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Electron correlation efFects in screened hydrogenic impurity states
in many-valley semiconductors
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The critical concentration of donor hydrogenic impurities in a screened Coulomb potential is
calculated, considering the efFects of exchange, correlations, and mass anisotropy of the bound
electron. We used the random-phase approximation and a self-consistent scheme proposed by Singwi,
Tosi, Land, and Sjolander with variational solutions in the effective mass equation. Our results are
compared with other theoretical calculations and with experimental measurements of the metal-
semiconductor transition in n-type impurities of silicon and germanium. The agreement with the
experimental results let us conclude that in many semiconductor systems the short-range correlations
need to be taken into account in a more effective way.

I. INTRODUCTION

There has been a considerable interest in the inves-
tigation of critical densities of shallow donor impurities
in group IV semiconductors, from both theoretical and
experimental points of view. For sufIiciently low impu-
rity concentration Kohn and Luttinger and several other
authors have solved the Hamiltonian of the impurity in
the effective mass approximation, using a trial function
of the hydrogenic type in a variational calculation. How-
ever, it is known that if the donor impurity concentration
in a semiconductor is increasing, there occurs a superpo-
sition of the electronic wave functions of the neighboring
impurity atoms, which allow the electrons to become rel-
atively free and move from one impurity site to another.
Consequently, these free carriers screen the electron-ion
Coulomb interaction. In this sense, within the effec-
tive mass approximation, the electronic properties have
been calculated using different approaches for the dielec-
tric function: Thomas-Fermi (TF), Lindhard, and
Hubbard-Sham (HS).

The electronic system under consideration can be char-
acterized only by a single dimensionless variable r,
ro/ao, where ro ——(3/4mn)~~ is the average interparticle
separation, n is the number density, and ao ——cob /rn*e
is the effective Bohr radius. m* and eo are the electron
effective mass and the dielectric constant of the semicon-
ductor, respectively. For doped semiconductors the crit-
ical densities are usually low, ranging from about 10
to 10 cm . Then, in this range of densities and us-
ing the appropriate values of efFective mass and dielec-
tric constant for silicon and germanium, we find r, that

corresponds to the metallic densities of the electron gas,
2 & r, ( 6. This means that a better calculation than
the random-phase approximation (RPA) should be per-
formed.

In the present paper we investigate some electronic
properties of semiconductors by using a self-consistent-
field approximation proposed by Singwi, Tosi, Land, and
Sjolanders (STLS) for a degenerate electron gas. This
approach is one of the best improvements of the RPA
formalism by virtue of including the short-range corre-
lations which arise &om the Coulomb repulsion poten-
tial. The short-range correlations responsible for the lo-
cal Geld corrections are calculated in a self-consistent way
by making the density-density response function depen-
dent upon the pair-correlation function. The method
consists in making a decoupling of the two-particle dis-
tribution function in the Liouville equation, replacing it
by the product of two one-particle distribution functions
and a pair-correlation function.

In order to determine the critical density n for which
the semiconductor-metal transition occurs, we have ap-
plied the STLS to calculate the ground-state energy, as
a function of the carrier density, of an electron bound
to an ion of a donor impurity. The mass anisotropy of
the bound electron is taken into account in the dielectric
function, which is obtained within the self-conssitent ap-
proximation method. We have used a trial wave function
that reflects the cylindrical symmetry of the system. The
numerical results for the critical densities, for silicon and
germanium, are compared with those obtained through
different approaches for isotropic and anisotropic systems
as well as with the experimental results.
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II. THEORY @(()= C'((!) 1 —G(&)

The conduction band energy surfaces in the k space
for germanium and silicon are ellipsoids of the form

k' + k'
E(k) = h'

2m' 2m

where m~ and m, represent the effective masses perpen-
dicular and parallel to the anisotropic direction, A: . We
have assumed mass isotropy in the plane xy. Then the
Hamiltonian of the system we are working on, within the
effective mass approximation, can be written as

S(() =— OO

d(u Im e '((, ~)
vrn4(() o

(9)

By now it is worth noting that the RPA results corre-
spond to the zeroth-order approximation, where @(() is

taken as the bare Coulomb interaction potential, 4(().
Closing the self-consistent scheme, the structure factor

S(() can be obtained from the dielectric function e((, w),
with the help of the exact expression

f l o)2 1 (9z 1
,+,+, I+U(&) .

2 pm~ (9zz mz (9y2 m, o)z2)

By making a scale transformation on the vector
A: we obtain an isotropic electron gas with wave vec-

tor ( = (k R i~s, k„R ),k, R )'
) and efFective mass

m' = (m, mz), where R = m~/m, is the mass ratio
between the values of the mass in the plane xy and the
mass in the direction z. U(r) is the interaction potential
between an electron and an impurity given by

Reyp((, (u) = 3A Ep'

4Ep A3
1+ (~' —n') ln+ P Q

(10)

where n is the electronic density.
We have then Eqs. (5), (7), and (9), which constitute

the set to be solved self-consistently in order to obtain
the dielectric function e((, w).

The real and imaginary parts of the density-density
response function yp(( cu) are given by

U(rg = exp(i(. rQ
d( 4(()
2' s e(( 0)

and its Fourier transform is

(3)
Imp ((, (u) = [(A —0 )O(A —~A ~)

—(A' —0+)O(A —iO+ i)]
4 (() 4z.e 2

c((, 0) spge((, 0)
(4)

where 4'(() is the Fourier transform of the Coulomb po-
tential without screening, co is the static dielectric con-

stant of the host crystal, and e((, 0) is the static dielectric
function of the system. In the general case, the dielectric
function in the STLS approximation is given by

where we have defined O~ = ha) + E(() and

2/E(()E~. The Fermi energy is given by E~
h g, /2m* with (~ = (3n n/v) 3, v being the number
of valleys of the semiconductor. The unit step function
is defined as O(x) = 1 when x ) 0, and zero otherwise.

Since the eigenvalues of the Hamiltonian of the system,
Eq. (2), cannot be obtained in a closed form we used a
variational approach to minimize the energy.

where

e((, (u) = 1 + Qo((, ~)
1 —G(()qo(& ~)

(5) (~) = f ~nw (~)H~(~)'
with the trial wave function

(12)

Qo((, ~) = —c'(()xo(( ~)

is the electronic polarizability and yo((, u) is the density-
density response function for a noninteracting electron
gas with isotropic mass m*. The local Geld correction

G(() can be expressed as a function of the structure fac-

tor S(() as

I

0(() = — R (~ d(' S(i( —('i) —1, (7)

and is related to the self-consistent effective potential

@(() through the expression

(p(p) =
~

&
~

—sinh [
—p(1 —n/2)], (13)

(4n s)'2n2 ) p

with p = [(ma~/m, *)(z + y ) + (m, a, /m*)z ] ), a~ ——

Pe, and a, = Pp ~ . The variational parameters n,
P, and p must be determined by minimizing the ground-
state energy of the system. This wave function is equiv-
alent to the Hulthen wave functioni when P = p = 1.
For this case, and taking the limit o. = 0, this trial wave
function becomes hydrogenic. Throughout this work
we express energies as multiple of the effective Rydberg
R* = m.*e4/(2so2h ) and lengths in units of the effective
Bohr radius. In these units, the result for the expected.
value for the total energy is given by
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(&) = (T) + (U)

= —(a, + 2a~)(4 —o. ) —8~=1 2

24
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d3(
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(14)

where III. R.ESULTS

I/Vg) = 1 —4 o.
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is the Fourier transform of the particle density
[y*(p)p(p)] in the space of the momenta. Thus, in this
way it is not necessary to know the analytical expression
for the STLS potential in the spatial coordinates.

For each concentration of &ee carriers we have numer-
ically solved the self-consistent equations, Eqs. (5), (7),
and (9), in order to obtain e((, 0), which allows us to cal-
culate the static structure factor, the electron-impurity
potential, and the ground-state energy. The energy is
calculated with the optimum values of the variational
parameters n, P, and p, for Si and Ge with densities in
the range 2 & r, & 7.

Figure 1 represents the potential V(r) = rU(r) of
an electron bound to an ion of a donor impurity, for
the TF, RPA, and STLS potentials. Figure l(a) shows
the results for germanium with density corresponding to
r, =41(n=25x10~~ cm s), R=005, andv=4,
while Fig. 1(b) represents silicon, with r, = 3.7(n
4.0 x 10~s cm s), R = 0.2, and v = 6. We notice
that for both materials the STLS potential curve takes
values somewhat in between the RPA and the TF results.
This fact indicates that STLS does not overestimate the
screening efFects, as TF does, nor underestimate these
effects, as is the case of RPA. This happens due to the
inclusion in STLS of the short-range correlations through
the self-consistent local field correction.

In Figs. 2 and 3 we show the results for the static
structure factor of the electron gas, for the RPA and
STLS approximations, with diferent values for the mass
ratio R and density r, . Both results correspond to a val-
ley degeneracy number v = 1. Figure 2 corresponds to
B = 0.2 and two densities, r, = 1 and r, = 4. In Fig. 3
we considered r, = 2 and B = 1, which corresponds to
an isotropic system, and B = 0.2, which is about the ex-
perimental mass ratio for Si. From Fig. 2 one can notice
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FIG. 1. Potential energy V(r ) = rU(r), as a function of r,
of an electron bound to an ion of a donor impurity in a semi-
conductor. Energy is in unit of effective Rydberg and length
in unit of efFective Bohr radius. (a) The results for germanium
with density n = 2.5 x 10 cm, corresponding to r, = 4.1,
the electron ratio mass B = 0.05, and the valley degeneracy
number v = 4. (b) The results for silicon, n = 4.0x10 cm
(r, = 3.7), R = 0.2, and u = 6. The corresponding results for
Thomas-Fermi and RPA are also plotted for comparison.
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FIG. 2. Static structure factor S(qg plotted as a function of
q/qs for an anisotropic electron gas, R = 0.2, for two difFerent
densities r, = 1 and r, = 4. The RPA results are also plotted
for comparison.
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FIG. 3. Static structure factor S(q) plotted as a function
of q/q~ for an isotropic (R = 1) and an anisotropic (R = 0.2)
electron gas with density r, = 2. The corresponding results
for RPA are also plotted for comparison.

FIG. 4. Electron-impurity energies in units of effective
Rydberg as a function of 1ir, for germanium and silicon.
The RPA results are plotted for comparison.

that, in the STLS approximation, for values of q & q~
there is almost no dependence on the density. In the
RPA, the values corresponding to the higher density sys-
tems (smaller r, ) are sensibly larger, getting closer to the
STLS results as the density increases. This agrees with
the fact that the RPA has proven to be a good approxi-
mation in the high density limit. Also, in the STLS ap-
proximation the structure factor reaches unity for values
of q close to 2q~, which corresponds to a more structured
system. Figure 3 shows that in the anisotropic systems
there is a larger difI'erence between the results obtained
with each approximation. This fact should justify the use
of the STLS approximation for anisotropic systems. We
also note that for small values of q the results are almost
independent of the approximation used.

The binding energies for an electron in the RPA and
STLS potentials are shown in Fig. 4, for germanium
(R = 0.05) and silicon (R = 0.2) as a function of the elec-

tronic density. In adimensional units (aon, ), the val-

ues for the critical densities for the metal-semiconductor
transition are 0.284 for germanium and 0.243 for silicon,
in the RPA, and 0.249 and 0.182, respectively, for the
STLS approximation. It is worth mentioning again that
the STLS values for the critical density are much closer
to the experimental values, 0.23 and 0.20, ' than
the other approximations.

Our computation results for the critical densties (Mott
transition) for germanium and silicon are summarized in
Table I, which also lists for comparison the values ob-
tained through difFerent approximation of calculations
as well as the experimental values. All the results, ex-
cept those from our work which are labeled by (a) and
those using the Berggren model, were obtained with the
electrostatic screening in the Thomas-Fermi or Lindhard
approximations. Inspection of the table shows that the
present results for the metal-semiconductor transition
densities are in good agreement with the experimental
results, differing by less than 9%%uo in both cases.

TABLE I. Comparison of theoretical and experimental values for the critical densities for ger-
manium and silicon, as reported in the literature. The theoretical results marked by (a) correspond
to this work. Numbers in parentheses are references.

Isotropic system
Thomas-Fermi (hydrogenic trial function) (5)
Lindhard (hydrogenic trial function) (5)
Thomas-Fermi (Hulthen trial function) (a)
Lindhard (Hulthen trial function) (a)
Hubbard-Sham (Hulthen trial function) (a)
Hubbard-Sham (numerical results) (17)

Anisotropic system
Thomas-Fermi (6)
Lindhard (6)
Berggren's model (8)
RPA (a)
STLS (a)

Experimental results
Experimental results (11,14,15,16)

Germanium
0.10
0.23
0.142
0.271
0.299
0.305

0.10
0.22
0.206
0.284
0.249

0.23

Silicon
0.08
0.23
0.108
0.263
0.290
0.295

0.10
0.25
0.202
0.243
0.182

0.20
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IV. COCCI, USIOXS

We have applied the self-consistent-field approx. -

imation which takes into account the short-range-
correlations efFects in order to study the impurity states
in many-valley semiconductors. Numerical results for
the efFective electron-impurity interaction potential, the
static structure factor of the anisotropic electron gas, and
the electron binding energies were obtained as a func-

tion of the electron density for germanium and silicon.
The metal-semiconductor transition densities were cal-
culated and the agreement with the experimental results
was found to be very good.
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