radiation-exciton modes at the kc = u „
point. We have deliberately only plotted the values for
slab thicknesses equal to a multiple of wavelengths, so
that the m = h/A mode exactly fulfills the condition.
From arguments presented above, the maximum devia-
tion f'roln this curve is a factor of 2 in decay rate for
slabs with thicknesses an odd multiple of half wavelengths
thick. We see that for thin slabs, as expected, the pho-
tonlike mode has a much larger decay rate than the exci-
tonlike mode. However, at and above the crossover point
(at about 44 wavelengths in the present example), the
modes have identical decay rates but instead. the real
part of the eigenf'requencies becomes different. This is
the true exciton-polariton crossover behavior. The result
looks remarkably similar to the exciton-superradiance
to exciton-polariton crossover in a single quantum-well

microcavity. A difference between the slab calculation
and the microcavity calculation is the &equency shift
of the photonlike mode for thin slabs. Note that these
small shifts (on the order of a few percent of the exciton
eigen&equency) cannot be seen in Fig. 7.

While it is difBcult to derive an exact analytical expres-
sion for the crossover point, it is relatively straightfor-
ward to derive an approximate expression. The crossover
roughly takes place when Q(Fi, i, (M, k—c)) = A. Hence,
the maximum superradiant decay rate is approximately
A. From (27) it can be seen that the decay rate for thick
slabs approxiinately is given by Azh/4c, where h = Ma
is the physical thickness of the slab. The crossover length
is therefore approximately given by

4c
h cross = = 2c0

c+Rabi
7le f 2

where TR b; = 27r/Z is the Rabi flopping cycle time and
c is the velocity of light in the medium. For the pa-
rameters used in Fig. 8, the corresponding length is 50
wavelengths, and we see that the crossover takes place in
a slab 44 wavelengths thick. We also see that the fastest
"superradiant" decay is about 1.6L, slightly faster than
the predicted maximum decay rate of L.

In Fig. 8 we also have plotted the decay rate (12 I) pre-
dicted in the exciton pole approximation. It is seen that
at the crossover point, the exciton pole approximation
gives a slightly smaller decay rate of 0.7L. However, it
is also seen that for slab thicknesses smaller than about
cTR b;/4, the decay rate predicted by the exciton pole
approximation is excellent. The radiative shift predicted
by the exciton pole approximation is always smaller than
or equal to E /8cu, „.This is efFectively zero to within the
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resolution of Fig. 8 (b).
In Ref. 9 Knoester introduced the polariton pole ap-

proximation to give a simpli6ed and divergence-free ex-
pression for the polariton mode (amplitude) decay (above
the crossing point) as

u,„+A/2. When we insert these relations into (30) and
note that the sum in FI,I, (M, u) is real and therefore does
not contribute to (30), we can derive the approximate
expression for the polariton mode (amplitude) decay as

(M)= — . V' (M ))
("c) pgq(M) = sin (MaA/4c).aM

where the indices kl and Ic2 refer to the two polariton
branches and pp~ and upi are the decay rate and the
angular &equency of polariton branch 1. Permutation
of the two indices gives the decay rate for the second
branch.

True polariton modes exist only when the exciton and
the photon wave vectors match, i.e., when kc = ~, .
When the wave vectors match, the polariton modes have
identical efFective masses and damping rates. This is the
situation we are primarily interested in. We can also
use the fact that the polariton mode eigen&equencies are
approximately given by u~q --w,„—4/2 and url, 2

As noted by Knoester this is an oscillating function with
the slab thickness. The maximum (energy) decay pre-
dicted by this model is very close to A/vr = 0.34, which
occurs for a slab thickness Ma slightly smaller than
u,„A/A. Again the approximate values for the decay
rate and the crossover length are quite close to the exact
results . The oscillatory behavior of the polariton decay
in the polariton pole approximation is a mathematical
artifact and does not correspond to the actual physics.
In reality, the envelope function of pA, q(M) describes the
decay rate for the system in a better way. Knoester ar-
gued that for slab thicknesses larger than the crossover
thickness, the sin function in (31) should be replaced by
its e8'ective (or rather mean) value 1/2. By doing so the
(energy) 'decay rate of the polariton modes become
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FIG. 8. The decay rate and radiative shifts of the two sys-
tem modes with rn = h/A as a function of the normalized slab
thickness h/A. The system changes from a superradiant to a
polaritonic system at a slab length of 44A. The dashed line
represents the predicted decay rate for the excitonlike mode
using the exciton pole approximation. The dash-dotted line
represents the predicted decay rate of the polariton modes
using the polariton pole approximation while the dotted line
represents the polariton pole approximation (PPA) envelope
function. The agreement between (one half) this envelope
function and the exact polariton solution is excellent for slab
thicknesses greater than about twice the crossover thickness
(about 100A for the parameters above).

c c
2pl, g(M) = (32)

This result has an obvious physical interpretation. The
polariton modes decay with a rate given by the time
it takes for the modes to propagate across the crystal.
[Note, however, that the polariton mode group velocity
is not c but c/2 (Ref. 24).j This is consistent with the
macroscopic view that the radiative energy decay from an
ideal crystal must take place through the crystal's sur-
rounding interfaces. In Fig. 8 the (energy) decay rates
2pgq(M) predicted by the polariton pole approximation
(30) and by its envelope function 2c/h are plotted dash-
dotted and dotted, respectively. We see that for slab
lengths around 100k the two curves predict equal decay
rates, roughly a factor of 2 above the rate calculated by
the exact dispersion relation. For a slab thickness of 200A
(and 400A, 600A, . . . ), (31) predicts a decay rate several
orders of magnitude smaller than the actual decay rate.
Equation (32), on the other hand, gives a decay rate very
close to the exact value.

To give some numerical results, we have used pa-
rameters appropriate for a molecular film in our plots
where the ratios A/a and 4/u, „have been chosen to
be 10 and 0.01, respectively. In this case it is seen
that the maximum decay rate is about 51000 times the
monolayer excitonic superradiant rate, and about 220
times faster than the maximum decay rate of the rn = 0
mode. Hence, the behavior m = 0 mode as a function
of slab thickness has nothing to do with the superradi-
ance to polariton mode crossover. The subradiance of
the m, = 0 mode in thicker slabs is not due to the for-
mation of a polariton, but is a consequence of the mode
symmetry.

In GaAs, which has ~,„=1.515 eV and a polariton
mode splitting L of about 20 meV, one gets a maxi-
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mum superradiant decay rate of 20 fs. The Rabi period
time TR b; is about 100 fs. The slab length correspond-
ing to the superradiance to polariton crossover behavior
is about 9 pm. In thicker slabs this is also the polari-
ton beat oscillation length (polariton-pulse propagation
length during one Rabi cycle), since the group velocity
of the polariton mode at k = w,„/c is half that of light
propagation. Hence, in order to observe polariton prop-
agation effects in bulk GaAs, the sample should be a few
tens of microns thick. It should be possible to map out
the excitonlike modes' and the polariton modes' eigen-
&equencies for difFerent slab thicknesses using a tunable
narrow linewidth cw laser looking at the absorption spec-
trum. The experiment must be carried out at cryogenic
temperatures since the Rabi &equency is only an order
of magnitude or so larger than the dephasing rate due to
phonon scattering, even at 4 K. The photonlike mode is
going to be virtually impossible to detect due to its very
rapid decay. It should also be possible to measure the
decay rates and the polariton mode beating (Rabi oscil-
lation) in the time domain using a tunable femtosecond
laser as the excitation source. It is probably going to
be diKcult to resolve the modes close to the crossover
point since the time scales of the photonlike mode
and excitonlike mode are equal. Therefore the pump
pulse (propagating like a photonlike mode) will mask
excitonlike mode response. However, for slabs thin (but
not too thin) and thick compared to the crossover thick-
ness it still should be possible to observe all but the pho-
tonlike branch. Finally, it should be pointed out that
in most materials, GaAs included, the excitonic (atomic)
dispersion has several branches. The analysis in this pa-
per is simplistic in that respect since all but one exciton
(atom) dispersion branch is neglected.

VI. CONCLUSIONS
In this paper we have compared a conventional atomic

superradiance model with the more rigorous dispersion
model of arbitrary thickness molecular films or semicon-
ductor slabs. It was demonstrated that the two models
are equivalent within the exciton pole approximation of
the latter. It was also shown that over a wide range of
slab thicknesses the exciton pole approximation is excel-
lent.

If the rigorous dispersion model is solved, the behav-
ior of thin slabs, superradiance, is transformed into po-
lariton propagation when the slab becomes suFiciently
thick. We computed an approximate expression for the
Inaximum superradiant decay rate and for the slab thick-
ness at which this maximum superradiance occurs. Our
expression is close, but slightly better than that pre-
dicted by the polariton pole approximation. We showed
that, as expected, the excitonic mode with the closest
k-vector match to that of the light will always couple
most strongly to radiation modes (both in the superra-
diant and in the polariton regimes). Modes with poorly
matched k vectors can be subradiant. Finally, we re-
marked that the superradiance to polariton crossovers in
slabs and in microcavity-embedded thin slabs are remark-
ably similar, in spite of the difference between the disper-
sion relations of the &ee-photon modes and the cavity-
photon modes.
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