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Theory of electromagnetic response and collective excitations in antidots
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The theory of collective excitations in a single antidot and in a system of interacting antidots is
presented. The problem is solved within the framework of classical electrodynamics neglecting the non-
local and retardation effects. It is shown that the spectrum of collective excitations in a single antidot
consists of two branches. The 6rst mode coincides with the single-particle cyclotron resonance co=m„
the second one is the edge magnetoplasmon (EMP) mode. The EMP mode has the vanishing damping
(in the collisionless approximation) only at co & co, . At co & co, it decays on account of emission of two-
dimensional (2D) bulk magnetoplasmons to the surrounding 2D medium. The induced electric potential
and charge density of the EMP mode have the form of outgoing cylindrical waves at m & co, . As a conse-
quence, the interantidot interaction cannot be neglected in an array of antidots at co & co, . Collective ex-
citations in an array of interacting antidots are considered in the modified-dipole and effective-medium
approximations. The results obtained explain the main features of the antidot excitation spectrum ob-
served in recent experiments.

I. INTRODUCTION

The problem of far-infrared (FIR) response and collec-
tive excitations in low-dimensional electron systems in
semiconductor microstructures has been of great interest
in recent years. The remarkable progress of modern
technology results in the creation of a number of man-
made electronic systems of low dimensionality in semi-
conductors, such as quantum wells [two dimensional
(2D)], quantum wires (1D), quantum dots (OD), rings, an-
tidots, etc. The properties of single-particle and collec-
tive excitations in these artificial solid-state microstruc-
tures have been the subject of intensive experimental and
theoretical investigations.

The problem of collective excitations in quantum dots
(and classical disks) has been under consideration since
1983;' for a review see, e.g. , Ref. 8. The FIR spectrum
of dots in magnetic field B demonstrates two excitation
branches, co+(8) and co (B). The upper mode co+ starts
from dimensional plasma resonance at B=O, and tends to
the cyclotron frequency ~=co, as B increases. The lower
mode co starts from the same frequency and decreases in
frequency with increasing B. Circular polarization of the
+ mode ( —mode) coincides with (is opposite to) the po-
larization of the cyclotron resonance (CR). As opposed
to the homogeneous 2D electron layer, the CR line
co=co, is not observed in dots due to the depolarization
effect. '

The system of antidots is a reversed structure with
respect to dots —this is a set of holes punched in a homo-
geneous 2D electron layer. In spite of the geometrical
analogy the spectra of collective excitations in the sys-
tems of dots and antidots turn out to be distinctly
different. Two strong absorption lines have been ob-
served in FIR transmission spectrum of antidots; ' see
also Refs. 11 and 12. The upper antidot branch has a
negative-B dispersion at small B, reaches its minimum,
and then tends to the CR line as B increases. The lower

antidot mode increases linearly with B at small B,
achieves its maximum, and then decreases in frequency in
strong B. These two modes demonstrate an exchange of
oscillator strengths, indicating a physical coupling be-
tween them. Besides the two main branches, a weak CR
line is observed in the spectrum of antidots as opposed to
dots.

Theoretically, the spectrum of collective excitations in
antidots was considered in Refs. 13—16. Fessatidis, Cui,
and Kuhn' considered the single antidot problem in the
hydrodynamic approximation. They used the formal
method of solving the problem, which did not allow them
to clarify physical peculiarities of the antidot problem
and to describe some of the experimentally observed
features of the antidot spectrum (see the discussion in
Sec. III). Wu and Zhao' considered the problem of a
square antidot grid using the variational Wigner-Seitz ap-
proach, and obtained a good agreement with experimen-
tal data. Their theory, ' however, is not applicable to the
case of a single antidot. Lorke' simulated the dynamic
conductivity of an antidot system in the classical model
of ballistic electron motion, neglecting the collective
effects completely. Tevosyan and Shikin' considered the
problem of a single antidot in an artificial model with
equilibrium electron density n, (r) ~ (r /R —I)' grow-
ing linearly wiih r at r ~ oo.

In the present paper, we propose a theory of collective
excitations in both a single antidot and a system of in-
teracting antidots. We solve the problem within the
framework of classical electrodynamics, neglecting the
spatial dispersion and retardation effects. For a single an-
tidot we use the model with the steplike equilibrium elec-
tron density n, (r) =n, 6(r —R), and discuss the inhuence
of the finite transition layer at the boundary of the anti-
dot on the spectrum of collective modes. We find asymp-
totes of the induced potential, response function, and po-
larizability of a single antidot (Sec. III). We argue that,
contrary to the system of dots, an interantidot interaction
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cannot be neglected in the system of antidots. In an array
of antidots (Sec. IV), we calculate the response function
of a system in the modified-dipole (MDA) and effective-
medium (EMA) approximations. A special section (Sec.
II) is devoted to a qualitative discussion of the main phys-
ical features of the problem. The main results are formu-
lated in Sec. V.

II. QUALITATIVE CONSIDERATION

The qualitative difference between the collective excita-
tion spectra of a single dot and single antidot can be un-
derstood from a simple physical consideration. In a dot,
electrons are confined in a finite area of 2D space by an
external potential. An electric field of external elec-
tromagnetic waves induces an oscillating dipole moment
in a dot, the value of which depends on FIR frequency co

and magnetic field 8. When the frequency of the external
wave coincides with the frequency of the dimensional
magnetoplasma resonance, the dipole moment P diverges
and a collective plasma mode is excited.

In the case of a single antidot the situation is more
complicated. Electrons are not now confined in a finite
area of 2D space. An oscillating dipole moment P in-
duced near an antidot by an external electromagnetic
wave is immersed into a 2D polarizable medium —a 2D
electron gas. The FIR response of a single antidot is
therefore affected by the screening properties of 2D elec-
trons in a magnetic field. The dielectric permittivity of a
2D electron gas E(q, co) essentially depends on the relation
between co and the cyclotron frequency co, =e8/mc. If
co&co„ the dielectric function e(q, co) is positive, and
screening decreases the induced dipole moment only. A
more dramatic effect is the case at cu & co, . The dielectric
function s(q, co) changes its sign at co) co„and vanishes
at the frequency of 2D bulk magnetoplasmons

co (q) =[co, +co (q)]'~

tv~(q) =(2mn, e q/mz)'

here co (q) is the frequency of a 2D plasmon with wave
vector q at 8=0. When the frequency cu of the oscillat-
ing dipole moment coincides with co (q), the 2D bulk
magnetoplasmon with the wave vector q is emitted into
the surrounding 2D medium. The collective modes of a
single antidot therefore have a strong nondissipative
(emissive) damping at co) co, . Emissive damping of this
type is obviously not the case in a single dot.

The emission of 2D bulk magnetoplasmons by a single
antidot in a 2D plane is quite similar to the radiation of
transverse electromagnetic waves by an oscillating dipole
in a 3D plasma. The spectrum of electromagnetic waves
in plasma to=[co&+(cq) ]'~ has a gap equaled to the
bulk plasma frequency co . Therefore, the oscillating di-
pole radiates electromagnetic waves at ~)co, and does
not radiate at co & co . Similarly, due to the gap co, in the
spectrum of bulk 2D magnetoplasmons (l), the oscilating
antifot dipole emits 2D bulk magnetoplasmons co) co„
and does not emit at co & co, .

The effect considered leads to an important conclu»on

relative to the role of interantidot interaction in an array
of antidots. In an array of dots, an interdot interaction
can be taken into account in the dipole approximation,
and normally is negligible if the separation between dots
exceeds several dot radii. ' In an array of antidots, in-
terantidot interaction can be neglected only at co&&~„
when the charge density fluctuation is localized near the
antidots. When the frequency co tends to the cyclotron
frequency and exceeds it, the overlapping of neighbor an-
tidot potentials is considerably increased due to 2D bulk
magnetoplasmon emission. Therefore the interaction be-
tween antidots must be taken into account even in a scarce
lattice of antidots.

The wave vector of induced 2D bulk magnetoplasmon
is determined by equality co=co ~(q), where t0 is the fre-
quency of external electromagnetic wave. At co &u„the
absorption spectrum of a single antidot is thus continu-
ous. In an ordered lattice of antidots, coherence effects
give rise to preferential excitation of 2D bulk magneto-
plasmons with wave vectors q=G„,where Cx„are the
reciprocal-lattice vectors. Thus we come to the known
picture of 2D bulk magnetoplasmon excitation via the
spatial grating (or grid) imposed on the homogeneous 2D
electron layer.

III. SINGLE ANTIDOT IN EXTERNAL
ac ELECTRIC FIELD

A. Basic equations

Let the 2D electron layer with a single antidot be
placed at the plane z=0, the magnetic field 8 be directed
along the z axis, the background dielectric permittivity be
a, above the 2D layer (at z) 0) and az below it (at z & 0),
and the external electric field be described by the poten-
tial y,„,(r, t)=y+'(r)exp(+i8 idiot), where —r =(x,y) is
the 2D vector, and p+'(r) = E+r /W2 —and
E+ =(E„+iE)/~2 are the field amplitudes with polar-
ization coinciding with (+) and opposite to ( —) the po-
larization of the CR. Neglecting the retardation' and
spatial dispersion effects, charge-density fluctuations are
described by Poisson and continuity equations and Ohm's
law with local conductivity tensors o &( r, c0 )
=o t3(co)B(r —R), [a,P] = [x,y], tr „=o~~, and

y
= oy. TO ex—plicitl. y allow for the screening of the

self-consistent electric field, we present the conductivity
tensor in the form ott(r, to)=sr .

&(tv) o&(t0)B(R—'r), —
and obtain the following equation for induced y;„dand
total g„,electric potentials:

V3[a(z)V3p;„d(r,z) ]+[4~i o(co)/co]5(z)b.2q&;„d(r,0)

= —4m5p(r)5(z) . (2)

Here V3 is the 3D nabla, 62 is the 2D Laplacian, and

5p(r) = —(i/co)B [o' ~(co)B(R —r)B~, ,(r, 0)]

is nonzero inside the antidot hole (r &R), a.—=a/ax
We thus replace the problem of a single antidot with the
problem of a single dot with negative electron density
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placed in a homogeneous 2D electron layer with a back-
ground conductivity o ~ii(co).

With the help of the Fourier-Bessel transform, Eq. (2)
is rewritten in the integral form

y+ («)=(m/icl) f r'dr'L (r, «'; I) 5p~(r'), (4)

where integration is performed over the region 0 & r ~ R
[see Eq. (3)], and the kernel

L (r, r', I) =21f Ji(qr)Ji(qr')
o s(q, co)

depends explicitly on dielectric function of the 2D layer

2mia„(co)q
E(q, co) =1+ql (co)=1+

icop (q)r(1 i co—r)=1+ . (6)
co[(1 icos—) +(co,r) ]

Here ic=(zi+ic2)/2, the length I =l(co) is proportional
to the polarizability y„„(co)=ia„(co)/coof the 2D layer
[in strong 8, ~1(co)

~
determines the scale of localization of

edge magnetoplasmon (EMP) charge near the edge of the
2D system ' ], r is momentum relaxation time, and the
Drude formula for cr„„(co)is used in the last equality.
The properties of kernel L (r, r'; I) are listed in the Appen-
dix.

Substituting 5p into Eq. {4), we reduce the problem to
an integral equation for y+ (r),

[we use the interpolation formula (A4) here). When the
frequency is small, co«m„and the magnetic field is
strong, co, &)co (q =1/R), the length l(co) is positive (we
consider the collisionless limit for simplicity) and much
smaller than the antidot radius R, ~I(co)~ &&R. Under
these conditions, the charge density of the excitation
(EMP) is strongly localized near the boundary of the anti-
dot, p+(r) cc 1/r, and the induced potential has the di-
pole character cp'+ (r) ~ 1/r . With increasing frequency
the length l(co) increases and at 0&(co, —co ) &co (1/R)
becomes larger than R. At I ( co ) /R ~+ ~ the single an-
tidot mode displays the tendency to delocalization:
y+ (r) ~1/r, and p+(r) cc 1/r, at R &&r && ~I(co)~.

When m exceeds the cyclotron frequency cu„the length
l(co) changes its sign and E(q, co) vanishes at the wave
vector q = —1/l(co), corresponding to the emission of
2D bulk magnetoplasmons with the frequency co. The in-
duced potential and charge density acquire the form of
the outgoing cylindrical wave at co) co, [see Eqs. (7) and
(Al)],

q)~o(r) ~H', "( r/I), pp(r—) ~H', "(—«/I),
r »R, R /I (co) &0;

here H'1" is the Hankel function.
Thus the charge-density fluctuation is localized near an

antidot only at co & co, . An induced dipole moment of ex-
citation is finite and equal to

i m cr g(co )i 1( p~'(R)L (r, R;I)
COKI

I & &r, md

0

which is completely equivalent to Eq. (2).
a~(co) =a„„(co)+icr—(co) and

8 [p(r) j =B„[«6(R—r)B„y(r)]
—[y(r)/r]B„[re(R—r)] .

(7)

Here

P~ =(P„+iP)/v'2—

=v 2mfr .p~(«)dr
0

v'2mi cr ~(co)R .y+'(R), co&co, .

At co) co, the charge-density wave (11) is emitted from
the antidot, and the dipole moment (12) diverges.

C. Response function and polarizability
of a single antidot

With the help of Eq. (7) one can find exact asymptotes of
the induced potential and charge density at r »R, as
well as the response function of a single antidot.

We define the response function g~(co) of a single anti-
dot as follows:

B. Asymptotes of induced potential
and charge density at r »E 0+(co)= [9 '*"'/q ~"].=z,.=o . (13)

Since the operator 8 is zero at r & R, the asymptotic
behavior of the induced potential at r »R is determined
by asymptotes {Al) and (A2) of the kernel L {r,R;I), and
depends on the ratio R/l(co). At co&co, the dielectric
function E(q, co) is positive at all q &0, and at r »R we
have:

Zeros of functions g+(co) determine the spectrum of col-
lective excitations in the antidot.

To find g+(co) we solve the integral equation (7) by the
method of successive approximations. In the first ap-
proximation, we neglect the integral term in (7) and ob-
tain

2ia +(co )R
y~ (r)=-

2 cp~ (R)P(r/I)
COKl

p~(r) =

isa~(co)R
p~'(R ), r &)R,

cour r +I
i a ~(co)RI

, grig'(R), r»R
r (r + I)

(10)

g+(co, co, ) —=g~(co, —co, )

i m cr+(co)
1

8R
3~[1+@(R/I)]

(14)

the function y(z), Eq. (A6), is small at ~z~ && 1, and slowly
(logarithmically) increases with z.
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D. Excitation spectrum of a single antidot

Due to the effect of emission of 2D bulk magneto-
plasmons by the antidot dipole, the functions g~(co) have
no real zeros at co&co, [the function y(z) is complex at
z &0], and antidot modes have strong emissive damping.
At 0 & co & co, the functions g (co) and g+(co) have no and
two zeros, respectively. Thus there are two + polarized
collective modes in a single antidot. The first collective
mode cocR(8) =co, coincides with the single-particle CR.
The frequency of the second (EMP) branch is determined
by the equation

conMp(8) = —(co, /2)+ Q(a), /2) +coo[1+y(R /l) ],
(16)

where

coo=3m n, e /8maR . (17)

Magnetic-field dependencies cocR(8) and coEMp(8) are
shown in Fig. 1. At co, /coo=0. 8, the EMP mode (the
solid curve) has a weak maximum and enters the continu-
um of 2D bulk magnetoplasmon states (hatched region in
Fig. 1) at co, =coo/V2. In strong 8, the EMP mode

0.8

0.6

0.4

0.2

0.0
0 3 ] 4

CO CQp

FIG. 1. Two modes of the single antidot excitation spectrum
cue&(B) and coEMP(8). The EMP mode is shown by the solid
curve in the case of a sharp edge of a 2D layer (h/R =0), and
by the dashed curve in the case of a smooth edge with
h/R=0. 6. The logarithmic asymptote (18) is shown by the
dashed-dotted curve. The dotted curve corresponds to Eq. (16),
with I replaced by h. The hatched region at co) co, is the con-
tinuum of the 2D bulk magnetoplasmons.

The accuracy of the first-order approximation has been
estimated numerically. We have found that the correc-
tion to g~(co), Eq. (14), tends to zero at R /l ~0 and does
not exceed 7% at —1.4 & R /l & 25; at R /I & 25 the same
accuracy can be obtained if we replace y(R /I) in Eq. (14)
by y(2R /I). The condition —1.4 & R /I & ~ corre-
sponds to the frequency range co &co, +1.4' (1/R), in
which the collective excitation branches of interest lie.

From Eqs. (12) and (13) one can find the polarizability
a+(co)—:P+ /E + of a single antidot:

iso g(co)/R
Ct y( CO, CO~ ) = CX p ( CO, CO~ )—,CO & CO~

CO y CO

(15)

coEMp(8) decreases in frequency with 8 and tends to the
asymptote

coEMp(8) =(2cr „/xR)[ln(2R /lo) —f( —,
' )], co, »coo (18)

(the dash-dotted curve). Here o. =n, e /m co„
lo=Rel(co)~~&„o=2mn, e /maco, [if R/lo&25, lo

should be replaced by lo/2], and 0'(z) is the digamma
function 4( —,

' )=0.037.
The logarithmic factor ln(R/l) in Eq. (18) is a typical

property of EMP's running along the sharp edge of the
2D layer. ' In 2D systems with a smooth transition lay-
er (width h) near the edge, the length I in (16) should be
replaced by +l +h . The dashed curve in Fig. 1 demon-
strates the inhuence of the transition layer width on the
EMP spectrum at h /R =0.6. The asymptote
coEMp(8) ~(1/8)in(8) in the strong field is replaced by
conMP(8) ~1/8 in this case. The dotted curve shows
spectrum (16) with I replaced by h.

It should be noted here that the single antidot problem
was considered within the same model in Ref. 13. Con-
trary to our approach, Fessatidis, Cui, and Kuhn' wrote
the Poisson equation in the usual form, with p(r) on the
right-hand side of the equation. As a result, their kernel
L(r, r') does not depend on s(q, co), and the integral in
Eq. (4) is taken in the limits R & r & ao. Then they solved
the problem numerically, obtained a real branch of exci-
tation spectrum at co&co, and did not find the effect of
the 2D bulk magnetoplasmon emission. From a
mathematical point of view, the formal numerical in-
tegration of a charge density in the 1imits from R to
infinity can be in error since, as seen from exact asymp-
totes [Eq. (11)],p+(r) has a slowly descending oscillating
tail at r »R. The validity of the theory' is thus restrict-
ed by the region co & cu, .

IV. COLLECTIVE EXCITATIONS
IN AN ARRAY OF ANTIDOTS

One can expect that the excitation spectrum of a single
antidot is essentially modified in an array of antidots due
to the interantidot interaction. Two collective modes of a
single antidot spectrum, coen(8) and coEMP(B), have the
same (+) polarization and intersect at co=co, =coo/&2.
Interantidot interaction will result in the mode repulsion
at the intersection point. ' This modifies the spectrum of
modes at co&co, . At co&co„the coherence effects in-
crease the emissive damping of antidot modes when the
wave vector of the excited 2D magnetoplasmon coincides
with one of the reciprocal-lattice vectors, and suppresses
it in the opposite case. This will modify the spectrum of
a single antidot at co & ~, .

The inhuence of interantidot interaction is different in
different frequency ranges. At co &co, it is weak and can
be included in the dipole approximation [which we modi-
fy with an account of the actual asymptote (9) of y+ (r)].
At ~&co„an interaction is not weak, and one needs
more elaborate approaches. Below we use EMA (see also
Ref. 22), which allows us to describe qualitatively the
behavior of both excitation branches in a system of in-
teracting antidots.
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A. Modi6ed-dipole approximation Here f =nR. /a and

(E~"(ro, r) ),„„d„=E~/g~(ro), (20}

where E+' is the local electric field acting on antidots.
Modifying the standard dipole approximation with an ac-
count of the actual asymptote gr+ (r) ~F(r/1) at r &&R
[Eq. (9)], we obtain the efFective conductivity of a square
lattice of antidots with period a:

o ~~(ro )=cr ~(ro)

fo g(ro)

g~(co) [1 [2na~(—ro) /baal ]F(na /r11) ]

(21)

In both approximations, we calculate the efFective con-
ductivity of a system which determines the relation be-
tween the macroscopically averaged electric current and
the field,

( j~(ro, r) )„p„——o'~(ro)(E~(ro, r) )„p„.(19)

In an infinite system (E+(ro,r))„i,=E+. The aver-

aged current is expressed via the geometrical filling factor
of antidots f and the total electric field averaged over an
area of one antidot (E'+'(ro, r)),„„;d„.From Eq. (13} it
follows that

YJ T~ g (l +j ) =4 516
(&,j)A(0,0)

The MDA expression (21) is valid at ro & ro, and
R/a «1; in the limit a »~l(ro)~ it coincides with that
obtained in the standard dipole approximation.

The excitation spectrum of a system is determined by
poles of o +(ro) and, as seen from Eq. (21), is presented by
a single-particle and collective contributions. The
single-particie excitations are determined by poles of
o+(ro); this gives the CR mode co=pro, . The collective
excitations are determined by zeros of the denominator in
Eq (21.). In the limit a~ ac they coincide with zeros of
response functions g+(ro); see Sec. III. Interantidot in-
teraction modifies the single antidot spectrum, as shown
in Fig. 2(a) at different values of f. In strong 8 the
charge density of the +-polarized collective EMP-like
mode co,',+„'(8)is strongly localized near antidot boun-
daries, and the frequency co&,+'(8) tends to roEMp(B); in
small 8 coI,+„'(8)is a linear function of magnetic field with
a slope depending on f:

'ro, (1 f)/(1+ f—), ~o, &&roo

(2o c„/irR )[ln(2R /lc) —g( —', }—(i}/2)(f '/~)' '], ro, &&rop . (22)

The single-particle model co=m, labeled by CR is also
shown in Fig. 2(a). Figure 2(b) demonstrates the
inhuence of the transition layer near the edge of the anti-
dot hole on the spectrum of the low-frequency mode in
the MDA at f=0.087 and h/R =0.6. For compar-
ison, the single antidot spectra at h /R =0 and h /R =0.6
are also shown.

In Fig. 3(a) the low-frequency MDA curve roI,+'(8) is
shown with experimental points obtained in Ref. 9 with
sample (b) (n, =2.5 X 10' cm, a =300 nm, R =50 nm,
and h =30 nm). The value of the efFective mass
m =0.06m has been found from CR data. Then the
curve coI,+'(8) has been fitted by variation of roc. The
thus-obtained value of co0 equals co0

0 =1.8X10' s
The calculated value of roc, Eq. (17), depends on the ra-
dius of the antidot hole. Using for R two values, R =50
nm (the radius of etched hole) and R +h =80 nm (the
etched hole radius plus the lateral edge depletion with h),
we obtain coo'"(R =50 nm) =2.38 X 10'3 s ' and
coo"' (R =80 nm) =1.88 X 10' s '. Thus the MDA gives
a good quantitative agreement with experimental data
for the low-frequency excitation branch in an array of an-
tidots.

B. KÃeetive-medium approximation

An account of interantidot interaction at cu&co, is a
more complicated problem, since the interaction is not

't.0

0.8

soQ6
3

Q4

t'=0.0
------- f=O 1
----- f=O 3

0.2

0.0
0

1.0
CO COQ

(b)

/I
0.4-

I
I

' I

0.2-
hlR=0. 6 '

0.0
'

0
03 030

FICx. 2. (a) MDA excitation spectrum [low-frequency EMP-
like mode roI,+„'(8}]in the square lattice of antidots at difFerent f
and at h/R=0 (sharp edge). {b) MDA low-frequency branch at
the sharp edge (h/R=O) and smooth edge (h/R=0. 6) of the
antidot hole at f=0.087. The single antidot spectra at h /R =0
and 0.6 are also shown. CR labels the single-particle cyclotron
resonance mode.
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weak. To obtain a qualitative description of the high-
frequency antidot mode we use the EMA. In the EMA,
we replace the problem of an array of interacting antidots
immersed in the medium with conductivity o +(co) by the
problem of a single antidot immersed in the efFective
medium with conductivity o+(co). This allows us to

write, instead of Eq. (20);

(23)

The self-consistent EMA equation for o+(co) then as-
sumes the form

fop(co).
cT~(co)=cr~(co)—

1 [iso ~(co)/cole [lefr('co)+8R /3m(1+y(R /l s))] j
(24)

where l,cr(co) =2nicJ„„(co)/cole.The solution of Eq. (24) can be essentially simplified if we replace the weak (logarith-
mic) function y(R /l, s ) by a value y independent of frequency and magnetic field. This simplification can be justified
in a twofold manner. First, as has been seen above, the function y does not actually depend on the length I when the
finite width of transition layer h near the edge of antidot is taken into account. Second, we are interested in the spec-
trum of collective excitations of a system. This is determined by the poles of eff'ective conductivity cT+ (co) and hence, by
the poles of l,s(co). Near the poles of ldr(co) the function y(R /l, tr) tends to zero [Eq. (A6)], and can be neglected.

With y(R /i, fr) =y'=const the EMA equation (24) is solved analytically. The solution written in terms of functions
e~(co)=1+[3m io+(co)(1+y )]/4coIcR has the form

3m io ~(co)(1+@')
s~ (co)=1+

t(ep —1)(a~+1)—2f(s+s —1)]++(e++1)(e +1) 4f(1—f—)(s+ —1)(s —1)

2[(a~+1)+f(s~ —e~ )]
(25)

The dispersion law for antidot modes is determined by
poles of o'~(co):

1 f—
Q(Q+Q, ) Q(QT Q, )

(26)

here Q=co/coo, Q, =co, /coo, and (coo) =coo(1 +y ); the
upper (lower) sign corresponds to the + (—) polarized
modes.

Figure 4 demonstrates the FIR absorption and excita-
tion spectra of a system of antidots in the EMA.
Figure 4(a) shows the frequency dependence of
RecT'„„(co)—=Re [o+(co)+cr' (co)]/2 at f=0.1, coor=10,
and several dimensionless magnetic fields. The resonance
frequencies found from Eq. (26) are shown in Fig. 4(b) as
a function of 8. There are two modes co„'+'(8) and
coi,+'(8) with a relatively large oscillator strength and +
polarization (coinciding with the CR one), and one mode
co„'~'(8) with the opposite ( —) polarization and a small
oscillator strength. The behavior of modes co'„*'(8)and
co,',+'(8) in small and strong magnetic fields is determined
by expressions
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FIG. 3. Experimental points (crosses) from Ref. 9, sample (b),
with theoretical curves: (a) MDA single-particle mode (CR)
and collective mode co&,+'(B) (labeled EMP in strong B); (b)
EMA collective modes co&,+„'(B)and co'„~'(B) and 2D bulk mag-
netoplasmon excitation branch co p(q =2m/a) (dashed-dotted
curve).
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lated values (see above).
The EMA has the advantage that it gives a correct

qualitative picture of the excitation spectrum of an inho-
mogeneous 2D antidot medium. However, it is not quite
adequate for a quantitative description of all excitation
branches. As seen from Fig. 3(b), an agreement between
the high-frequency branch co„~'(B} and experimental
points is not so good [experimental data of Ref. 12 for
mode co(„&'(B) were found to agree well with EMA re-
sults]. We suppose that the reason for this is in a rough,
frequency-independent account of interantidot interac-
tion in the EMA. One can show that the EMA would be
valid if an induced potential would be proportional to 1/r
at r »R at all frequencies. As seen from the actual
asymptotes of y'+ (r), Eqs. (9) and (11), the EMA overes-
timates the interaction when it is small (at co&co, ) and
underestimates it when it is large (at co & co, }. Indeed, at
co & co, and co, »coo (the interaction is small), the EMA
give a larger correction to the EMP frequency ( ~f ) [Eq.
(28)] than the MDA ( CC f ~ ). When the frequency tends
to the cyclotron one and interantidot interaction in-
creases, the EMA and MDA give similar results [com-
pare Eqs. (28) and (22) at f«1]. At co&co, the EMA
plays the role of a tight-binding approximation for
strongly interacting antidots. In the opposite limit of
weak binding, the square lattice of antidots can be con-
sidered at f«1 as a point grid imposed on the homo-
geneous 2D electron layer. Due to the grid, 2D bulk
magnetoplasmons with the frequency co ~(q =2m/a) are
excited in the system. The branch co=co ~(2~/a) is
shown by the dashed-dotted curve in Fig. 3(b). Experi-
mental points lie in between the theoretical curves corre-
sponding to the EMA and the weak-binding approxima-
tion. This indicates that the EMA underestimates an in-
teraction at co & co„andthat an intermediate-binding case
was actually realized in experiment. It should also be
noted that, strictly speaking, the spatial ordering of anti-
dots in square lattice is not taken into account in the
EMA (resonance frequencies depend only on the space-
average filling factor f of the system). In this respect the
EMA is similar to the variational Wigner-Seitz ap-
proach. ' It is probably a suitable model for a system
with a random distribution of antidots over 2D space.
An acceptor-doped 2D electron system with randomly
distributed negatively charged centers is an example of
such a structure.

The presence of a CR line in the FIR spectrum is a
peculiar feature of antidot systems. In the spectrum of
dots the CR line is not observed due to the depolarization
efFect. In antidots, depolarization fields are essential
only inside and in some vicinity of antidots. At a large
distance from them, electrons do not feel depolarization
fields. This is qualitatively supported by comparison of
data of Refs. 9 and 10. In Ref. 10, where the macroscop-
ic electric fields were screened by metal gate, an oscillator
strength of the CR line was relatively larger than in Ref.
9, where an etched structure without screening electrodes
was used. Two contributions to excitation spectrum,
demonstrated by the MDA expression (21), are condi-
tioned by electrons which feel (collective contribution)
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FIG. 4. FIR absorption (a) and excitation (b) spectra of a sys-
tetn of antidots in the EMA at f=0.1. (+) and ( —) signs in (b)
label the polarization of modes.

(0„'+');„—(QI,+'),„=(2f)'~=(2m. )'~ R /a,
f «1 . (29)

We suppose that, due to the small oscillator strength, the
mode ~„' ' was not observed in experiments. ' Experi-
mentally observed modes are the + polarized collective
modes co(~ '(B) and colo+'(B). As a whole, EMA results
are in a good qualitative agreement with experiment.
Two main features of the antidot spectrum noted in Refs.
9 and 10—the exchange of oscillator strength of the two
main excitation branches and negative B dispersion of the
high-frequency mode at small B—are seen in Fig. 4. In
Fig. 3(b), two main + polarized excitation branches
co„'+'(B)and A@I,+'(B) are shown with experimental points
of Ref. 9, sample (b). The value of coo has again been
found by fitting the coI,+'(B) curve to experimental data.
The obtained value for Mp =2.17X10 s is jn a
reasonable agreement with both MDA results and calcu-

The low-frequency + polarized mode takes its
maximum value (0I,+')~,„=Q—,

' —[f(1 f)]'~ at—
II, =Q —,'+[f(1—f)]' . The upper + polarized
mode takes its minimum value
(~I.'+, ');.=V —,'+ [f(1—f}]'" at

Q, =Q—,
' —[f(1 f)]'~. In a scar—ce square lattice of

antidots the gap between the upper and lower +
branches equals
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and do not feel (single-particle CR) depolarization fields.
Contrary to the MDA, the single-particle CR line is not
seen in the EMA absorption spectrum, Fig. 4(a). We be-
lieve that this is also a consequence of a rough inclusion
of interantidot interaction in the EMA. The frequency-
independent EMA asymptote y+ (r) ~ 1 jr plays the role
of a relatively strong depolarization field acting on elec-
trons between antidots. As a result, the single-particle
CR line is suppressed in the EMA.

In our theory we have neglected spatial dispersion
effects. If the mean free path is large compared with the
antidot lattice period a, the nonlocal effects can influence
calculated spectra if q vp &

~
co n—coJ~, where

n =1,2, . . . , vF is the Fermi velocity and q =a is the
characteristic length of the electric-field variation in the
system. An observed anticrossing of the upper excitation
branch with a 2', harmonic of the CR was explained in
Ref. 9 by nonlocal effects. A similar anticrossing due to
nonlocal efFects could be expected at ~=co, . Under the
conditions of experiments in Refs. 9 and 10 the role of in-
terantidot interaction is more important: the value of the
expected nonlocal gap hco„&=—vp/a is much smaller than
the gap Leo;„,=cooR /a [Eq. (29)], conditioned by interan-
tidot interaction, he@„&/bc@;„,—=Qaz /R «1, where az
is the effective Bohr radius.

The third region where nonlocal effects could modify
our results is in the limit of small 8 and low frequency,
co, &vp/a, co&vs/a. Effects of commensurate electron
orbits spanning one or several antidots observed in trans-
port experiments ' may manifest themselves in collec-
tive excitation spectra in this region. To confirm this, the
spatial dispersion of conductivity should be taken into ac-
count.

V. SUMMARY

We have presented a theory of collective excitations in
a single antidot and in a system of interacting antidots.
In the single antidot, we have found two collective modes
cocR(B) and co EpM( B) ~ The first collective mode coincides
with the single-particle CR line. The second mode has a
sense of the edge magnetoplasmons localized near the
boundary of antidots. An important feature of the single
antidot spectrum consists of the absence of weakly
damped collective modes at co&co, . This is conditioned
by the strong nondissipative damping of single antidot
excitation modes due to the emission of 2D bulk magne-
toplasmons. A similar efFect should be the case in a dot-
like structure, where a disk with electron density n; is
immersed in the 2D layer with the smaller electron densi-
ty n, (n, .

An important consequence of emission of 2D bulk
magnetoplasmons by the antidot dipole at m & cu, is that
the interantidot interaction is of crucial importance in
systems of antidots. Contrary to a system of dots, in-
terantidot interaction must be taken into account even in
a scarce lattice of antidots. To take the interantidot in-
teraction into account we have used two approximations,
the MDA and EMA. The EMA gives a good qualitative
description of experimentally observed FIR absorption
and excitation spectra. Both approximations agree quan-

titatively with experimental data for the low-frequency
antidot mode.
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Analytic properties of the kernel L (r, r', 1) [Eq. (5)], de-
pend on the position of the inte grand pole
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and rotating the integration path by the angle
m. /2( —m. /2) in the first (second) integral, we obtain

L ( r, r '; 1)=2m i 6[ —Re( I ) ]J&
( r /1 )H',—"( r /—I )

+
2 2 Intr r K)tt'+(r, /1)'

(A 1)

Here I&, K&, H &", and H
&

' are the modified Bessel and
Hankel functions, r& =min[r, r'], and r& =max[r, r'].
If co &co„the first line in (Al) vanishes, and the asymp-
tote of kernel L ( r, r'; i),

L(r, r';l)=(2r& jul)F(r& ji), r&/r& «1, (A2)

is determined by the function

~/2z at 0&z & 1

F(z) = Ki(t) =
o rz+z m/2z at z)&1, (A3)

which can be interpolated at all z & 0 by the simple for-
mula

2z (1+z) (A4)

If co~co, and hence l(co)~~, L(r, r', l )=r& jr&.
At co&co, the main contribution to the asymptote of
L (r, r'; l) is made by the first line of Eq. (Al).

At r =r' the function L (r, r;l)=—S(rji) is reduced to
the tabulated integral
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S(z)=2 dt
J& (t) = —nJ&(z) Y&(z) — 2F3(1, 1;—,—

&
—,' —z )

Sz . 3 5 1. 2

o t+z 3' ' '2'2'2'

Sz
3m.[1+y(z) ]

The function y(z) equals zero at z=0 and increases logarithmically at z —+ co:

(A5)

(3m.z/16) [ln(2/z)+ [g(1)+g(2)]/2 —
—,
' —2(8/3m)~}, ~z~ && 1

y(z)= '

(16/3n' )[ln(2z) —
tP( —', )]—1, z ))1 . (A6)

Here J, , Y„and 2F3 are the Bessel, Neimann, and hypergeometric functions; and g(3/2)=0. 037, 1t(1)=—C, and
g(2) = —C+1, where C=0.5772 is the Euler constant.
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