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Length mismatch in random semiconductor alloys. IV. General multinary compounds
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We generalize previous theory on the length-mismatch problem in random semiconductor alloys to
deal with an arbitrary number of components on each sublattice. We also calculate the length-

distribution functions for any two sites in the crystalline alloy. It is found that the properly scaled
length-distribution functions are independent of the types of atomic species, and the first and second mo-

ments of the distributions are calculated. We illustrate these results with computer simulations per-
formed on Si Ge&, and apply these results to the pseudoternary alloy Cd& ~Mn Zn~ Te.

I. INTRODUCTION II. THEORETICAL FORMALISM

Structural information on semiconducting materials is
of fundamental importance in calculating, predicting, and
understanding a wide range of their properties. ' For
example, the interactions between the magnetic ions (Mn)
in the semiconducting alloy Cd& „Mn Zn Te depends
sensitively on the Mn-Mn spacing, thus it is important
to understand the bond-length distributions in these mul-
tinary alloys. As the fourth of the series on length
mismatch in random alloys, this paper generalizes the
previous approach to deal with a compound with the
generic formula I(A ) I I (Bp) I (where a= 1, . . . , X,

a
=1; and P= 1, . . . , M, gpyp=1). We also calcu-

late the length-distribution functions for any two sites in
the crystalline alloy. We find that the scaled length-
distribution functions are independent of the types of
atomic species in question, and the first and second mo-
ments of the distributions are calculated. The results for
more distant pair distributions are illustrated with com-
puter simulations performed on Si Ge, , where each
sublattice of the zinc-blende structure is populated by a
random mixture of Si and Ge with the same
stoichiometric formula Si„Ge&, such that in the
language above, N=M=2 2

&
=B]=Si, 32=B2=Ge,

x
&
=y

&
=x, and x2 =y2 = 1 —x. The theory is also ap-

plied to the pseudoternary alloy Cd, Mn Zn Te,
where we may identify N=3, A, =Cd, x, =1—x —y,
~2 M» x2 x A3 Zn, x3 =y; and M= 1, B, =Te,

y& =1. The pair distribution function (PDF) in simula-
tions is a structural property of the material that can be
measured directly by neutron or x-ray diffraction, which
can be constructed using the theory in this paper, which
extends previous work to further neighbors.

In Sec. II, we outline the theory for the generic random
alloy, and present the results and discussion in Sec. III.
The reader interested only in the results can proceed
directly to Sec. III.

A. Lattice topology parameters

We assume that each kind of atomic species resides on
a sublattice of an otherwise perfect zinc-blende structure.
In the A, model, the strain energy induced by the length-
mismatch field I uiI can be written as

V(A, )=—a g (L, L„.+r„"u—„}1 0

&a&

1+ ~ X ~ 11' I"I'+ I"I' ll'
(a r-&

2+ ~(rll' ull'+rl"I' ul"I') j

where we sum over all possible nearest-neighbor bonds
and bond angles in the structure. When A, =O, we recover
the Keating model; and when k= 1, the Kirkwood mod-
el.'

For convenience, we introduce two sets of indicator
functions' on each site of the two sublattices, such that if
an atom at site i (on the A sublattice) is of the a type, f '

is 1, and 0 otherwise. Similarly g& is defined on the B
sublattice. Note that gQ' =1, and gpgpI=I. In this
language, if r and rp are the natural (i.e., relaxed) radii
of the a and P species, respectively, then the additivity of
atomic radii means that the natural bond length L&j can
be written as

Li; Xapfag pLap—
=g f'g pI(r +rp)

aP

=g f'r +ggplrp .
a P
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Therefore, in the linear approximation, two types of
disorder-induced stress fields can be defined,

P;=a $ r;;$ gi)3ri),
j(i) p

t(;= a+r;;g f'r
i(j) a

(3b)

where gj(;) denotes a sum over the four nearest neighbors
of i, and so on. Notice that we have used the letter e
both for the central nearest-neighbor force constant and
as a subscript to indicate the chemical species on one sub-
lattice. It is clear which is which by whether a is a sub-
script or not. Similar remarks apply to P.

In the Fourier space of the underlying fcc Bravais lat-
tice, the dynamical matrix of the system can be block di-
agonalized (6X6). By minimizing the strain energy with
respect to the internal displacement field, we obtain where

(+)
Uk

(-) =
Uk

'y(+) '

y(
—) (4a)

FIG. 1. Coordinate system as fixed by the underlying mean
zinc-blende structure, where L, is the nearest-neighbor bond
length, and A an atom at the origin. The convention used in
this paper is such that the nearest-neighbor B atoms are at
(1,1, 1)L,/&3, ( —1, —1, 1)L,/+3, ( —1, 1, —1)L, /"I/'3, and
(1,—1, —1)L, /&3.

Dk=a
4I

+ —pA,
1

9

7 k 3I+ 4VkV —k

k

I+ V —kVk+ PkV —k+

+—k 3Y —kI

—z „—2y kI

I+ 4VkV k+ 4f krak+ 12/k+k 27 kI

+p
7k 3fkI 3

I+ 4V kVk
4 1

D(++ ) D(+ —)
k k

D( —+) 0(——)
k k

(4b)

whose inverse defines the Green s function Gk of the corresponding network. Note that both Dk and Gk are Hermitian,
which is consistent with the strain energy being real. Here we use + and —to label the A and B sublattices, and for
the coordinate system chosen (Fig. I), we have

k L, k L, k L, k L, k L, I k,L,
y), =g e '"' =4 cos — cos — cos +i sin sin — sin

3 3 3 3 3 3

where L, is the nearest-neighbor bond length. The vector vk and the tensor ~k are quantities derivable from yk, that is,
vk =—(i V) /L, )yk, r), =—(i V) /L, )(i V), L, )y)„and I is used to denote the 3 X 3 unit matrix.

In this way, we may write, for example,

m u(+)el& i m (~(++).a(+)+~(+—).a( —))e(k.i
k k

=a g —g Cx'++'e' ' '' .r . g g' r +a g1

p (j'i" )

~ ~(+—) Ik (i —j') ~ m ri" 0

N k a

=g cx;;"Q; +g cr;)"(t)j (6)

This identifies the Green s function in real space: For any two points I, I in the crystal, if s&, s&. are their sublattice la-
bels (where s& =+, etc.), then

~ 0,( I' I' ik.(l—1')a=

Therefore, from Eqs. (6), (7), and (3), we can express the derivation of the bond length between any two sites, say i,
and j, from its value L;. in the underlying virtual crystal, in terms of the indicator functions. This will facilitate calcu-
lations of the bond-length distribution function and its various moments. Obviously, L;. can be written in terms of L„
the nearest-neighbor distance, times an appropriate geometric factor. For example, the next-nearest-neighbor distance
L„„„= 8/3L„where L, is just the average bond length gx r +g@&r& [cf. Eq. (2)]. We have
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lJ 1J 1J 1J lj 1 J lj X 1 1 J 1 41 g 1 J J J ) 0J

arlj. g (Cx;;.—Cxj;).rj., g f' r +g arlj. g (G;;.—Cxj;).r;.j. g gpJ rfJ

ya—...„yf."r'.+pa, J j„ygp'r
p .

This defines the three-point functions ajj j ajj j, which depend only on the topology of the underlying virtual crystal
lattice. Clearly, for any three lattice sites 1, m, and n, a &=a &,

' and because of the zinc-blende symmetry, we also
have +&a~ &=0. Now, since a lattice site and its nearest neighbors always have the opposite sublattice labels, the
three-point function can be further expressed in terms of a vector field, such that

and

am —l, n —I mn (Vm —I Vn —l )~l (9a)

—J
= &X(«1

k

(9b)

(10)

Physically, V
&

represents the contribution to the displacement at site m from the nearest neighbors of site 1, a quanti-
tity that depends only on the topology of the network. Obviously, Vo=o. However, it is important to note that, in gen-
eral, V &AVJ m. This is because the local inversion symmetry is broken at the sites in the zinc-blende structure.(s,sI )

To be specific, let Vk
' ' be the Fourier component of the vector field; it then transforms exactly the same as k under

the Td operations. If zk is the number of operations associated with k, then it can be shown that

m' I (Sm'$) )
Re( Vz

' )„cos8 sin8 sin8, + Im( Vk
'

) sin8 cos8 cos8,
1 ($,$I ) (s,sI )

V
&

= — gzJ, Re( V„' ) sin8„cos8 sin8, +Im( Vz
'

) cos8 sin8» cos8,
($ ssI ) (s,sh )

Re( VJ,
'

), sin8 sin8 cos8, +Im( Vt,
'

), cos8„cos8» sin8,

where 8 =k(m„—I ),— 8 =k»(m —l ), and

8,:—(m, —I ). An inversion operation in k space will
(S,S1$

take VI,
' ' into its complex conjugate, which in turn is

equivalent to
( m, I) (sm'I) +exchanging the two sublattices: V J, =(Vz )

( s, —sl)=Vk
' ' . lt then follows that Vj j

=V; j, but
V;. ;XV;;. Nonetheless, the effect may not be observ-
able in either simulations or experiments, as we will be
only concerned with the distance separating the two
points of interest. For the zinc-blende structure, both
Vm I and aI I „&can be readily calculated.

Equations (8) and (9) are the main results of this sub-
section. In the next subsection, we use these expressions
to derive the bond-length distribution functions, and cal-
culate the first two moments.

B. Bond-length distribution functions

The length distribution function for a chemically
specific bond ij is defined as

I'"p(L) = ( f'gpJ&(L ——L;, )),

P"p(L) = J dqF' p(q)e' (12a)

(12b)

Using Eq. (8) for L;J, and noting that the occupancy
statistics on the two sublattices are independent, we ob-
tain a factorized form of the length-distribution function,
each involving terms on a single sublattice

where ( ) denotes the statistical average over all possible
configurations. Replacing the 5 function by its integral
form, we have

'I P
'I

ap(q) fagp
p

'I—~x;;,;xJ'. '.
&

—~x;;,; xsk4) (13)

It is straightforward to see that, at any site i, f'J"' =5 f', while at any two different sites i and i', f' and f' ~ are sta-
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tistically independent. This means that the ensemble averages in the above equation can be explicitly calculated. We
have

(
yi' 0

~ ~ I —i a rf' ' "' = f'ii][+f' [ "" ']])
i', a'

~ ~

—i a r ~ —i a r= f' ii [1+f',t "" ' —1]] ii [1+f', ( "' ' —1)])
a' i'(Xi), a'

—i aaij, ira

i'(xi)

—i a r1++x~.(e "' —1)
a'

(14a)

similarly,

(
'r0 —i a r —i a rI+~~y

j'(&j) p'

Therefore

F" ( )= &[I(L; +a—;;r +a; r&]

(14b)

(15a)

and f; (q) is a universal function independent of the particular type of atoms at sites i, j in question, as it does not to in-
volve a or P, and has the form

ro —i a r
f; (q) = Q I.+g x (e "' —1) g I+gyp(e "' 1)

i'(Ai) a'
(15b)

From the distribution function Eqs. (15), we can derive the average length between any two sites, say i and j. It is not
hard to see that P'~p(L) is normalized to x yp, and its first moment gives the averaged bond length between two chemi-
cally specific sites (i.e., keeping the concentration of the a species fixed at site i, and that of the p species fixed at site j,
while allowing the rest of the system to go over all its possible configurations), we have

F" (q)

Bq x y&

e 0 0 0 0L ~ +a ~ r —g x r +[2 rp gyprp
a' P'

(16)

where we have used the summation rule g;.a;&,. =0, and so on.
Similarly, the fluctuation of the bond length from its mean value (due to randomness) is given by the second moment

of P"p(L). We obtain

((L;;P—(L;;P ) )'& =—a a F"p(q)
—iq&I. "~

&ijx y&e q=0

2

a,', ,-. x ~ r'. ' — x .r'.
i'(Ai) a' a'

(17)

Thus, the second moment is independent of the atomic species a and P, which is also true of all higher order of mo-
ments. Therefore, the shape of the length-distribution function, when properly weighted and shifted, is independent of
the atomic species at the two sites, as mentioned previously.

For completeness, we record below the expressions for the case where the two sites are of the same (A) type. We
have

~ii' ~ii'+aii' l a ~ xa"ra" + ii' i' a' ~ xa"ra"aa' & e 0 ~ 0 0 ~ 0

((L;; —(L;;. )) ) = g a;;. ;. gx „(r „) — gx r„
i"(Ai, i')

+Ra,', , Xy, (rp)' Xyprp-
P

'2
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Equations (16)—(19) are the central results of this paper.
For values of P/a and 1, [see Eq. (1)] the coefficients in
(16)—(19) can be readily computed using the Monte Car-
lo integration method in Fourier space. The expressions
can be further simplified by using Eqs. (9) and (10). Note
that in both simulations and PDF experiments, we are
only concerned with the relative distance (scalar) between
any two sites, not their relative orientation (vector).
Thus, in addition to the statistical averages taken so far,
we may also average over bond orientations. The results
are presented in Sec. III.

III. RESULTS AND DISCUSSION

1.0

0.8—

0.4—

0.2--

0.0—

P/ex=0. 2

(L;;~) L;; =a~~~—(ij)(b, +bp),
((L~P (L&P ) )&) =b+*(ij)(g2 +g2 )

(L;;. ) L;; =a—~„'(ii')(5 +6 ),

(20a)

(20b)

(20c)

((Laa' (Laa' ) )2) bee (n )
2 +bee (nI) 2

We summarize below the main results of this paper.
I.et i, i' be any two points on the 2 sublattice, and j be a
point on the B sublattice, then the statistically averaged
bond-length deviations and fluctuations are

2
Length R/L,

FIG. 2. Topological rigidity parameters a» and a&„* as
functions of separation R, calculated for P/a=0. 2 in the Kirk-
wood model. The open circles are the a„z's, where the end
points are on different sublattices, while the solid circles are the
a»'s, in which both end points are on the same sublattice.
Crosses are the data points extracted from simulations on
Sio 3Geo 7. At large R, both a» and a»* approach zero, as in-
dicated by the horizontal bar on the panel.

awe(&3) rji Vji (21a)

(20d)

where r —g—-x-r ., a~ =—g„x „(r „)0 0 2 = 0 2

—(g ~ x -r ), and so on. Here, L;" is the virtual lattice
distance between sites i and j on diferent sublattices, and
L,'; that between i and i' on the same sublattice. Explicit-
ly, we have for the topological rigidity parameters

Eqs. (20). The agreement shown in Fig. 2 is excellent
within some numerical fluctuations. Note that all the to-
pological rigidity parameters in Eqs. (21) are independent
of any particular compound or composition and in this
sense are universal. In Fig. 3, we show the plot for bz~
(open circles), b„'*„„(solidsquares), and b„**„s(solid dia-
monds) as calculated in the general case, whereas for the

(21b)

(21c) P/n=O. P

(21d)

bc w a(n') =g [r;.; (V;,j
—V;;)]

J
(2 le)

1.5—

where the V's are defined through Eqs. (9b) and (7). For
a given separation R, these topological rigidity parame-
ters can be easily calculated by the Monte Carlo integra-
tion method, i.e., sampling the k space with large num-
bers of points. It should be clear that the model parame-
ters a and P in Eq. (1) enter these expressions only
through the combination P/a.

We show in Fig. 2 the values of ass (open circles) and
a ~„* (solid circles) out to the tenth neighbor, for
P/a=0. 2, as calculated in the Kirkwood model. The
crosses in Fig. 2 indicate the data points extracted from
simulations on Si Ge, , with x =0.3. These simulation
results were obtained by relaxing statically, using the
Kirkwood potential given in Eq. (1), a supercell contain-
ing 110592 atoms with Si and Cxe distributed randomly.
The topological rigidity parameters were extracted using

0.5—
~ g

0.0
0 2

Length R/L,

FIG. 3. Topological rigidity parameters b», b» &, and
biz s as function of separation R, calculated for P/a=0. 2 in
the Kirkwood model. The open circles are the b» 's, where the
end points are on different sublattices. The solid squares are the
b» &'s, and the solid diamonds are the b» &'s. These are
quantities associated with the case in which the two end points
are on the same sublattice. The limiting values of these parame-
ters at large R are shown as horizontal bars.
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1.0
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0 111
220
113

~ 400
O 133

4220 0 0
0 0

0 0 0

0.5—

0.0
0 2

Length R/L,

0.0
0.0

o ~
o o o

~
o o o o

C tgi aa
0.2 0.4

Ratio P/o:

0 ~ ~o o o o o o

0.6 O. B

FIG. 4. Comparison of results from simulations on Sio,Geo 7

with theory for the topological rigidity parameter b**'s ob-
tained from the widths of the length-distribution functions, cal-
culated for P/a=0 2in the. Kirkwood model. Crosses are for
Si-Si, Si-Ge, Ge-Ge pairs from simulations, and the circles are
from theory.

Si„Ge& alloy used in simulations, the latter two com-
bine [cf. Eq. 20(d)]. A similar comparison is then given in
Fig. 4, where the agreement is again excellent. In this
figure, each theoretical point corresponds to three simula-
tion points, drawn from Si-Si, Si-Ge, and Ge-Ge pairs.
The fact that they overlap more or less on top of each
other is a direct verification of the theory.

%'e observe that at a few neighbors away, both a~~
and a~~ decay rapidly to zero; while b~~, b&», and
b ~ ~ ~ all approach the same asymptotic value, the
mean-square strain-induced ( u ), a quantity related to
the disordered-induced Debye-Wailer factor. " These

0.6— 1
I ~ I

I
I

I
I I I

FIG. 6. Variations of ass and a„*„*as functions of ratio P/a
in the Kirkwood model.

limiting values are indicated as horizontal bars in Figs. 2
and 3. Thus, for a few neighbors away from a reference
point in the alloy, the PDF as calculated in simulations,
will have their peaks centered around the virtual lattice
points, and their shapes approach a Gaussian with the
same width (Fig. 5).

820
400

+ 422

I I I I I I I I I I

~ 880
400

+ 422
422 620

C0

a 0.2
C$

C4

220

400

115
333

440

0 0 ~ 0
I I I I

tqygggyggg)
111

~ 113
+ 133

R/L,

a, a, a L a0
0.0 0.2

, 0, 8, I $, $, E, 4 4 . 0, R I

0.4 0.6 O. B

Ratio P/cx

FIG. 5. Pair distribution function from simulations on
Si03Geo 7 vs distance R, calculated for P/a=0. 2 in the Kirk-
wood model. The subpeaks can be seen for the first two peaks,
but not for more distant neighbors.

FIG. 7. Variations of b» (bottom panel), b» & (middle
panel), and b„*„s(top panel) as functions of the ratio P/a in the
Kirkwood model. The horizontal bars show the limiting values
at large separations for fixed values at large separations for fixed
values of P/a.



52 LENGTH MISMATCH IN RANDOM. . . . IV. 17 197

a ' =a (111) (22a)

Variations of the topological rigidity parameters with
the ratio P/a are shown in Figs. 6 and 7. For semicon-
ductor alloys, P/a=0. 1 —0.2, and we list below (Table I)
values of these parameters as functions of P/a, which
will be of interest for particular alloys.

The topological rigidity parameters defined in previous
work are related to our present notation in the following
manner:

0.05 0.20

aq~ (111)
b~~ (111)

0.891 0.811 0.750 0.700 0.659
0.00384 0.0103 0.0178 0.0240 0.0294

„*„*(220)
b~~, A *(220)
b„„,B**(220)

0.298
0.649
3.01

0.265 0.237 0.217
0.467 0.368 0.303
2.50 2.14 1.88

0.199
0.258
1.67

TABLE I. Topological rigidity parameters (labeled by the
appropriate real-space indices) as functions of P/a in the range
of practical interest (Kirkwood model}.

P/a 0.10 0.15 0.25

b **=Q—'a „*„*(220), (22b)
0.0757 0.0616 0.0494 0.0495 0.0451
1.94 1.69 1.40 1.20 1.04

a '~ —a *'~= b "(111) (22c)
ag~ (400)
boa, a(400)
bow, a(400)

0.0360 0.0341 0.0334 0.0331 0.0327
1.32 0.998 0.759 0.631 0.521
2.90 2.33 1.93 1.67 1.47

where we use the indices 111 and 220 to denote the
nearest- and the next-nearest-neighbor shells in real-space
(Fig. 1).

An example of a direct application of the cur-
rent theory would be to consider the semimagnetic
semiconducting alloy Cd& Mn Zn„Te, ' where
the mean nearest-neighbor distance is given by
L, =(1—x y)LcdT—n+xLMnT, +yLznTn and the next-
nearest-neighbor distance L„„„=Q ,'L, . H—ere

LcdT, =2.805 A, LM„T, =2.911 A, and Lz T =2.642 A.
For magnetic properties, an important length is the mean
spacing between the Mn pairs that are next nearest neigh-
bors on the zinc-blende lattice. From Eqs. (20c) and
(22b), this distance is given by

a„*~(133)
b~~ (133)

0.232
2.12

0.202 0.180 0.164
1.68 1.40 1.21

0.150
1.05

a,*,*(422)
b „,A**(422)
b~~, B* (422)

0.0752 0.0624 0.0537 0.0497 0.0428
1.20 0.901 0.734 0.600 0.508
2.92 2.38 2.02 1.74 1.53

(23a)

or more explicitly

d(x y)
—LMnMn

=L„„„+2a~~(L„„„)(LM„T, L,)—
=L„„„+Q', b**(LM„T,— L, ), —

d(x, y)=Q —'[(1—'b'*)L, +—,'b'*LM„T, —]

=Q —,
'

I ( 1 —,'b **)[(1—x —y)LCdT, +—xL M„T, +yL z„T, ]+ ,' b *LM„T, j—
=—a+bx+cy . (23b)

The topological rigidity constant b** has been found to
be very close to (and not rigorously equal to) a */2 for
all relevant values of P/a, and varies a little depending
on the semiconductor, but is always about 0.4 in the
Kirkwood model. This gives a =46324 A, b =0.1210 A,
and c = —1.1863 A. Note that the linear combination of
x and y that appears in d (x,y) is independent of the pre-
cise value of b **,as both have the same prefactor.

IV. SUMMARY

We have generalized previous results for binary and
pseudobinary alloys to general semiconductor alloys with
the zinc-blende structure. These alloys contain an arbi-
trary number of chemical species on each sublattice that
form a random solid solution. We have not considered
clustering.

We have shown that the length probability distribution
for a particular pair of sites is independent of the chemi-
cal species, apart from the weight and centroid position.

We have given general expressions for the mean length
and width of the probability distribution for particular
chemical pairs, an arbitrary distance apart. All the re-
sults are expressed in terms of a few topological rigidity
parameters which are given numerically for the Kirk-
wood model.

Some structural information in semiconductor alloys
can be obtained by x-ray absorption fine structure, but
this is restricted to next-nearest-neighbor and occasional-
ly second-nearest-neighbor distances. Widths and fur-
ther neighbor information will have to await very careful
pair distribution function diffraction experiments with x
rays or neutrons on powdered samples. '
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