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Quantum Boltzmann equation of composite fermions interacting with a gauge field
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We derive the quantum Boltzmann equation (QBE) of composite fermions at/near the v=
z state us-

ing the nonequilibrium Green s-function technique. The lowest-order perturbative correction to the
self-energy due to the strong gauge-field fluctuations suggests that there is no well-defined Landau quasi-
particle. Therefore, we cannot assume the existence of the Landau quasiparticles a priori in the deriva-
tion of the QBE. Using an alternative formulation, we derive the QBE for the generalized Fermi-surface
displacement which corresponds to the local variation of the chemical potential in momentum space.
From this QBE, one can understand in a unified fashion the Fermi-liquid behaviors of the density-
density and the current-current correlation functions at v= —' (in the long-wavelength and the low-

frequency limits) and the singular behavior of the energy gap obtained from the finite-temperature ac-
tivation behavior of the compressibility near v= 2. Implications of these results for recent experiments

are also discussed.

I. INTRODUCTION

Since the discovery of the integer quantum Hall (IQH)
and fractional quantum Hall (FQH) effects, the two-
dimensional electron system in strong magnetic fields has
often surprised us. Among recent developments, much
attention has been given to the appearance of the in-
teresting metallic state at the filling fraction v= —,', ' and
the associated Shubnikov —de Haas oscillations of the lon-
gitudinal resistance around v= —,'. ' The similarity be-
tween these phenomena near v= —,

' and those of electrons
in weak magnetic fields was successfully explained by the
composite fermion approach. Using the fermionic
Chem-Simons gauge theory of composite fermions, '

Halperin, Lee, and Read (HLR) developed a theory that
describes the metallic state at v= —,'.

A composite fermion is obtained by attaching an even
number 2n of Aux quanta to an electron, and the transfor-
mation can be realized by introducing an appropriate
Chem-Simons gauge field. At the mean-field level,
one takes -into account only the average of the statistical
magnetic field due to the attached magnetic Aux. If the
interaction between fermions is ignored, the system can
be described as the free fermions in an effective magnetic
field hB =B B i &z„,where B—i&z„=2nn,hc/e is the aver-
aged statistical magnetic field, and n, is the density of
electrons. Therefore, in mean-field theory, the FQH
states with v=p/(2np+1) can be described as the IQH
states of the composite fermions with p-filled Landau lev-
els occupied in an effective magnetic field b8. In par-
ticular, b,B =0 at the filling fractions v= 1/2n, so that
the ground state of the system is the filled Fermi sea with
a well-defined Fermi wave vector k~. ' As a result, the
Shubnikov —de Haas oscillations near v= —,

' can be ex-

plained by the presence of a well-defined Fermi wave vec-
tor at v= —,'. The mean-field energy gap of the system
with v=p/(2p + 1) in the p ~ ao limit is given by

Es =eh, B/mc, where m is the mass of the composite fer-
mions. Note that, in the large-co, limit, the finite m is
caused by the Coulomb interaction between the fermions.
The effective mass m should be chosen such that the Fer-
mi energy EF is given by the Coulomb energy scale.

There are a number of experiments which show that
there is a well-defined Fermi wave vector at v= —,'.
They observed the geometrical resonances between the
semiclassical orbit of the composite fermions and another
length scale artificially introduced to the system near
~—1

2

However, it is possible that fluctuations and two-
particle interactions, which are ignored in the mean-field
theory, are very important. Note that the density Auc-
tuations correspond to the Auctuations of the statistical
magnetic field. Therefore, the density fluctuations above
the mean-field state induce the gauge-field fluctuations. '

If the fermions are interacting via a two-particle interac-
tion u(q)= Vo/q "(1(ri(2), the effects of the gauge-
field Auctuations can be modified. In fact, the gauge-field
fluctuations become more singular as the interaction
range becomes shorter (larger g). The reason is that the
longer-range interaction (smaller g) suppresses more
effectively the density fluctuations, and thus induces the
less singular gauge-field fluctuations. Therefore, it is im-
portant to examine whether the mean-field Fermi-liquid
state is stable against the gauge-field Quctuations, which
also includes the effects of the two-particle interactj. on.

One way to study the stability of the mean-field
Fermi-liquid state is to examine the low-energy behavior
of the self-energy correction induced by the gauge-field
fluctuations. It is found that the most singular contribu-
tion to the self-energy X(k, co) comes from the transverse
part of the gauge-field fluctuations. '" The lowest-order
perturbative correction to the self-energy (due to the
transverse gauge field) has been calculated by several au-
thors. '" It turns out that ReX-ImX-co "+"' for
1 ( ri (2, and ReX-co Into, ImX -co for g = 1 (Coulomb
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interaction). Thus the Landau criterion for the quasipar-
ticle is violated in the case of 1 & g ~ 2, and the case of
g= 1 shows marginal Fermi-liquid behavior. In both
cases, the efFective mass of the fermions diverges, as
I*/m o- ~gk

'" " '" " for 1&ran&2, and as
m'/m ~ lng„~ for il= 1, where g„=(k/2m) —p, and p
is the chemical potential.

In a self-consistent treatment of the self-energy, the
energy gap of the system in the presence of a small
effective magnetic field AB can be determined as
E ~ ~bB ~"+"' for 1 & g (2 and Eg ~

bB
~
/~lnhB

~
for

g= 1. Therefore, the energy gap of the system vanishes
faster than the mean-field prediction, or, equivalently, the
effective mass diverges in a singular way as v= —,

' is ap-
proached. These results suggest that the effective Fermi
velocity of the fermion vF goes to zero at v= —,

' even
though the Fermi wave vector kF is finite and the
quasiparticles have a very short lifetime r = ( T/
sF )

2~" "'(1/E~), where T is the temperature and e~ is
the Fermi energy. However, a recent magnetic focusing
experiment' suggests that the fermion has a long lifetime
or a long mean free path which seems inconsistent with
the above picture.

Since the one-particle Green s function is not gauge in-
variant, the singular self-energy could be an artifact of
the gauge choice. To address this question, we recently
examined the lowest-order perturbative corrections to the
gauge-invariant density-density and current-current
correlation functions. ' It was found that there are im-
portant cancellations between the self-energy corrections
and the vertex corrections due to the Ward identity. ' '
As a result, the density-density and current-current
correlation functions show a Fermi-liquid behavior for all
ratios of ~ and vFq.

' In particular, the edge of the
particle-hole continuum co = vFq is essentially not
changed, which may suggest a finite effective mass. From
the current-current correlation function, the transport
scattering rate (due to the transverse part of the gauge
field) is given by 1/r„~co " "'((co after the cancella-
tion (the scattering rate would be much larger,
1/&„0-co2~"+"'&&co, had we ignored the vertex correc-
tion). ' Therefore, the fermions have a long transport
lifetime, which explains a long free path in the magnetic
focusing experiment. From these results, one may
suspect whether the divergent mass obtained from the
self-energy has any physical meaning.

However, due to the absence of the underlying quasi-
particle picture, we cannot simply conclude that fermions
have a finite effective mass associated with the long life-
time which was obtained from the small-q and -co

behaviors of the density-density and current-current
correlation functions. In fact, it is found that 2kF
response functions show singular behaviors compared to
the usual Fermi-liquid theory. ' We also like to mention
that recent experiments on the Shubnikov —de Haas oscil-
lations have observed some features which were inter-
preted as a sign of the divergent effective mass of the fer-
mions as v= —,

' is approached. The experimentally deter-
mined effective mass diverges in a more singular way
than any theoretical prediction. However, their deter-

mination of the effective mass is based on a theory for the
noninteracting fermions, and also the disorder effect is
very important near v= —,

' because the static fluctuations
of the density due to the impurities induce an additional
static random magnetic field. Since there is no satisfacto-
ry theory in the presence of disorder, it is difficult to com-
pare the present theory and the experiments.

In order to answer the question about the effective
mass, it is important to examine other gauge-invariant
quantities which may potentially show a divergent
effective mass. In a recent paper, ' we calculated the
lowest-order perturbative correction to the compressibili-
ty with a fixed hB, which shows a thermally activated
behavior when the chemical potential lies exactly at the
middle of the successive effective Landau levels. It turns
out that the corrections to the activation energy gap and
the corresponding effective mass are singular, and con-
sistent with previous self-consistent treatment of the self-
energy. Thus it is necessary to understand the apparent-
ly different behaviors of the density-density correlation
function at v= —,

' and the activation energy gap deter-
mined from the compressibility near v= —,'.

One resolution of the problem was suggested by Stern
and Halperin' within the usual Landau-Fermi-liquid
theory framework. The idea is that both the effective
mass and Landau-interaction function are singular in
such a way that they cancel each other in the density-
density correlation function. Recently, Stern and Halpe-
rin' put forward this idea and constructed a Fermi-
liquid theory of the fermion-gauge system in the case of
Coulomb interaction. Even though the use of the
Landau-Fermi-liquid theory or equivalently the existence
of well-defined quasiparticles can be marginally justified
in the case of the Coulomb interaction, we feel that it is
necessary to construct a more general framework which
applies to the arbitrary two-particle interaction (1 & g (2
as well as ran= 1), and allows us to check the validity of
the Fermi-liquid theory and to judge when the divergent
mass shows up. In particular, it is worthwhile to provide
a unified picture for understanding previous theoretical
studies.

In the usual Fermi-liquid theory, the quantum
Boltzmann equation (QBE) of the quasiparticles provides
useful information about the low-lying excitations of the
system. Our objective is to construct a similar QBE
which describes all the low-energy physics of the compos-
ite fermion system. One important difhculty we are fac-
ing here is that we cannot assume the existence of the
quasiparticles a priori in the derivation of the QBE, even
though the conventional derivation of the QBE of the
Fermi-liquid theory relies on the existence of these quasi-
particles. Following closely the work of Prange and Ka-
danoff about the electron-phonon system, where there is
also no well-defined quasiparticle at temperatures high
compared with the Debye temperature, we concentrate
on a generalized Fermi-surface displacement which, in
our case, corresponds to the local variation of the chemi-
cal potential in momentum space. Due to the nonex-
istence of a well-defined quasiparticle, the usual distribu-
tion function nk in the momentum space cannot be de-
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scribed by a closed equation of motion. However, we will
see below that the generalized Fermi surface displace-
rnent does satisfy a closed equation of motion. This equa-
tion of motion will be also called QBE.

We use the nonequilibrium Green's-function tech-
nique to derive the QBE and calculate the general-
ized Landau-interaction function which has . frequency
dependence as well as the usual angular dependence due
to the retarded nature of the gauge interaction. The QBE
at v= —,

' consists of three parts. One is the contribution
from the self-energy correction which gives the singular
mass correction, the other one comes from the general-
ized Landau-interaction function, and finally it contains
the collision integral. These quantities are calculated to
the lowest order in the coupling to the gauge field.

By studying the dynamic properties of the collective
modes using the QBE, we find that the smooth fluctua-
tions of the Fermi surface (or the small angular momen-
tum modes) show the usual Fermi-liquid behavior, while
the rough fiuctuations (or the large angular momentum
modes) show the singular behavior determined by the
singular self-energy correction. Here the angular
momentum is the conjugate variable of the angle mea-
sured from a given direction in momentum space. There
is a forward scattering cancellation between the singular
self-energy correction and the singular (generalized)
Landau-interaction function and a similar cancellation
exists in the collision integral as far as the small angular
momentum modes I & l, (I, ~ 0 '~"+"', where 0 is the
small external frequency) are concerned. However, in the
case of the large angular momentum modes i )I„the
contribution from the Landau-interaction function be-
comes very small so that the self-energy correction dom-
inates, and the collision integral also cannot be ignored in
general. In this case the behaviors of the low-lying modes
are very different from those in the Fermi liquids.

If we ignore the collision integral, it can be shown that
the system has numerous collective modes between
0 ~ q"+"' (1 & i) & 2), 0 ~ q/ 1nq ~(ii= 1), and Q=u~q,
while there is the particle-hole continuum below
Q~q"+"' (1&ii&2) and Q~q/~lnq~(ii=1). The dis-
tinction between these two types of low-lying excitations
is obscured by the existence of the collision integral.

From the above results, we see that the density-density
and current-current correlation functions, being dorninat-
ed by the small angular momentum modes I (l„show
the usual Fermi-liquid behavior. On the other hand, the
energy gap away from v =—,

' is determined by the
behaviors of the large angular momentum modes 1 )l„
so that the singular mass correction shows up in the ener-

gy gap of the system.
The outline of the paper is as follows. In Sec. II, we in-

troduce the model and explain the way we construct the
QBE without assuming the existence of the quasiparti-
cles. In Sec. III, the QBE for the generalized distribu-
tion function is derived for AB =0. In Sec. IV, we con-
struct the QBE for the generalized Fermi-surface dis-
placement for b,B=0. We also determine the generalized
Landau-interaction function and discuss its conse-
quences. In Sec. V, the QBE in the presence of a small
hB is constructed, and the energy gap of the system is

determined. In Sec. VI, we discuss the collective excita-
tions of the system for the cases of hB =0 and EBAO.
We conclude the paper and discuss the implications of
our results to experiments in Sec. VII. We concentrate
on the zero-temperature case in the main text and pro-
vide the derivation of the QBE at finite temperatures in
the Appendix, which requires some special treatments
compared to the zero-temperature counterpart.

II. MODEL AND QUANTUM BOLTZMANN
EQUATION IN THE ABSENCE OF

QUASIP ARTICLES

Two-dimensional electrons interacting via a two-
particle interaction can be transformed to composite fer-
rnions interacting via the same two-particle interaction,
and also coupled to an appropriate Chem-Simons gauge
field which appears due to the statistical magnetic Aux

quanta attached to each electron. ' The model can be
constructed as follows (fi=e =c =1):

Z = D D *Dae

where the Lagrangian density X is

l 1Jaoc, ~B;a.
2m/

+—,
' f d r'g*(r)f(r)v(r r')g (r')g—(r'), (2)

VX (a) =2irgn, =B, „and (a ) =0 .

Therefore, at the mean-field level, the fermions see an
effective magnetic field ( 5 A = A —( a ) )

EB=VX' A=B Bigs&

which becomes zero at the Landau-level filling factor
v=1/2n. The IQH effect of the fermions may appear
when the effective Landau-level filling factor
p =2m.n, /EB becomes an integer. This implies that the
real external magnetic field is given by B =Bi&z„+KB
=2m.n, [(2np + 1)/p], which corresponds to a FQH state
of electrons with the filling factor v =p/(2np + 1).

The Auctuations of the Chem-Simons gauge field,
5a„=a„—( a~ ), can be incorporated as follows:

where g represents the fermion field and P is an even
number 2n which is the number of Aux quanta attached
to an electron, and u(r) ~ Vo!r" is the Fourier transform
of v(q)= Vo/q " (1&ii&2) which represents the in-
teraction between the fermions. A is the external vector
potential (B=V X A), and we choose the Coulomb gauge
V a=O for the Chem-Simons gauge field. Note that the
integration over ao enforces the following constraint:

V X a=2vrgg'(r)f(r),

which represents the fact that P number of fiux quanta
are attached to each electron.

The saddle point of the action is given by the following
conditions:



17 278 YONG BAEK KIM, PATRICK A. LEE, AND XIAO-GANG WEN 52

Z= fDgDg'D5a„e I

where

(6)
6 (x &,xz ) does not satisfy the translational invariance in
space-time, so that it cannot be written as G (x, —x2).
By the following change of variables:

X=g*(c}o+i5ao p—)f —g'(c), —i5a, +id, A, )g.1

5aoc.'~B, 5a-
2mP

fd r'[V X5a(r}]
2(2vrg )

Xv(r —r')[VX5a(r')] .

(r„&,t„&) =x
&

—x2 and (r, t )=(x&+x2 )/2 .

G (x&,x2) can be written as

arel rel6 (r„,&,t„„r,t)=i 1' r—,t—

XP r+, t+2' 2

(12)

(13)

After integrating out the fermions and including gauge-
field fluctuations within the random-phase approximation
(RPA), the efFective action of the gauge field can be ob-
tained as

S,s.=— 5a „'(q, co)D„„(q,co, EB)5a„(q,co),1 d q dco

2 (2~}2 2~

Go (p, co) =ifo(co) A(p, co), (14)

where fo(co) =1/(e ~ +1) is the equilibrium Fermi dis-
tribution function and (X is the retarded self-energy)

By the Fourier transformation for the relative coordi-
nates t„,and r„,, we obtain G (p, co;r, t). At equilibri-
um, 6 can be written as

where D „'(q, co, b,B ) was calculated by several au-
thors. ' For our purpose, the 2X2 matrix form for
D„'is suKcient so that p, v=0, 1, and 1 represents the
direction that is perpendicular to q. In particular, when
68 =0, the gauge-Geld propagator has the following
form:

D„,'(q, co) =

m

2&

1
q

2n.P

l q

—i1'—+X(q)q'
q

where y =2n, /k~ and g(q) =1/24m m +v (q)/(2m/) .
Since the most singular contribution to the self-energy
correction comes from the transverse part of the gauge
field, '" we concentrate on the effect of the transverse
gauge-field fluctuations. In the infrared limit, the trans-
verse gauge-field propagator can be taken as' '

(10}D, , (q, co) =

and

where x&=(r&, t, ) and x2=(rz, tz). At nonequilibrium,

l f +gq~CO

q

where y = 1/24m. m + Vo/(2n. P) for g =2
y = Vo /( 2m.P ) for 1 & g & 2.

Before explaining the way we construct the QBE for a
fermion-gauge-field system in which there is no wel1-
defined Landau quasiparticle in general, we review the
usual derivation of the QBE for a Fermi liquid with well-
defined quasiparticles. ' ' ' The QBE is nothing but the
equation of motion of the fermion distribution function.
Therefore, it can be derived from the equation of motion
of the nonequilibrium one-particle Green's function. Fol-
lowing Kadanoff and Baym, let us consider the follow-
ing one-particle Careen's function:

6 (x&,x2)=i(g (x2)g(x, )),

—2ImX (p, co)
A p, co

[co—
g

—ReX (p, co)] +(ImX (p, co))

(15)

In the usual Fermi-liquid theory, ImX ((co, so that
A(p, co) is a peaked function of co around co=/ +ReX".
In this case, the equilibrium spectral function can be tak-
en a$26 —28

A (p, co) =2m-5[co —
g~

—ReX"(p,co)] . (16)

Using this property, if the system is not far away from
equilibrium, one can construct a closed equation for the
fermion distribution function f(p, r, t), which is the
QBE. The linearized QBE of 5f (p, r, t )=f(p, r, t }
—fo(p), where fo(p) is the equilibrium distribution func-
tion, is the QBE of the quasiparticles in the Fermi-liquid
theory. From this QBE, the equation of motion for the
Fermi-surface deformatjon, which js defined as

v(8, r, t)= f dlpl5f(p, r, t),
can be also constructed.

In the case of the fermion-gauge-field system, as men-
tioned in Sec. I, ImX (co) is larger than co (1 & rt& 2) or
comparable to co (g= 1); i.e., strictly speaking, there is no
well-defined Landau quasiparticle from the viewpoint of
perturbation theory. However, Stern and Halperin'
showed that, within a self-consistent treatment, the
Fermi-liquid theory can be barely applied to the case of
Coulomb interaction in the sense that ReX" is logarith-
mically larger than ImX . Note that, in general, A (p, co}
at equilibrium is no longer a peaked function of ~ in the
fermion-gauge-field system. Because of this, f(p, r, t )

does not satisfy a closed equation of motion even near the
equilibrium. However, if X is only a function of co,

A (p, co) is still a well-peaked function of g~ around g~ =0
for suKciently small cu. This observation leads us to
define the following generalized distribution function:
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f(8,co;r, t)= —i f 6 (p, co;r, t), (18)
Similarly, X and X"are given by

where 0 is the angle between p and a given direction.
The linearized quantum Boltzmann equation for
5f( 8, t0; r, t ) =f( 8, co;r, t ) —fo {co ) can be derived, which
is analogous to the QBE of the quasiparticles in the usual
Fermi-liquid theory. From this QBE, one can also con-
struct the equation of motion for the generalized Ferrni-
surface displacement

u( 8r, t)= f 5f(8,~;r, t),
which corresponds to the variation of the local chemical
potential in the momentum space. This object can be still
well defined even in the absence of a sharp Fermi surface.
This is because one can always define a chemical poten-
tial in each angle 0, which is the energy required to put
an additional fermion in the direction labeled by 0 in
momentum space. In Sec. III, we derive the linearized
QBE for the generalized distribution function
5f(8,co;r, t ).

III. QUANTUM BOLTZMANN EQUATION
FOR GENERALIZED DISTRIBUTION FUNCTION

In the nonequilibrium Green's-function formulation,
the following matrices of the Green's function and the
self-energy satisfy Dyson's equation

X =X,—X =X —X
(23)

The matrix Green's function satisfies the following equa-
tions of motion:

8
i —Ho(I ]) G(x, ,xz)

Bti

=5(x& —xz)I+ f dx3X(x&, x3)G(x3,xz),
(24)

8
i ——Ho(rz) 6(x„xz)

9t&

=5(x, —xz)I+ fdx36(x] x3)X(x3 xz)

where

1
Ho(r)) =-

2m Br)

'2

and

Ho(rz) =— a
2m Br2

For our purpose, we need only the equation of motion for6(
6, —6
6 & and X=

X, —X

X —X- (20) i —Ho(r&) G (x»xz)a
Bt]

where

G (x&,xz)= i(g(x—, )g (xz)),
G (x&,xz)=i(g (xz)g(x, )),
6,(, ) =e(t, —t )6 (, , )

= fdx3[X, (x, ,x3)G (x3,xz)

—X (x&,x3)6-,(x3,xz}],

i —H—o(rz) G (x &, xz )
2

(26}

+e(tz t, )G (x„—xz),
6-,(xi,xz)=e(tz —ti)6 (xi,xz)

+e(t, —t, )6 (x, ,x, ),
and X, X, X„andX-, are the associated self-energies.
e(t)=1 for t)0 and zero for t (0. G (retarded) and
G" (advanced) Careen's functions can be expressed in
terms of 6, (time ordered), 6-, (antitime ordered), 6 and
6 as follows:

GR 6 6( 6) 6 7

x3 6~ x i,x3 X x3,&2

—G (x„x3)X-,(x3,xz)] .

G, =ReG +—,'(6 +6 ),
6-=—,'(G +G ) —ReG

(27)

Taking the difference of the two equations of Eq. (26},
and using the relations

6 =6,—G =G —6- . we obtain

. a . a i a
l +l

Bt, Bt2 2m Br,
1 8

2m Br2
6 (x„xz)

= fdx3[ReX (x„x3)G (x3,xz)+X (x„x3)ReG (x3,xz) —ReG (x„x3)X (x3,xz) —G (x„x3)ReX(x3 xz)

+-,'r (x„x,)6 (x, ,x, )——,'r'(x, ,x, )6 (x„x,) ——,'6 {x„x,)r (x„x,)+-,'6 {x,,x, )r (x„x,)] .

(28)
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Near equilibrium, one can linearize this equation assuming that 5G =G —Go and 5K =X—Xo are small, where Go
and Xo are matrices of the equilibrium Green s function and the self-energy. The Fourier transform 6 (p „p2)

[pi =(pi, co, ),p2 =(pz, co2)] of G(x „x2) can be written in terms of the variables defined by

p =(p, co) =(pi —p~)/2 alid q =(q, Q) =pi+@~ .

Using these variables, the Fourier-transformed linearized equation of 5G (p, q } can be written as

[Q—vz ~q~cos8 ]56 (p, q) —[ReXO (p +q/2) —
ReXO (p —

q /2)]5G (p, q)

+[60 (p+q/2) —Go (p —q/2)]5(ReX (p, q)) —[Xo (p+q/2) —Xo (p —q/2)]5(ReG (p, q))

+ [ReGO (p +q/2) —Re60 (p —q/2)]5X (p, q )

(29)

=Go (p)5X'(p, q)+Xo'(p)56 (p, q) —Go (p)5X'(p, q) —Xo'(p)56'(p, q), (30)

where 0 is the angle between p and q. In the presence of an external potential U(q), one should add a term
U(p)[60 (p +q/2) —60 (p —q/2) ] on the left-hand side of Eq. (30).

We next check that this expression is equivalent to the usual QBE for 56 (p, co;r, t), where r and t are conjugate
variables of q and Q. Note that

F(p+q/2) I" (p ——q/2)=q. +QBF BF
(31)

Bp BM

for small ~q~ and Q. From Eqs. (30) and (31), one can check that 56 (p, co;r, t), which is the Fourier transform of
56 (p, q), satisfies the following equation:

[co—p /2m, 56 (p, co;r, t)]—[ReXO(p, co), G (p, co;r, t)]—[5(ReX"(p,co)),60 (p, co)]

—[Xo (p, co), 5(ReG (p, co;r, t))]—[5X (p, co;r, t), ReGO (p, co)]

=Go (p, co)5X (p, co;r, t)+Xo (p, co)5G (p, co;r, t) —60 (p, co)5X (p, co;r, t) Xo (—p, co)56 (p, co;r, t),
where [X,Y] is the Poisson bracket

ax aY ax aY ax aY ax aY
aco at at aco ap ar ar ap

Note that this equation is just the linearized version of the usual QBE for G (p, co;r, t ) given by

(32)

(33)

[co p /2—m —ReX"(p,co;r, t), 6 (p, co;r, t)]—[X (p, co;r, t), ReG (p, co;r, t)]
=X (p, co;r, t)G (p, co;r, t) —6 (p, co;r, t)X (p, co;r, t) . (34)

We directly deal with Eq. (30) in momentum space
(q, Q} rather than the long-time, long-wavelength expan-
sion in real space (r, t) given by Eq. (32). The nonequi-
librium one-loop self-energy correction, which is given by
the diagram in Fig.

'

1, can be written as

2

(p, co)= Q f ImD„(q,v)
q

X {[no(v)+ l]6 (p+q, co+ v)

+no(v)G (p+q, co —v) I,
(35)

X (p, co)= g f ImD»(q, v)
q

X {no(v)6 (p+q, co+v)

FICJ. 1. The one-loop Feynman diagram for the self-energy of
the fermions. Here the solid line represents the fermion propa-
gator, and the wavy line denotes the RPA gauge-field propaga-
tor.

+ [no(v)+ 1]G (p+q, co —v) I,
where no(v)=1/(e" —1) is the equilibrium boson dis-
tribution function. The real part of the retarded self-
energy is given by
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ReX"(p, co; q, Q }

dco' ImX (p, co';q, Q)
7T co co

f dco

27Tl

X (p, co', q, Q) —X (p, co';q, Q)
M CO

dco' G (p, co';q, Q) —6 (p, co';q, Q)
2&l CO

(37)

and ImG =(1/2i)(G —6 ).
At equilibrium, the Green's functions 6 and 6 can

be written as

6 (p, co)=ifo(co) A(p, co),

G (p, co}= i [1——fo(co}]A(p,co),
(38)

where 3 (p, co) is given by Eq. (15). From these relations,
the one-loop self-energy Xo at equilibrium can be written
as

dv pXq
0 ~ m

X lmD»(q, v}
I + n( o)vf o (fp+ q }

co+ i 5 gz+q
—v—

&o(»+fo(kp+, }+
co+i 5 gz+ +v—

(39)

As emphasized in Sec. II, if the self-energy depends only
on the frequency co, A(p, co) at equilibrium is a peaked
function of g . Therefore, as long as the system is not far
away from the equilibrium, the generalized distribution
function f(8~,co;q, Q), which is given by the following
relations, can be well defined at zero temperature:

f "
[ iG (p,—co;q, Q)] =f(8,co;q, Q),

(40)

f [iG (p, co;q, Q)] —= 1 f(8~,co;q, Q), —
2'

where 8 is the angle between p and q.

where P represents the principal value and
ImX =(1/2i)(X —X ) is used. The same relations
hold for the Green's functions 6
ReG "(p,co;q, Q}

The extension to the case of finite temperatures re-
quires special care because, even at equilibrium,
ImXo(p, co) is known to be divergent, " so that A(p, co),
Go, and 60 at equilibrium are not well defined. There-
fore, the nonequilibrium 6 and G are also not well
defined near equilibrium. In order to resolve this prob-
lem, let us first separate the gauge-field fluctuations into
two parts, i.e, a(q, v) =a (q, v) for v & T and
a(q, v) =a+(q, v) for v ) T, then examine the efFects of a+
and a separately. The classical fluctuation a of the
gauge field can be regarded as a vector potential which
corresponds to a static but spatially varying magnetic
field b =V Xa . In order to remove the divergence in
the self-energy, one can consider the one-particle Green's
function 6—:G (P, co; r, t ) as a function of a variable
P =p —a . Since we effectively separate out a Auc-

tuations, the self-energy, which appears in the equation of
motion given by Eq. (24), should contain only a+ fiuctua-
tions and free of divergences. Therefore, 56
=56 (P,co;r, t) is well defined, and its equation of
motion is given by the Fourier transform of Eq. (30) with
the following replacement. In the first place, the variable

p should be changed to a variable P =p —a . Second,
the self-energy X should be changed to X+, which now
contains only s+ fluctuations. Finally, the equation of
motion contains a term which depends on b . We argue
in the Appendix that ignoring this term does not affect
the physical interpretations of the QBE, which will ap-
pear in Secs. IV, V, and VI. We provide the details of
the analysis for the finite temperature case in the Appen-
dix. From now on, we will adopt the notation that 6
should be understood as G for finite temperatures. For
example, the generalized distribution function at finite
temperatures is given by Eq. (40) with the replacement
that 6,6 ~6,6 . The same type of abuse of nota-
tion applies to the self-energy, where only a+ Auctuations
should be included; i.e., the QBE is valid at finite T, pro-
vided that the lower cutoff T is introduced for the fre-
quency integrals.

In Eq. (35), one can change the variables such that
p'=p+q and co'=co+v. The gauge-field propagator can
be written in terms of these variables as
D»(q, v)=D»(p' —p, co' —co), where (p, co) and (p', co')

represent the incoming and outgoing fermions. Assum-
ing that

I p I
=

I
p'I =kp and u»ng I

p' —p I

=kF I 8p q
—8~,

we obtain D»(q, v)=D&&(k+~8&q —8 ~, co' —co}. Using
the above results and the fact that 6 and 6 are well-
peaked functions of g~ near the equilibrium, ReX can be
written as

dOpqReX"=N(0) f f d co'U~ReD» (k~ ~
8 ~

—
8~q ~, co' co )f(8~,co', q, Q )—,

2m'
(41)

where N (0)=m /2~ is the density of state. For simplicity, here we ignore the dependence of the gauge-field propagator
D i &

on the fermion Green's function. In Sec. VII, we discuss the results of this approximation, and argue that the addi-

tional contributions coming from the dependence of the gauge-field propagator on the fermion Careen's function do not
change the consequences of the present analysis. Now 5(ReX ), which is the deviation from the equilibrium, can be
written as
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d Op.q5(ReX ) =N(0) f f d co'u~ReD» ( k~ ~ 8& q
H—~ ~, co' c—o )5f ( 8~ z, co', q, Q ) .2'

We also assume that the nonequilibrium self-energy depends only on co, like that of the equilibrium case, which is plau-
sible as long as the system is not far away from the equilibrium. In order to obtain the equation for f(H, co;q, Q), we
perform jd g„/2m. integration on both sides of Eq. (30). Note that

f dg d~ [1 f(H—,co', q, Q}]+f(H~,co';q, Q)
ReG (p, co';q, Q)= P

2m 277 CO CO

dcu + 1

2& co co

Thus the fourth and fifth terms on the left-hand side of the QBE [given by Eq. (30)] vanish after j dg~ /2m integration.
After this integration, using Eqs. (36}, (40), and (42), the remaining parts of Eq. (30) can be written as
[5f(H, co)—:5f(H, cu;q, Q)]

[Q—uFq cosH~]5f (H~, co }

—N(0) f f dcu'uFReD»(k~~8 —8 ~, cu' co)[fo—(co'+Q/2) fo(co'——Q/2)]5f(H, co)2'

+N(0) f f dco'uFReD»(k~~8»q —H~~, co' co)[fo(co+—Q/2) fo(cu Q/—2)]5f(—8 ~,co')

=N(0) f dH f f dc''u+ImDii(kF~8&q H~~, v)
0 7T

X (5(co' —co+ v) I5f (H~, cu)[1 —fo(co')+no(v)] —5f(H...cu'}[f0(cu}+no(v}1]
—5(co' —co —v)I5f(8 ~,co')[I —fo(cu)+no(v)] —5f(H~, co)[fo(co')+no(v)]] ) . (44)

Some explanations of each term in Eq. (44) are in order. In the first place, as mentioned in Sec. II, Eq. (44) is the ana-
log of the usual QBE for the quasiparticle distribution function 5f(p, q, Q); thus the structures of the QBE s in both
cases are similar. The first term on the left-hand side of the equation corresponds to the free fermions. The second
term on the left-hand side corresponds to the self-energy correction which renormalizes the mass of the fermions. The
third term on the left-hand side can be regarded as the contribution from the generalized Landau-interaction function,
which can be defined as

F(8 ~ H, cu' co)=—uFReD—, i(kF~8 q
—8 ~, co' —co) . (45)

Note that this generalized Landau-interaction function contains the frequency dependence as well as the usual angular
dependence. This is due to the fact that the gauge interaction is retarded in time, and it is also one of the major
differences between the fermion-gauge-field system and the usual Fermi liquid. The right-hand side of the equation is
nothing but the collision integral I, &&;„,„andis given by the Fermi golden rule. Thus Eq. (44) can be written as

[Q—u~qcosH ]5f(H, co) —[Redo(co+Q/2) —ReXD(co —Q/2)]5f(H~, co)

dO ~

+N(0) f f den'F(8 ~ H, co' co) [—fo(cu+ Q—/2) fo(co Q/2—) ]5f(8—~,co')=I„„;„,„.2'
After taking the integral jdco/2m on both sides of Eq. (44), it can be seen that one cannot write the QBE only in

terms of u(H, q, Q)= j(dco/2m. )5f(H, co;q, Q), which is the generalized Fermi-surface displacement. That is, the
QBE becomes

[Q—uFq cosH ]u(H, q, Q)

dO ~—N(0) f f dco f dco'ug ReD„(kF~Hpq —H~~, co' —co)[fo(co'+Q/2) —fo(co' —Q/2)][5f(H~, co)—5f(Hpq, cu)]

=N(0) fdH, f f dco f dco'u~IniD»(k~~8 ~ 8~,v)—
X I 5(co' co+ v) [1 f0(co')—+no(v) ]+5(co'—cu v) [f0(cu') +—n 0(—v) ] ]

X [5f(H, co) —5f(Hpq, co)] . (46)
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In the presence of the external potential U(q, Q), one
should add an additional term v~q cosO~U(q, Q) on the
left-hand side of Eq. (46), which requires a careful deriva-
tion. Note that the contributions from the self-energy
and the generalized Landau-interaction function are com-
bined on the left-hand side of the QBE. Even though the
above equation is already useful, it is worthwhile to trans-
form this equation to the more familiar one. In Sec. IV,
we provide the approximate QBE for u (O~, q, Q) which
is more useful to understand the low-energy excitations of
the system.

(~/y2)k 2+ q
~
0

~

2+ q

ReD „(k~~ O~, co)=
2+(~/ )2kz+2g 0 2+2' (47)

It can be checked from Eq. (44) that 5f(0~,co;q, Q) is
finite only when ~co~ 5 Q at zero temperature. Therefore,
the frequency co in ReD»(k~~0~, co) is cut off by Q. In
this case, one can introduce the 0-dependent cutoff
0, =(1/k&)(yQ/y) ~''+"' in the angle variable, and ap-
proximate F(0,co) by

F(0,co=0) if ~0~ &0,
F 0 =' (48)F(0=O„co=0) otherwise,

IV. QUANTUM BOLTZMANN EQUATION
FOR GENERALIZED FERMI SURFACE

DISPLACEMENT

where

F(0,co=0)= 1
2

~kg /0/~
(49)

In order to transform the QBE given by Eq. (45) or (46)
to a more familiar form, it is necessary to simplify
the generalized Landau-interaction function F( 0, co )=v„ReD„(k„~0 ~, co ). Note that

Using this approximation and fo(co)=e( —co) at zero
temperature, the QBE given by Eq. (46) at zero tempera-
ture can be transformed into (the finite temperature case
is discussed in the Appendix)

dO ~

[Q—uzq cos8 ]u(0,q, Q)+QN(0) F„,„d,„(0~
—0 )[u(0,q, Q) —u(0v, q, Q)]2'

=N(0) f d0&q f f dc@f dc@'u+ImD&&(k+~0&q 0&q~ v)[5(co' co+v)[1 fo(co')]+5(co' co v)fo(co')J
0

X [5f(0,co) 5f(0pq, co)—] . (50)

Note that QN(0) f d0&q/2mFL, „d,„(0&q—0 ) ~Q ~"+"' (1&g~2) or QlnQ (ran=1} corresponds to the contribution
from the real part of the retarded self energy. On the other hand, QN(0) J d0&q/2mFL, „d,„(0 —0 )u(0&q, q, Q)
represents the Landau-interaction part.

For smooth Iluctuations of the generalized Fermi-surface displacement, u (O, q, Q) is a slowly varying function of 0, so
that there is a forward-scattering cancellation between the self-energy part and the Landau-interaction part. Therefore,
for smooth fluctuations, the singular behavior of the self-energy does not appear in the dynamics of the generalized
Fermi-surface displacement. On the other hand, for rough fluctuations, u(0, q, Q} is a rapidly varying function. In this
case, the Landau-interaction part becomes very small, and the self-energy part dominates. Thus, for rough fluctuations,
the dynamics of the generalized Fermi-surface displacement should show the singular behavior of the self-energy.
From these results, one can expect that the smooth and rough fluctuations provide very different physical pictures of
the elementary excitations of the system.

One can make this observation more concrete by looking at the QBE in angular momentum 1 (which is the conjugate
variable of 0) space. By the Fourier expansion

u(0, q, Q)= pe' u&(q, Q) and 5f(0,co;q, Q)= g e" 5f&(co;q, Q),
1 I

one can obtain

(51)

Qu&(q, Q) —
[u& +(q, Q) +u, ,(q, Q)] +QN(0) FL,„d,„(0)[1—cos(l0)]u, (q, Q)

V~/' dO

2 2~

=N(0) f d0 f f des f den'v 1m'„(k~~0~,v)[1 cos(i0)]—
0

X [5(co'—co+ v) [1 f0(co') ]+5(co' co —v)fo(co') j 5f&(co;q, Q) .— — (52)
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Note that, in the 1 —cos(18) factor inside the integral
on the left-hand side of the QBE given by Eq. (52), 1

comes from the self-energy part and cos(18) comes from
the Landau-interaction part. For 1 & 1, = 1/8,
~Q ' "+"', 1 —cos(18)=l 8 /2 and the additional 8
dependence makes the angle integral less singular because
typical 0 is of the order of O' "+"'. Due to this cancella-
tion for the small-angle (forward) scattering, the correc-
tion from the self-energy part and the Landau-interaction
part becomes of the order of Q "+"',so that it does not
cause any singular correction. Note that a similar type of
cancellation occurs in the collision integral. Therefore,
for the small angular momentum modes I &I„the system
behaves like the usual Fermi liquid. For 1 )1„the
cos(18) factor becomes highly oscillating as a function of
6, so that the Landau-interaction part becomes very
small. As a result, the self-energy part dominates and the
dispersion relation for the dynamics of the generalized
Fermi-surface displacement is changed from 0=vzq to
Qo-q~ +"'r (1&g&2) or Qo-q/llnql (g=1). Also, a
similar thing happens in the collision integral, i.e., the
cos(18) factor does not contribute and the remaining con-
tribution shows the singular behavior of the imaginary
part of the self-energy, so that the collision integral can-
not be ignored for 1&g&2 and can be marginally ig-
nored for g= l.

Using the above results, one can understand the
density-density and current-current correlation functions,
which show no anomalous behavior in the long-
wavelength and low-frequency limits. ' ' From the
QBE, one can evaluate these correlation functions by tak-
ing the angular average of the density or the current dis-
turban. ce due to the external potential, and calculating
the linear response. As a result, in these correlation func-

V. QUANTUM BOLTZMANN EQUATION
IN THE PRESENCE GF EFFECTIVE MAGNETIC

FIELD AND ENERGY GAP

We follow Hansch and Mahan ' to derive the QBE in
the presence of the finite effective magnetic field AB. The
only difference between the case of b,BWO and that of
AB =0 is that the external vector potential
AA= —

—,'rXEB enters into the kinetic energy in the
equation of motion of the one-particle Green's function. '

The same procedure used in the case of kB=0 can be
employed to derive the QBE from the equation of motion
of the one-particle Green's function. The resulting equa-
tion can be transformed to a convenient form by a change
of variables given by

P=p —6 A=p+ —,'r X68, (53)

so that one can construct the QBE for G (P, co; q, Q ),
which is now a function of P. ' As a result, the change
we have to make for the case of 68%0 [compared to the
case of bB =0 given by Eq. (30)] is that all momentum
variables should be changed from p to P, and the follow-
ing additional terms should be added to Eq. (30): '

tions the small angular momentum modes are dominat-
ing, so that the results do not show any singular behavior.
From these results, one can also expect that two different
behaviors of the small (1 &1, ) and large (1)1, ) angular
momentum modes may show up even in the presence of
the finite effective magnetic field 5B, and that the large
angular momentum modes may be responsible for the
singular energy gap of the system, ' ' which is the sub-
ject of Sec. V.

P e . a, a
m aP ' ' ' aP ' ' ' aP

.bBX 5G (P, co;q, Q)+ 5(ReX (P, ru;q, Q)) bBX Go (P, co)

(54)—bB. 5X (P,co;q, Q) X (ReGO (P, co))—AB Xo (P, co) X 5(ReG (P, co;q, Q)) .

Since the self-energy does not depend on the momentum P in the fermion-gauge-field system, the only term which con-
tributes to the QBE is

P 8
~ bBX 5G (P, co;q, Q) . (55)

m
In principle, the self-energy and Green s function in the QBE also depend on the effective magnetic field b,8. In the

semiclassical approximation for very small 6B, we ignore this type of AB dependence and, instead of that, we introduce
a low-energy cutoff E in the frequency integrals, which is the energy gap of the system. Then, after the integration

fd g /'2n, the equation b-ecomes that of Eq. (30) with a low-energy cutoff E~, and it also contains an additional term
given by

keg, 5f(Opq, co;q, Q),
Pq

where Q~ =Qg/m. After fd~/2~, the QBE for a generalized Fermi-surface displacement can be written as

a d&Pq
[Q uFqcosOp ]u(Opq, q, Q) i&co u(Opq, q, Q)+Q&(0)f +r. d (Op'q Opq)l u(Opq q Q)

Pq
Landau P q Pq

(56)

=N(0) f dOp. f" fde fde'uFImDi, (k~lOp. —
Opql, v){5(co'—co+v)[1 —fo(co')]+5(co' co v)fo(co')]— —

0

X [5f(Op, co)—5f (Op. q, co)], (57)
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[Q—v~q cos8pq]u(8pq q Q)

idaho, —u(8p, q, Q)=0 .
pq

On the other hand, for the rough fluctuations (I & l, ), the
self-energy part dominates, and we have a contribution
which is of the order QEg '" "~'"+" (1 & g & 2) or
Q

~ lnEg
~ (g = 1). Ignoring the Q term compared to

QE '" " '"+"
(1&ran&2) or Q~lnE

~ (ran= 1) and multi-
plying the factor Es" " '"+" (1&ran&2) or I/~In'~
(g= 1) on both sides of the equation, we obtain

[Q—vgq cos8p ] u(8p, q, Q) idaho,*— V(8,q, Q)
pq

= collision integral, (59)

where a low-energy cutoff E is introduced in
the frequency integrals. In particular, the angle
cutoff' 8, in FL,„d,„(8) should be changed
from 8, =(1/kF)(yQ/g)'~"+"' (bB =0) to 8, =(1/
kz)(yEslg)' "+"' (bBWO) in the low-frequency Q lim-
it.

Now similar interpretations can be made for the case
of bB=0. For the smooth fluctuations (l &l, = 1/8, ),
there is a cancellation between the self-energy and the
Landau-interaction parts. As a result, we have a term
which is of the order of QE' "' "+"', which can be ig-
nored compared to 0 because E is very small near v= —,

'

or 68 =0. Also, a similar thing happens in the collision
integral. Therefore, the QBE for the smooth fluctuations
can be written as

b,Bi
llnaB

I

(60)

This result is the same as the self-consistent treatment of
HLR (Ref. 6) and also the perturbative evaluation of the
activation energy gap in the finite-temperature compressi-
bility. ' We see that the divergent effective mass shows
up in the energy gap Eg. More detailed discussions of the
low-lying excitations described by the QBE can be found
in Sec. VI.

VI. COLLECTIVE EXCITATIONS

Let us first study the collective excitations of the sys-
tem with b,B=0 by looking at the QBE given by Eq. (52).
We ignore the collision integral for the time being, and
discuss its inhuence below. In the absence of the collision
integral, Eq. (52) can be considered as the Schrodinger
equation of an equivalent tight-binding model in the an-
gular momentum space. It is convenient to rewrite Eq.
(52) as

.integral in the QBE, the frequency of the revolution of
the narrow wave packet [see Fig. 2(b)] is given by b.co,*
because it mainly contains the large angular momentum
modes. The energy gap of the system can be obtained by
quantizing the motion of revolution and taking the small-
est quantized frequency as the energy gap of the system.
Therefore, the energy gap of the system is given by
E =he@,*~hBE'" " '"+"

(1&ran&2) or b,B/~lnE
~

(r)=1). Solving this self-consistent equation for E, we
obtain

where u~ =kz/m *, Aco,*=6,B/m, and m *Im
E '" " '"+" (1&g&2) or ~lnE

~
(ri=l).g

Let us consider two different types of wave packets
created along the Fermi surface. Note that the revolu-
tion of these wave packets is governed by two different
frequencies hco, and Aco,*. The frequency of the revolu-
tion of the broad wave packet [see Fig. 2(a)] is given by
Aco„because it consists mainly of small angular momen-
turn modes. On the other hand, if we ignore the collision

Upq

2
Ut+i +

v'g(l)g(l +1) v'g(l)g(l —1)

uI =&g (l)ul,

where

g(i, Q)=I+X(0)f F„.„,.„(8)[1—cos(i8)] .
0

(61)

(62)

FICx. 2. A broad wave packet (a) and a narrow wave packet
(b) (given by the shaded region) created in the momentum space.
The circle is the schematic representation of the Fermi surface,
which is actually not so well defined, and the arrow represents
the direction of motion of the wave packet.

Equation (61) describes a particle hopping in a one-
dimensional (1D) lattice with a spatial-dependent hop-
ping amplitude t&=uFq/2g(l). Note that g(l) is of the
order one for I & I, and becomes much larger,
g(l) ~Q '" "~'"+", when l &i, . Due to this type of
spatial-dependent hopping amplitude, the eigenspectrum
of Eq. (61) consists of two parts. That is, there is a con-
tinuous spectrum near the center of the band and a
discrete spectrum in the tail of the band. The discrete
spectrum appears above and below the continuous spec-
trum (see Fig. 3). The boundary between these
two different spectra is determined from Q =2tI
~ UF q Q'" " '"+", which self-consistently generates a
singular dispersion relation Q(8) o-q"+"'~ (1 &g&2) or
Q(8) ~ q/~lnq ~

(g= 1 ). Also, the tail of the band ends at
Q(8) =2t, -u~q.

One can map this energy spectrum to the diagram for
the excitations in the usual Q —

q plane, which is given by
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iikLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL~j~

v= —,
' state). In this case, Eq. (61) becomes [see also Eq.

(57)]

I hen,
QUI = U(

g (1)

UFq+2 + . (63}
&g (1)g (1+1) &g (1)g (1 —1)

iiiiiLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL&ii

When g (1}=1, one can write the solution of Eq. (63) [or
Eq. (57)] as

in' —iQt —i(u~q/hen )sinOP

FIG. 3. The energy band Q(0) of the tight-binding model
given by Eq. (61) as a function of 0. The shaded region around
the center of the band corresponds to the continuum states, and
the hatched region in the tails of the band corresponds to the
bound states.

Fig. 4. Note that the continuum states (1)1, ) can be
mapped to the particle-hole continuum which exist below
Qa-q"+"'~ (1&g&2) or Qo-q/~lnq~ (g=1). On the
other hand, the bound states (the discrete spectrum)
(1 & 1, ) can be mapped to the collective modes which ex-
ist between Q ~ q"+"' (1 & g & 2), Q ~ q/l»q l

(rl= I )

and Q- vFq. However, the distinction between these two
different elementary excitations is obscured by the pres-
ence of the collision integral, which provides the lifetime
for the excitations. In particular, since g(l, Q} does not
provide a sharp boundary between I ) I, and I &l„one
expects a crossover from particle-hole excitations to the
collective modes even in the absence of the collision in-
tegral.

Now let us consider the case of b,BAO (i.e., away from

with Q=nhe, . Thus we recover the well-known spec-
trum of degenerate Landau levels for free fermions.

When g (1 }%const, it is diflicult to calculate the spec-
trum of Eq. (63). However, using g(1)=g( —1), we can
show that the spectrum of Eq. (63) is symmetric about
Q =0, and Q =0 is always an eigenvalue of Eq. (63).
Also, for nonzero Aco„the spectrum is always discrete.

Note that, for small q « l, b,cp, /uF, u(8p, q, t) corre-
sponds to a smooth fluctuation of the Fermi surface. For
large q ))1,hcp, /uF, even the smooth parts of
u(8p, q, t), around 8p =+n/2, corresponds to a rough
fluctuation; hence the whole function u (8p, q, t ) corre-
sponds to a rough Quctuation. Thus we expect that the
small-q and large-q modes have very different dynamics.
The small-q modes should be controlled by the finite
effective mass, and the large-q modes by the divergent
mass.

To understand the behavior of the modes in more de-
tail, in the following we present a semiclassical calcula-
tion. The main result that we obtain is Eq. (75). The
dispersion of the lowest-lying mode (for q ) he@, /vz) has
a scaling form rp,„,(q ) ~ (pro, )"+"' f(q/q, ) with
f(00 )=const and f(x «1)~x' ". The crossover
momentum q, ~ Qb, tp, .

When qvF «Aco„the spectrum can be calculated ex-
actly and is given by

ldll,

g (1)
(64)

To obtain the spectrum for qvF & h~„wewill use a semi-
classical approach. Note that (8pq, 1 ) is a canonical coor-
dinate and momentum pair. The classical Hamiltonian
that corresponds to the quantum system Eq. (63) can be
found to be

lhCO, UFq
II(8p, 1 ) = + cos(8pq) . (65)

Assuming g (1) is a slowly varying function of 1, one ar-
rives at the following simple classical equations of
motion:

FIG. 4. The elementary excitations in Q —
q space in the ab-

sence of the co11ision integral. The shaded region corresponds
to the particle-hole continuum, and the hatched region corre-
sponds to the collective modes. The boundary is given by the
singular dispersion relation Q ~ q"+"' for 1 & g (2 and
0 q/~1nq~ for g= 1.

Krp~ UF q

From this equation, one can easily show that

VFq
cos( 8pq ) + 1p

Aco

(66)

(67)
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where Io is a constant. Note that Eq. (67) with la=0 is
an exact solution for the classical system Eq. (65), which
describes a motion with zero energy. Now the first equa-
tion in Eq. (66) can be simplified as

rates at a very large value, and (o,„,(q) is drastically re-
duced. This phenomenon is a result of the singular gauge
interaction. The crossover momentum q, is determined
from

VFq
g g cos(8p )+to

toe

(6g)
VFq, =l, =kF x
b,co,

'
y(o,„,(q ~ oo )

1/(1+ g)

which describes a periodic motion. The angular frequen-
cy of the periodic motion is given by

27TAco
(69)

2~ VFqf g cos(8pq)+ ID d8pq
0 EGO

The above classical frequency co has a quantum inter-
pretation. It is the gap between neighboring energy lev-
els, of which the energy is close to the classical energy as-
sociated with the classical motion described by Eq. (67).
In particular, the cyclotron frequency co, , is given by the
gap between the Q=O level and the first A&0 level.
Therefore C(g) =

vFcos n
—1

2 g+1

co,„,(q ~ ce ) = (q)[(o(q)](i —g)/( i+q)

for 1(g~2,
(72)

ACO

co,„,(q~ ca )= for 7j'= 1
C( g = 1 ) ~

incr,„,( q ~~ )
~

where

27TAco

2m. ( 1+g )sin (g —i)/(q+ i) 2/(&+/)x

~cyc

f g — cos(8p )+1 d8pq
0 ACO

(70)
for 1 & rj & 2 and C( g = 1 ) = up /2~ y for rj = 1. We find

Here we have chosen lo = 1 (instead of lo =0), so that Eq.
(70) reproduces the exact result Eq. (64) when q =0.
Note that g ( I ) also depends on frequency Q and we
should set A=co,„,in the function g (I). Thus the cyclo-
tron frequency should be self-consistently determined
from Eq. (70).

We would like to remark that when q ))bee, /u~, the
classical frequency in Eq. (69) is a smooth function of lo,
and hence a smooth function of the energy. This means
that the gap between the neighboring energy levels is also
a smooth function of the energy of the levels. The validi-
ty of the semiclassical approach requires that the gap be-
tween neighboring energy levels be almost a constant in
the neighborhood of interested energies. Thus the above
behavior of the classical frequency indicates that the
semiclassical approach is at least self-consistent.

To analyze the behavior of co yc we first make an aP-
proximation for Eq. (70) as

~cyc
UFq

g A, +1
ECO

where k is a nonzero constant between 0 and 1. We see
that co,„,(q) has a sharp dependence on q around

q
—hen, /uF. The smaller the b,co„the sharper the q

dependence. This sharp dependence is not due to the
singular gauge interaction, but is merely a consequence of
the fact that g (1)Ag (2)X. . . .

As q increases, g [A(upq/bee, )+ 1] becomes larger and
larger, thus we expect that co,„,(q) decreases. When q
exceeds a crossover value q„g[A,(vFq/b. co, )+ I] satu-

q, =B(rl)+bco, for 1 & g & 2,
q, =B(g= 1 )V hei, llnbco, I

(73)

where B(g)=m(y/y)' "+"'+C(rj). When q »q„the
cyclotron frequency saturates at the following values:

co,„,(q~ ~ ) =(bco, /C(rI))"+"'~ for 1 &g &2,
4(o, /C(g = 1)

i
ln [ b,(o, /C( g = 1 ) ] i

(74)

When vpq/hco, »1, the cyclotron frequency is expected
to have the following scaling form:

co
y (q) ~(bee )( +"'~ f(q/q ),

f ( ~ ) =const. and f(x && 1) CC x '

where f ( ao ) is determined from (o,„,(q ~ ~ )
~ (beg, )"+"'~2, and f(x &&1) can be obtained from the
condition that co,„,(q)=b, co, for q-b, (o, /up. Note that
the divergence off (x) for small x should be cut off when
x —b,co, /uFq, . As a result, the cyclotron spectrum of the
system looks like the one given by Fig. 5.

The smaller gap for q & q, corresponds to a divergent
effective mass m ~ (bco, )" "~~(i+"~, while the larger
gap near q =0 can be viewed as a cyclotron frequency de-
rived from a finite effective mass. The thermal activation
gap measured through the longitudinal conductance is
given by the smaller gap at large wave vectors q &q, .
However, the cyclotron frequency measured through the
cyclotron resonance for the uniform electric field should
be given by the larger gap.

The above discussion of the cyclotron frequency is for
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FIG. 5. The lowest excitation spectrum of the composite fer-
mion system in the presence of the finite efFective magnetic field
58 as a function of the wave vector q (solid line). The dashed
line is the scaling curve described in the text. For q ))q„the
excitation gap becomes smaller and is proportiona1 to

~

hB~"+"'~ for 1 & q & 2 and ~bB (/~lnhB
~

for rI= 1.
q, ~ V' [5B[ for 1 & q & 2 and q, ~ v

~
6B

~
[1nhB

~
for g = 1.

the toy model, where only the transverse gauge-field Auc-
tuations are included. One may wonder whether the
same picture also applies to the real v= —,

' state. In the
real v= —,

' state, the lowest-lying plasma modes corre-
spond to the intra-Landau-level excitations, for which the
energy is much less than the inter-Landau-level gap co, .
In the q ~0 limit, such modes decouple from the center-
of-mass motion. This means that the u+& components
(which correspond to the dipolar distortions of the Fermi
surface) of the eigenmodes must disappear in the q —+0
limit as far as the lowest-lying modes (intra-Landau-level
modes) are concerned. The mode that contains u+i com-
ponents should have a large inter-Landau-level gap in the
q, 0 limit in order to satisfy Kohn s theorem. Examin-
ing our solution for the eigenmodes in the q ~0 limit, we
find that the lowest eigenmodes are given by ul 5~) I.
Therefore, according to the above consideration, we can-
not identify the lowest-lying modes in the toy model with
the lowest-lying intra-Landau-level plasma modes in the
real model. However, this problem can be fixed following
the procedure introduced in Ref. 30. That is, we may in-
troduce an additional nondivergent Landau-Fermi-liquid
parameter hE, which modifies only the value of g (+ 1 ).
We may IIine tune the value of AI

&
such that the I =+1

modes in Eq. (64) will have the large inter-Landau-level
gap Q=bco, /g(+1)=co, . In this case the 1=+2 modes
become the lowest-lying modes in the q —+0 limit. Such
modes correspond to the quadrapolar distortions of the
Fermi surface, and decouple from the center-of-mass
motion. The above correction only affects the energy of
the lowest-lying modes for the small momenta,
q (A~, /Uz. With this type of correction, our results for
the toy model essentially applies to the v= —,

' state. The
only change is that the lowest-lying modes at small mo-

menta, q « b,co, /u~, is given by the I =+2 modes instead
of the I =+1 modes. This is because, as q decreases below
a value of order b, co, /uF, the I =+1 modes start to have a
higher energy than that of the I=+2 modes, and the
lowest-lying modes cross over to the l =+2 modes.

In the absence of the singular gauge interaction, ac-
cording to the picture developed in Ref. 30, one expects
that the intra-Landau-level plasma mode near v= —,

' has a
gap 2b.co, for q (b,co, /uF. The gap is expected to be re-
duced by the factor 2 when q ) b, ro, /uF. In the presence
of the singular gauge interaction, we 6nd that the plasma
mode has a gap of order 2bro, (since g(+2)%1) for
q(b, co, /uF. However, the gap for the large momenta
can be much less than he@, . Observing this drastic gap
reduction will con6rm the presence of the singular gauge
interaction.

In the above discussion, we have ignored the effects of
the collision term. The role of the collision integral is
simply to provide the lifetime effects on the collective ex-
citations. However, due to the energy conservation, only
the collective modes with energy greater than Zco,„,(q;„)
will have a finite lifetime. Here co,„,(q;„}is the
minimum energy gap of the lowest-lying plasma mode,
and q;„is the momentum where the energy takes the
minimum value. For large q, the modes above
2',~,(q;„}may have a short lifetime such that the modes
are not well defined.

VII. SUMMARY, CONCLUSION, AND
IMPLICATIONS TO EXPERIMENTS

In this section, we summarize the results and provide a
uni6ed picture of the composite fermions interacting with
a gauge Geld. In this paper, we construct a general frame-
work, which is the QBE of the system, to understand the
previously known theoretical ' ' and experimen-
tal' ' ' results. Since there is no well-defined Landau
quasiparticle, we cannot use the usual formulation of the
QBE, so we used an alternative formulation which was
used by Prange and Kadanoff for the electron-phonon
problem. We used the nonequilibrium Green's-function
technique to derive the QBE of the generalized dis-
tribution function 5f(8,co;q, Q) for b,B=0, and
5f (8pz, co;q, Q) (P =p —b. A) for 58%0. From this
equation, we also derived the QBE for the generalized
Fermi-surface displacement u (8~,q, Q) (bB =0) or
u (8p~, q, Q) (68%0) which corresponds to the local vari-
ation of the chemical potential in momentum space.

For 68 =0, the QBE consists of three parts: the self-
energy part, the generalized Landau-interaction part, and
the collision integral. The Landau-interaction function
F„,„d,„(8)can be taken as FL,„d,„(8)~ 1/~8~" for
8) 8, ~Q' "+"' and 1/~8, ~" for 8(8, . For the smooth
fluctuations of the generalized Fermi-surface displace-
ment (I (1,=1/8, ~Q ('~"+"')), where I (the angular
momentum in momentum space) is the conjugate variable
of the angle 8, there is a small-angle-(forward)-scattering
cancellation between the self-energy part and the
Landau-interaction part. Both the self-energy part and
the Landau-interaction part are of the order Q ~"+"'
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(1 & g (2) or Q lnQ (r1=1). After cancellation, the com-
bination of these contributions becomes of the order
0 '+". There is also a similar cancellation in the col-
lision integral, so that the transport scattering rate be-
comes of the order Q "+"'. As a result, the smooth fIIuc-

tuations do not show the anomalous behavior expected
from the singular self-energy correction. On the other
hand, for rough ffuctuations (1 & l, ), the Landau-
interaction part becomes very small, and the self-energy
part, which is proportional to 0 "+"',dominates. Also,
the collision integral becomes of the order 0
Therefore, the rough fluctuations show an anomalous
behavior of the self-energy correction, and suggest that
the effective mass shows a divergent behavior
m* CC Q '" " '"+" for 1 &rl 2 and m ~ llnQl for
7/=1.

From these results, one can understand the density-
density and current-current correlation functions calcu-
lated in the perturbation theory, ' ' which show no
anomalous behavior in the long-wavelength and low-
frequency limits. Using the QBE, one can evaluate these
correlation functions by taking the angular average of the
density or current disturbance due to the external poten-
tial and calculating the linear response. Thus, in these
correlation functions, the small angular momentum
modes are dominating, so that the results do not show
any singular behavior. Note that the cancellation which
exists in the collision integral implies that the transport
lifetime is sufficiently long to explain the long mean free
path of the composite fermions in the recent magnetic
focusing experiment. ' For the 2k+ response functions,
there is no corresponding cancellation between the self-
energy part and the Landau-interaction part, so that it
shows a singular behavior. '

The QBE in the presence of the small eff'ective magnet-
ic 6eld 68 was used to understand the energy gap E of
the system. As in the case of 68 =0, there can
be two different behaviors of the generalized Fermi
surface displacement. For the smooth fluctuations
(I (I, ~E '~"+"'), the frequency of revolution of the
wave packet is given by b,co, =bB/m; i.e., there is no
anomalous behavior after the cancellation between the
self-energy and Landau-interaction parts. For rough Auc-
tuations, the self-energy part dominates, and the frequen-
cy of revolution of the wave packet is renormalized as
hen,'~hen, E '" " '"+". The energy gap can be ob-
tained by quantizing the motion of the wave packet and
taking the lowest quantized frequency which is nothing
but hco,*. Solving the self-consistent equation E =he@, ,
we obtain E ct-

l
EB l"+"' for I (g (2 and

Eg ~ lhBl/ling, Bl for q=1. These are consistent with
the previous results. ' '

The excitations of the system were studied from the
QBE of the generalized Fermi-surface displacement. For
hB =0, in the absence of the collision integral, there are
two types of excitations which can be described most
easily in the Q —

q plane. There are particle-hole excita-
tions which exist below an edge Q ~q"+"'~ (1(q 2()

or Q o-q/llnql (g= 1). There are also collective modes
which exist between Q ~q" " (1(g(2), Q ~q/l»ql
(g=1), and Q —u~q. However, the distinction between

these two different elementary excitations is obscured by
the presence of the collision integral, which provides the
lifetime of the excitations. In the case of b,8%0, the
QBE in the presence of the finite b,B is again used to un-
derstand the low-lying plasma spectrum of the system as
a function of q. For q & q„where q, ~ v'l b,B

l
for

1&rl&2 and q, ~/I~Bllnl~BI for g=l, the plasma
mode corresponds to a smooth fluctuation of the Fermi
surface, and the excitation gap is given by hco, -68/m.
On the other hand, for q &q„the plasma mode corre-
sponds to a rough fluctuation of the Fermi surface. As a
consequence, the excitation gap becomes much smaller
and proportional to l

bB
l

"+"'~ for 1 ( iI & 2 and
I~B I/lin~81 for i)=1. Thus the lowest excitation spec-
trum of the system looks like the one given by Fig. 5,
which is consistent with the previous numerical calcula-
tions.

We would like to remark that, in our derivation of the
linearized QBE [Eq. (50)], we have ignored the depen-
dence of the gauge-Geld propagator B» on the
fermion Green's function [i.e., we have set
5Dii =(BDii /BG)56 =0] [see Eq. (42)]. However, in
our model the gauge-field propagator is calculated
through the RPA, and depends on the ferrnion Green's
function. Therefore, the QBE contains additional terms
that come from 5D». In the following, we would like to
argue that these additional terms do not affect the results
we obtained in previous sections. Let us first look at the
smooth modes of the generalized Fermi-surface Auctua-
tion. One can argue that the additional corrections are
still small, and the smooth modes retain a linear disper-
sion. To see this, let us imagine calculating the density-
density or current-current correlation functions from the
QBE. The QBE in Eq. (50) will generate two-particle
correlation functions corresponding to diagrams in Figs.
1(a)—1(e) in Ref. 12. The additional terms coming from
5Dii will generate diagrams of Figs. 1(fl and 1(g) in Ref.
12. The cancellation between the self-energy and the ver-
tex diagrams in Figs. 1(a)—l(e) for small (co, q) is directly
related to the cancellation of the self-energy and the
Fermi-liquid-function terms in the QBE for smooth
modes. As discussed in Ref. 12, a similar cancellation
also happens for the diagrams in Figs. 1(f) and 1(g), and
as a consequence the two-particle correlation functions
have a Fermi-liquid form for small (m, q). Therefore,
contributions from 5D» will not modify the dynamics of
the smooth modes qualitatively. For the rough modes,
we believe that there is again no cancellation, and the
Fermi-liquid picture breaks down. The reason is that, as
shown in Ref. 12, the diagrams of Figs. 1(fl and 1(g) have
the same singular frequency dependence as those of self-
energy contributions before the cancellation, which
occurs only for small (co, q).

Applying the picture developed in this paper for the
v= —,

' metallic state to the magnetic focusing experiment
of Ref. 10, we find that the observed oscillations should
not be interpreted as effects due to the focusing of the
quasiparticles. This is because the inelastic mean free
path I. =v~~ and the lifetime ~-1/T of the quasiparti-
cle is quite short. Here v~ is the renormalized Fermi ve-
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locity of the quasiparticle. For the Coulomb interaction,
we find

100 rnK
T pm .

The real diffusion length should be shorter than the above
value due to other possible scattering mechanisms. Thus
we expect that the crossover temperature, above which
the oscillations disappear, should be lower than 150 rnK.
In the experiment, ' no oscillations were observed above
100 mK. Another important consequence of our picture
is that, if a time™of-Aight measurement can be performed
by pulsing the incoming current, the time is given by the
bare velocity U~ and not the quasipartiele velocity U~.

Finally, we remark on the surface acoustic wave exper-
iment. The condition for the resonance between the cy-
clotron radius and sound wave length is given by
mcyc »co„where cocyc is the cyclotron frequency and co, is
the sound wave frequency. This is because we can regard
the sound wave as a standing wave only when

mcyc
& cop.

Let us imagine that we are changing co, such that
co, =Ace,*. If we use the quasiparticle picture to explain
the above resonance, then the cyclotron frequency cocyc is

&4~n
m T ln( E~ /T )

Here n is the density of the electron, T the temperature,
m the bare mass of the composite fermion, and
EF=kF/2m =2nn /m. Taking n =10 ' cm, and m to
be the electron mass in the vacuum (see Refs. 2, 3, and
10},we have

100 mK
T

At T=35 rnK, I. -0.7 pm, which is much less than the
length of the semicircular path, 6 pm, which connects the
two slits. Therefore, the oscillations observed in Ref. 10
cannot be explained by the focusing of the quasiparticles,
which have a divergent effective mass and a short life-
time.

There is another way to explain the observed oscilla-
tions in Ref. 10. We can inject a net current into one slit,
which causes a dipolar distortion of the local Fermi sur-
face near the slit. The current and the associated dipolar
distortion propagate in space according to the QBE, and
are bent by the effective magnetic field 68. This causes
the oscillation in the current received by the other slit.
According to this picture, the oscillations observed in
Ref. 10 are caused by the smooth fluctuations of the Fer-
mi surface whose dynamics is identical to those of a Fer-
mi liquid with a finite efFective mass. Thus the oscilla-
tions in the magnetic focusing experiments behave as if
they are caused by quasiparticles with a finite effective
mass and a long lifetime. The relaxation time for the
current distribution is given by rj-E~/T 1n(EF/T) for
the Coulomb interaction. This leads to a diffusion length
(caused by the gauge fluctuations} L~ =Uzrj, where v~ is
the bare Fermi velocity of the composite fermions. We
find

2

determined by the divergent effective mass, and mcyc
should be comparable to Aco,*. Therefore, there should
not be any resonance because co, ,=co, in this case. How-
ever, in reality, the resonance is governed by the smooth
fiuctuation of the Fermi surface, so that co,„,=b,co, is a
cyclotron frequency determined by the finite bare mass of
the composite fermion. As a result, one should still see
the resonance because co, ,»co, =hco,*. Therefore, onecyc
can expect that there should be still resonance effects
even when the phonon energy exceeds the energy gap
determined from the Shubnikov —de Haas oscillations.
The bottom line is that the cyclotron frequency measured
in acoustic wave experiments can be much larger than
the energy gap measured in transport experiments. In a
recent experiment by Willet, West, and Pfeiffer, reso-
nance was observed when co, is larger than the energy
gap of the system determined by the large effective mass
obtained from the Shubnikov —de Haas oscillations. The
authors claimed that this is an apparent contradiction be-
tween the surface acoustic wave experiment and the
Shubnikov —de Haas oscillations. We would like to point
out that the cyclotron frequency (for small q) is deter-
mined by the bare mass (in a crude estimation, the bare
mass is about —,

' of the electron mass in vacuum). On the
other hand, the mass obtained from Shubnikov —de Haas
oscillations or from the activation gap in transport mea-
surements is in principle a different mass, which in prac-
tice turns out to be of order of the electron mass in vacu-
urn even away from v= —,'. Even though we do not quan-
titatively understand the mass difference, there is in prin-
ciple no contradiction. The surface acoustic experiment
is in fact an excellent way of measuring the bare mass.
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APPENDIX

In this appendix, we consider the QBE at finite temper-
atures. Recall that ImX (p, co) at equilibrium diverges at
finite temperatures, which has no cutoff. " In this case, it
is clear from Eq. (15) that Go (p, co)=ifo(co)A(p, co) is
not well defined. Thus it is also di%eult to define
G (p, co;r, t) for the nonequilibrium case. Since the
divergent contribution to the self-energy comes from the
gauge-field fIuctuations with v& T, where v is the energy
transfer by the gauge field, " it is worthwhile to separate
the gauge-field fluctuations into two parts, i.e.,
a(q, v)=a (q, v) for v(T and a(q, v)—:a+(q, v) for
v & T, and examine the effects of a+ and a separately.

The classical Auctuation a of the gauge field can be
regarded as a vector potential which corresponds to stat-
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ic but spatially varying magnetic field b =V Xa . For a
given random magnetic field b (r), and in a fixed gauge,
the fluctuation of the gauge potential a can be very
large. The gauge potential can have huge differences
from one point to another, as long as the two points are
well separated. We know that locally the center of the
Fermi surface is at the momentum p —a (r) around the
point r in space. The huge Auctuation of a indicates
that the local Fermi surfaces at different points in space
may appear in very different regions in the momentum
space. This is the reason why the one-particle Green's
function in the momentum space is not well defined. This
also suggests that the fermion distribution in the momen-
tum space, f(p, co), may be ill defined. Note that the lo-
cal Fermi surface can be determined in terms of the ve-
locity of the fermions [i.e., the states with
(m/2)v =(1/2m)(p —a ) &EF are filled)], and the ve-
locity is a gauge-invariant physical quantity. This sug-
gests that it is more reasonable to study the fermion dis-
tribution in the physical velocity space. The above discus-
sion leads us to consider the one-particle Green's func-
tion 6(P,co; r, t ) as a function of a variable
P =mv=p —a . Note that this transformation is rem-
iniscent of the procedure we used in the case of the finite
effective magnetic field (see Sec. V). We may follow the
similar line of deviation to obtain the QBE in the random
magnetic field. Since we effectively separate out a Auc-

tuations, the self-energy, which appears in the equation of
motion given by Eq. (24), should contain only a+ fiuctua-
tions. Therefore, the equation of motion for
5G (P,co;r, t } is given by the Fourier transform of Eq.
(30} with the following replacement. In the first place,
the variable p should be changed to a variable
P =p —a . Second, the self-energy X should be
changed to X+ which now contains only a+ fluctuations.
Finally, as we can see from the case of the finite effective
magnetic field in Sec. V, the following term should be
added.

5f(8,m; r, t ), which is given by

b (r)
5f(8, co;r, t) .

m
(A3)

This term provides the scattering mechanism due to a
fluctuations, and generates a dispersion of the angle 0.
The transport scattering rate 1/r which is due to a
fluctuations can be estimated as follows. In order to ex-
amine b fluctuations, let us first consider

{b (q)b ( —q)) = J [n(co)+l]q ImDi, (q, co)
0 2&

In the absence of this term, the equation of motion of the
generalized distribution function 5f(8,co; q, 0 ) is given by
Eq. (44), with the constraint that the lower cutoff T
should be introduced in the frequency integrals, which is
due to the fact that only a+ Auctuations should be includ-
ed. Using the same procedure we used in Sec. IV, we can
construct the equation of motion for the generalized
Fermi-surface displacement (in the velocity space)
u (8,q, A) = j(drv/2m)5f(8, co;q, cu). The corresponding
equation is given by Eq. (SO) with the
change that 0, in the definition of the Landau-
interaction function FL,„d,„(8) is now given by
8, =(1/k~)[y max(Q, T)/g)' "+"'. Therefore, the same
arguments for the small and large angular momentum
modes can be used to discuss the physical consequences
of the QBE, and the change is that the crossover
angular momentum is now given by 1, = 1/8,
=k [y max(Q, T)/y]

Now let us discuss the effect of the term which depends
on b (r). After integration jdco/2m of the QBE for the
generalized distribution function 5f ( 8, co; r, t ), this term
has the following form in the QBE for u(8, r, t):

b (r)
u(8, r, t) .

P
~b (r) X 56 (P,a);r, t ) . (A 1)

&dec T 2 qa)/y
q

0 2' co ~2+ (yq i+"/y )

dip —iG P, co, r, t —= O, co;r, t2'
dip

[iG ( P, co;r, t)]:—1 f(8,co;r, t), —
2&

(A2)

where 0 is the angle between P and a given direction.
For a while, let us ignore the contribution from the term
that depends on b (r) in the equation of motion for

Note that the equation of motion contains the term
which depends on b, but does not contain the terms
which depend on a in an explicit way. Since we re-
moved the source of the divergence (non-gauge-
invariance with respect to a ), the Green's function
G(P, co;r, t) or the corresponding self-energy is now
finite for finite T or co.

Now one can perform the integration jdgp /2' of
56 (P, co; r, t ) safely to define

=q /y for q &qo, (A5)

where qo=(y T/y)'~"+"'. Therefore, the typical length
scale of b (r) fiuctuations is given by lo= 1/qo. The
typical value of b (r) over the length scale lo can be es-
timated from {b (r)b (r')) =1/(ylo) for ~r —r'~ &lo,
so that typically b =I/Qylo. The dispersion of the
angle 60 after the fermion travels over the length I0 can
be estimated as 58=(b /m)Et= I/(V ylom )(lo/v~)
=1/(kFlo)3~2. Let 1M=nlo be the mean free path which
is defined by the length scale after which the total disper-
sion of the angle becomes of order 1. The number n can
be estimated by requiring that the total dispersion of the
angle &n b, 8=&'n /(kilo) ~ becomes of order 1, so that
n =(k~lo) . Thus lM =kFlo. From lM=v~r, the
scattering rate due to a fluctuations can be estimated as

~ T4/{1+g)

Note that 1/~ ~ T "+"' is the same order as that of



17 292 YONG BAEK KIM, PATRICK A. LEE, AND XIAO-GANG WEN 52

the scattering rate due to a+ fluctuations in the case of
the small angular momentum modes (I & I, ). For I &I„
the contribution from the imaginary part of the self-
energy ImX ~ T "+"' is canceled by the contribution
from the Landau-interaction function, so that the result-
ing scattering rate is proportional to T "+'I'. In the
other limit of large angular momentum modes (I ) I, ),
1/r .can be completely ignored. This is because the
self-energy contribution dominates. Since 1/~ (T, and
it is at most the same order as the scattering rate due to
a+ fluctuations even in the case of the small angular
momentum modes, ignoring this contribution does not

affect the general consequences of the QBE, which are
discussed in Secs. IV, V, and VI.

Therefore, the QBE for the generalized distribution
function at finite temperatures is essentially given by Eq.
(44) with the lower cutoff T of the frequency integral in
the expression of the contributions from the self-energy
and the Landau-interaction function. As a result, the
form of the QBE is the same as that of the zero-
temperature case, and the only difterence is that the
crossover angle 0, and the crossover angular momentum

I, are now given by 0, =(1/kF)(y max(A, T)ly)' "+"'
and I, = 1/9, ~ [max(Q, T)] ' "+"',respectively.
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