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Electronic transport in nanostructures consisting of magnetic barriers

J. Q. You
Institute ofSolid State Physics, Chinese Academy ofSciences, P.O. Box 1129, Hefei 230031, China

and Department ofPhysics, Xiangtan University, Xiangtan 411105,Hunan, China

Lide Zhang
Institute ofSolid State Physics, Chinese Academy ofSciences, P.O. Box 1129, Hefei 230031, China

P. K. Ghosh
Department of Physics, Xiangtan University, Xiangtan 411105, Hunan, China

and Department of Physics, Visva Bhara-ti University, Santiniketan 731235, West Bengal, India
(Received 22 June 1995)

We study the transport properties of the nanostructures consisting of magnetic barriers produced by
the deposition of ferromagnetic stripes on heterostructures. It is shown that the electron tunneling
through multiple-barrier magnetic structures exhibits complicated resonant features. Due to the averag-
ing of the transmission over half the Fermi surface, the conductance has, however, much simpler reso-
nant structure. As for the single-barrier magnetic structures, our calculations show that the conduc-
tance preserves the main feature of the electron tunneling.

There have been numerous studies, both experimental
and theoretical, devoted to the transport properties of
semiconductor heterostructures. Present microfabrica-
tion technology' has made it possible to study the elec-
tronic transport in nanostructures, and considerable pro-
gress has been made in the understanding of a variety of
transport phenomena. Recently, much attention has
been paid to electronic transport in inhomogeneous mag-
netic fields on the nano meter scale. Experiment3. lly,
fields of this kind can be realized with, for instance, the
creation of magnetic dots, the patterning of ferromag-
netic materials, and the deposition of superconducting
materials on heterostructures. In the theoretical aspect,
the creation of superlattices by an inhomogeneous mag-
netic field and the quantum transport of a two-
dimensional electron gas (2DEG) in a weakly modulated
magnetic field have been investigated. Very recently,
Matulis, Peeters, and Vasilopoulos proposed four realis-
tic magnetic barriers as produced by the deposition, on
top of a heterostructure, of ferromagnetic and conducting
stripes and sup erconducting plates interrupted by a
stripe. They found that electron tunneling through
square magnetic barriers is an inherently two-
dimensional (2D) process, and that the magnetic barriers
possess wave-vector filtering properties. However, the
square magnetic barriers used in their study are not the
proposed ones. In order to reveal the transport proper-
ties of realistic structures, in this paper we study the pro-
posed magnetic barriers instead of the square ones.

As a prototype, two types of magnetic barriers are em-
ployed here, which are produced by the deposition, on
top of a heterostructure, of a ferromagnetic stripe with
magnetization (a) perpendicular and (b) parallel to the
2DEG located at a distance zQ below the stripe; cf. Figs.
1(a) and 1(b) in Ref. 8. For these two structures, the mag-
netic barriers experienced by the 2DEG are given by

1 , [p+e A(x, zo)J %(x,y)=E+(x,y),
2m

(2)

where m* is the effective mass of the electron, and
the Landau gauge A(x, zo) is given by
A(x, zo) =(0, A (x,zo), 0), in which

and

(x+d/2) +zo
A (x,zo ) =8od ln

(x —d/2) +zo
(3)

T

x —d/2
A (x,zo)=8od tan

ZQ

x +d/2—tan
z0

for cases (a) and (b), respectively. Assuming that
%(x,y) =e'+'g(x), where tI is the wave vector of the elec-
tron in the y direction, one obtains that the wave function
g(x) obeys the following 1D Schrodinger equation:

8=8 (x,zo )z,
8 (x,zo) =8o[K(x +d/2, zo) —K(x —d/2, zo)],
where (a) 8o=Moh/d, X(x,zo)=2xd/(x +zo), and (b)
8o=Mohld, &(x,zo)= —zod/(x +zo), in which Mo is
the magnetization of the ferromagnetic stripe, and d and
h are the thickness and height of the stripe, respectively.
Here it has been assumed that h/d «1 and h/zo «1,
which correspond to the extremely thin film. The mag-
netic barriers are shown in Figs. 1(a) and 1(b) for two
different depths: zo=0. 1 (solid curve) and 0.3 (dashed
curve). Also, the square magnetic barrier is presented in
Fig. 1(c) for comparison.

The Schrodinger equation for the 2D system is
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FIG. 1. Magnetic barriers and their corre-
sponding vector potentials. For (a), (b), (d),
and (e) the structural parameters are chosen to
be d =1, and z0=0. 1 (solid curve) and 0.3
(dashed curve). In (c) and (f) a square magnetic
barrier and its vector potential are shown for
comparison. The spatial coordinate and length
are in units of the magnetic length
1~ =+A/eBO in this figure and the following
ones, the magnetic field is in units of Bo, and
the vector potential in units of B0l&.
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—[ A ( x, zo)+ q ] +2E .$(x)=0 . (5)

Here we express the quantities in dimensionless units; the
coordinate r is in units of the magnetic length
lj) =+A/eBo, the vector potential A (x,zo) in units of
Boljj, and the energy E in units of 1)tco, =heBo/m~. In
Figs. 1(d}—1(f) we present the corresponding vector po-
tentials for the magnetic barriers shown in Figs.
1(a)—1(c), respectively. It can be seen that the vector po-
tential of the square magnetic barrier is drastically
different from those of the barriers realized by the deposi-
tion of ferromagnetic stripes on heterostructures.

When the magnetic barrier is a square one, Eq. (5) is
the Weber equation, and within the barrier its solutions
can be written as a linear combination of the Weber func-
tion D (x) and its derivative. However, no exact
scheme is available for solving Eq. (5) with a more com-
plicated vector potential. Thus we resort to an approxi-
mate method. For an arbitrary vector potential within
the region [x,x+ ], we divide the region into N( »1)
segments, of which each has width D/N =(x+ —x )/N,

—[A (x +jD/N, zo)+q] +2E f(x)=0,
dx

which has the plane-wave solution
ik . [x —(x +jD/N)] —ik. [x —(x + jD/PV) }

j x =cje +dje
(7)

x H(x +jD/N, x +(j +1)D/N),
where k is given by kj= [2E —[A (x +jD/N, zo)
+q ]2

]
1 /

From the wave-function-matching conditions at the
boundaries of the segments, one obtains a set of coupled
equations linking the amplitudes I c,d ],

Cj
=M(j+1,j) (&)

Cj+1

dj+1 j =0, 1,2, . . . , N —1,

where

and treat the vector potential as a constant
A (x +jD/N, zo ) in the jth segment [x +jD /
N, x + (j + 1)D /N]. Within this segment the
Schrodinger equation (5}then becomes

M(j+1,j)=

k
1+

2 k. +1

k1—
2 kj+,

ik -D/N 1 k
e 1—

2 k+,
ik.D/N 1 jk

e '+
kj-

—ik.D/N
e

—ik .D/N
e

By successive multiplication of the transfer matrices
given in Eq. (9), we are able to obtain the transfer matrix
M =(m;j ) linking the amplitudes of the wave functions at
the left and right ends, x and x+, of the structure. As-

suming that the wave function on the left side of the
ik (x —x ) —ik (x —x )

structure is 1' (x)=e +re, x (x
and the transmitted wave function on the right side

ik+(x —x+ )
1'+(x)=te, x &x+, one can derive the
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reQection an d transmission coeKcients

2R = Irl = Im2i/m22I

2T=
I
tI'=1 —

I m„/m„I
(10)

d spatial regions within Ix,x+ ],For iven energies an sp
~ ~

ave vectors in Eq. (7) can be either real or imagi-
r . In our numerical caicu a ions,

o
' E . (9) as double-precision com-

d uble-precision complex
ors k and k+, in q.

for ex ik D/N). Then multiplying
ntities, and employ t e ou

exponential function or exp i
~

(9) can be realized in a uni e wthe transfer matrices &9, c
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E ~ —' A (x,z )+q] are allowed
d that since the wave vector k of x s ou

real, energies obeying E —, x,zo
W' h the transmission coefBcient o-for transmission. it e

ncetained, one can cn calculate the conductance

G =Go f T(Ez, +2E~ sing) cosP dP,
n/2
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tion' E is the Fermi energy; Go =e mUF, wiF
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matrix approac ln e rh
'

th framework of the Weber function
formalism.
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'
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structures. Figure 5(a) shows the conductance through
the magnetic barrier given in Fig. 1(a), where the param-
eters are chosen to be the same as in Figs. 3(a) and 3(b),
and zo =0. 1 (solid curve) and 0.3 (dotted curve) .Despite
the averaging of T(E,q) over half the Fermi surface, the
main feature of the electron transmission is still reAected
in the conductance. From Fig. 5(a) one sees that the con-
ductance has a resonant peak in the low Fermi energy re-
gion. With zo increasing, the resonant peak and the step
shift toward zero Fermi energy and are pressed together.
In Fig. 5(b) we present the conductance through a struc-
ture consisting of two identical magnetic barriers. The
structural con6guration and its parameters are the same
as those for Fig. 4. Here z0=0. 1 and 0.3 correspond to
the solid and dotted curves, respectively. The conduc-
tance has a resonant structure, and its main feature is
similar to that of Fig. 5(a). Though the transmission
shows complicated resonant structures (see Fig. 4), the
conductance does not, however, as a result of the averag-
ing of the transmission over half the Fermi surface.

In summary, we have studied electronic transport in
nanostructures consisting of magnetic barriers proposed
by Matulis, Peeters, and Vasilopoulos. These barriers

can be realized by the deposition of ferromagnetic stripes
on heterostructures. Here two single-barrier magnetic
structures are investigated, one of which shows a reso-
nant peak in both the transmission and conductance.
Also, we studied a double-barrier magnetic structure. It
is shown that the conductance of this structure has two
resonant peaks. Due to the averaging of the transmission
over half the Fermi surface, the conductance does not
preserve the complicated structures in the electron
transmission. In this paper we studied, as examples,
structures composed of one and two magnetic barriers.
Extension to other structures consisting of more magnet-
ic barriers is straightforward by means of the method
used above. Because more barriers are involved, both the
transmission and conductance then exhibit more and
sharper resonant peaks. "
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