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We present electronic band-structure calculations of simple metals (Li, Na, K, Rb, and Ca), where
we use the exact Kohn-Sham density-functional exchange (EXX) potential combined with the LDA
(local-density approximation) correlation potential. The method is the same as one exploited in the
previous papers [Phys. Rev. B 50, 14816 (1994); Phys. Rev. Lett. 74, 2989 (1995)]. Surprisingly,
in contrast to the case of semiconductors and insulators, the resulting eigenvalues of valence bands
are mostly in agreement with the corresponding LDA eigenvalues. In the case of Ca, where the
empty d band exists above the Fermi energy, however, the EXX calculation modifies the position of
the d bands relative to the s bands considerably, implying the importance of treating the correlation
energy on the same footing as the exchange energy.

In our previous papers,! we developed a method of

density-functional (DF) band-structure calculations, in
which we use the exact exchange (EXX) potential? in
place of the exchange potential given by the local-density
approximation (LDA).® In this scheme, the EXX po-
tential is defined as a functional derivative of the EXX
energy, with respect to the electron density. Though
the approach is quite general, so far, we have formu-
lated it within the framework of the linear muffin-tin
orbital (LMTO) method in the atomic sphere approxi-
mation (ASA). In Ref. 1, we dealt with insulators and
semiconductors, and showed that the band gaps were
more largely enhanced than those given by LDA, and
that the exchange potential had significant structures re-
flecting the existence of the atomic shells, as observed in
atomic cases.® Recently, calculations® using an approx-
imate form of the EXX potential given by Kreiger, Li,
and Iafrate,® were reported. Compared with them, our
method is rather straightforward. In addition, the total
energy including the EXX energy is minimized within the
framework of ASA, which makes a difference.

The EXX energy contains contributions that cancel the
self-interaction contribution contained in the Coulomb
energy. Though such a cancellation is also attained in
the self-interaction corrected (SIC) LDA method and the
Hartree-Fock (HF) method, we can easily point out some
obvious advantages of the EXX approach over the oth-
ers: (i) In the SIC methods,”® we have to construct
symmetry breaking localized orbitals (the Wannier-like
orbitals), so that the subtraction of the self-interaction
is to be meaningful. This sometimes demands hard nu-
merical tasks, such as the simulated annealing orbital
optimization. Especially for metals, it may be extremely
hard and, to our knowledge, has not been applied. On the
other hand, EXX does not require such symmetry break-
ing solutions. It is applied rather straightforwardly both
for insulators and for metals. (ii) There is no unique way
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of implementing SIC into LDA. Many variants are pos-
sible and detailed comparisons among them have never
been worked out. (iii) As is well known, the HF method
necessarily is not a good starting point for describing the
electronic structure of metallic systems. One of the well-
known drawbacks is that it gives zero density of states
(DOS) at the Fermi energy when applied to the homo-
geneous electron gas. This prevents us from safely using
the energy dispersion relations obtained in this scheme
for the purpose of evaluating various physical quantities,
such as dielectric constants. It is very likely that the
HF self-consistent solutions might give similar unrealis-
tic DOS also for metals. On the other hand, whereas
EXX uses a quite similar exchange potential as the cor-
responding HF one, it produces, as pointed out in Ref.
1, the dispersion of noninteracting electrons when ap-
plied to the homogeneous interacting electron gas. Not
the dispersion by HF, but the noninteracting dispersion
is a good starting point for treating the electron gas.®
This means the energy dispersion relations obtained by
EXX may provide practically a better starting point for
further elaborations. In principle, the DF energy bands
do not necessarily agree with the electron quasiparticle
spectrum. However, the DF energy band itself is well
defined and is a basic concept in the time-dependent DF
formalism,'? which gives a dynamical linear density re-
sponse. In this formalism, the central part of the response
function is the Lindhard dielectric function constructed
from the eigenfunctions (and eigenvalues) of the Kohn-
Sham (KS) equation. The eigenfunctions of KS equation
are related to dynamical quantities in this way, even if
they have no formal physical entities. To calculate the
accurate response function, we obviously have to obtain
the accurate eigenfunctions of the KS equation. Our aim
is to get the first step to proceed along the direction im-
plied above.

In this paper, we present the results of the EXX
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LMTO-ASA band-structure calculations on simple met-
als, Li, Na, K, Rb, and Ca, where the effects of electron
correlation must be relatively small. In this last sense,
they are the representatives of the so-called nearly free-
electron system, i.e., the energy dispersion is rather sim-
ilar to that of the homogeneous electron gas, being the
opposite limit to insulators. The main interest in treating
these systems by the present method lies in whether EXX
properly reproduces the nearly free-electron-like disper-
sion relation as LDA does. In the following, we show that
the alkaline metals are actually the case, except for Ca.

In ASA, the space is divided into atomic spheres
(AS’s). Any points in the space are denoted by (r,R),
where R is the index for AS and r = (r,0,¢) (r < R)
is a vector denoting the position in each AS. R denotes
the radius of AS. The total energy E[n| in the ASA is
written as

E[n] = Ek[n] + ECoul[na]
+E; [ns] + Ec[ns] + Eext [ns]y (1)

where n(r, R) denotes the electron density, and n,(r, R)
is the spherically averaged radial density defined as
ne(r,R) = r? [ n(r, R)sin(0)dfd¢. Ej[n] is the kinetic
energy of the noninteracting system as the functional of
the density n(r, R). Ecou, Ez, E., and E denote the
Coulomb, the exchange, the correlation, and the exter-
nal potential energies as the functional of n,(r, R), re-
spectively. We omit spin indices for simplicity. Adding
the term Y p fOR drVeg(r, R)[ [ r*n(r, R) sin(0)d0d¢ —
ng(r, R)] with the Lagrange multiplier V.g(r, R), we take
the variation with respect to n(r, R) and ns(r, R) inde-
pendently. We obtain the fundamental equations:

B [n] _
an(:, R) + ‘/eﬁ'("‘a R) - 07 (2)
_ 6E ou! [ns] 5Ew[n3]
Vesr (1, B) = Jn(j(r:R) ons(r, R)
0Bc[ns] | OEext[n,]
5 B Sn(n R’ (3)

where Vg (r, R) is identified as the spherically symmetric
one-particle effective potential. In the LDA, E, is given
as the explicit functional of density n,. Instead, we use
the exchange energy F,.[n;] as defined below. This is
only the difference of our method from the ordinary LDA
LMTO-ASA method. For E,., we use the LDA correlation
energy parametrized by von Barth and Hedin.!
Formally, the exchange energy E, is given as

%60.,61 / / PEO O O g3, o,

|r —r'|

(4)

where 1; are taken to be occupied KS orbitals (A =

e?/2 = 2m = 1). Following the ordinary DF theory,
we assume that the one-particle effective local potential
Veg(r) for a given density n(r) is determined uniquely
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within a constant. By use of V.g(r), we can construct
a set of the KS orbitals, which in turn defines the EXX
energy F.[n], as a functional of the density. The EXX
energy E[n,], as the functional of n,(r, R) is defined in
a similar manner, where we assume that V.g(r, R), for a
given radial density n,(r, R) is determined uniquely. In
practice, the exchange energy in the LMTO-ASA can be
evaluated through the procedure proposed by Svane and
Andersen.'? For a complete self-interaction cancellation
in the ASA formalism, we have to treat the Coulomb en-
ergy in the same footing as the exchange energy, using the
method given in Ref. 12. Such a treatment, however, has
not been implemented in our code, where the Coulomb
energy is treated in a standard way;'? it is expressed as a
sum of the Madelung energy and the contributions from
each cell. This will give few errors for the systems with a
nearly spherical charge density, though it might give rise
to some errors for the ones with a nonspherical charge
density.

We can calculate two quantities, §E,/6Veg(r, R) and
0ng(r,R)/6Veg(r', R'), in a straightforward manner,!
within the LMTO-ASA framework. Then the EXX po-
tential V,(r,R) = 8F;[n,]/dns(r,R) is calculated from
the two quantities by solving the integral equation:

dn,s(r', R')
! k]
;/O O V()

Here, we can restrict R and R’ within the primitive cell,
considering the periodic boundary condition of the crys-
tal.

The algorithm and computer code, which execute the
self-consistent nonrelativistic calculation with the EXX
potential V,,, are essentially the same as the ones used
in the previous papers. Newly developed is a part to
calculate E, by the use of the tetrahedron integration
method!? in the Brillouin-zone summation. This was not
exploited in the previous calculations of semiconductors
and insulators, where no Fermi surfaces appear. We have
developed a code starting from the LMTO program, pro-
vided by Schilfgaarde, Paxton, Jepsen, and Andersen.!*

In the calculation, Li(2s2p3d), Na(3s3p3d), K (4s4p3d),
Rb(5s5p4d), and Ca(4s4p3d) are treated as valence elec-
trons. No combined correction is taken into account for
simplicity. For the exchange energy calculation, contri-
butions of up to the fifth nearest pairs (fourth for Ca) are
included. The Brillouin-zone summation is performed
with 256 k points in the irreducible wedge of the zone.
We used the lattice constant of 6.60, 7.98, 9.87, 10.55,
and 10.00 (a.u.) for bec Li, Na, K, Rb, and fcc Ca, re-
spectively.

Calculated EXX potentials are shown in Fig. 1; the
corresponding LDA potentials are also displayed for com-
parison. One of the most striking features of the EXX po-
tentials is in their shell structures, reflecting the existence
of atomic shells. Such structures consist of dips, which
are as deep as typically ~ 0.5 Ry, located in the vicinity
of the extrema of radial density. Though such struc-
tures still exist in the LDA exchange potentials, they are
almost smoothed over, remaining only outlines. These

6E, [ns
(SV;ﬁ' (1‘, R)

0E;[n,]
dng(r',R")’ (5)
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FIG. 1. Exchange potentials V,. Solid and dotted lines show the EXX and the LDA exchange potentials, respectively. The
LDA exchange potential is calculated by using the density obtained by the self-consistent EXX calculation. A small contribution

(absolute weight of less than 0.01 Ry Bohr ) of the § function exists at r = R.!

structures clearly originate from the exchange holes and
play important roles particularly in semiconductors and
insulators, such as Si, C, and MgO, treated in the pre-
vious papers, where the localization of the electrons in
the valence states are strongly enhanced, compared with
the picture given by LDA, due to existence of dips in the
potential at the bond-center region.

Figure 2 compares the EXX energy bands with the
corresponding LDA ones. The Fermi energy (EF) is set
to zero. For Li, Na, K, and Rb, the energy dispersion
curves calculated by the EXX potential are all quite sim-
ilar to those obtained by the LDA potentials, i.e., nearly
free-electron dispersions. The unoccupied higher energy
region, however, is pushed up, compared with the LDA
ones, especially for the empty d bands of Ca. The ten-
dency for the higher energy region to undergo an upward
shift, relative to the lower one, is common also to the pre-
vious results for semiconductors and insulators.! This is
due to the fact that the wave function, which has a node
in the vicinity of the interstitial region, fails to gain the

exchange energy produced by the bonding charges accu-
mulating at this region. For alkaline metals, however, the
bonding effect is rather weak and the upward shift is far

less conspicuous.
Among the above elements, only Ca is divalent. We

choose Ca in order mainly to examine the effects of EXX
on transitional metals. The results for Ca show the over-
all behavior, which is somewhat different from the one
for the monovalent alkaline metals. As is already pointed
out, the unoccupied d bands, which spread over the nar-
row region centered on ~ 5 eV above the Fermi energy,
is shifted up by ~ 2 eV compared with the LDA results.
This result comes from the humped structure of the EXX
potential. The hump at » = 2.0 a.u. shifted the unoccu-
pied d electron bands upwards. On the other hand, the
valence s bands are shifted downwards, due to the dip
at r =~ 3.0 ~ 4.0 a.u., because the s electrons are mainly
accumulated in the outer region. We think that this re-
sult for Ca implies that the relative position of d (or f)
bands against s and p bands might be largely modified
for transitional and rare earth metals when we use EXX
potentials in place of LDA ones.

Table I gives DOS at the Fermi energy and the Fermi
energy relative to the bottom of the valence bands. It is
concluded that DOS is again not influenced very much by
the choice of the exchange potentials, except in the case
of Ca, where DOS obtained by EXX is only half that
obtained by LDA. The difference arising for Ca is partly
because of the effects of the d band position mentioned
above, but also it is due to the fact that the Fermi energy
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FIG. 2. Energy dispersion curves along the symmetry lines calculated by EXX (solid line) and LDA (dotted line) potentials.

The energy is relative to the Fermi energy.

is located near the narrow peaky structure in DOS asso-
ciated with the flat band along L-W-K lines (not shown
in the figure). A small shift in the Fermi energy could
easily change DOS by a factor in such cases.

We also include two parameters characterizing the as-
phericity of the Fermi surfaces in the table. Though ASA
is not thought to be especially good for these rather
delicate quantities,!® we may say that EXX makes the
Fermi surface more spherical, compared with the LDA
results. This reflects the fact that the EXX potential pro-
duces a deeper but more localized potential than LDA. It,
in general, weakens the potential scattering for a small
momentum transfer, causing smaller band gaps at the
zone boundary for low energy dispersion relations, which
makes the observed difference in the asphericity.

We have shown that the EXX method can give
reasonable descriptions, not only of insulators and
semiconductors,! but also of simple metals. The dis-

persion for alkaline metals given by EXX is very simi-
lar to the one given by LDA. Based on this finding, we
infer that the true dispersion by the KS equation, with
the exact FExc, is similar with the ones given in LDA. It
is because the contribution of the exact E, will some-
how reduce the contribution of the EXX energy (true
exchange-correlation hole has shorter range than the ex-
change hole) and the true dispersion, therefore, will lie
in between the two dispersions. The calculation for Ca,
however, implies that, if we apply the present EXX plus
LDA correlation scheme as it stands to more strongly
correlated systems with d or f electrons, we may over-
shoot the effects of the exchange-correlation hole. As for
this point, we think that it is rather straightforward to
extend the present approach, so as not to rely on the
LDA correlation, but to employ a many-body pertur-
bation technique without destroying its local potential
form; the correlation potential can be calculated in a sim-

TABLE I. Density of states at the Fermi energy (states/Ry cell), the Fermi energy Er from the
bottom of the valence bands Eyot, and two Fermi-surface-asphericity parameters. k;;x ’s denote the
length of the Fermi vector for the ijk direction. ko = (3k100 + 4k111 + 6k110)/13.

DOS at Er Er — Bvot (eV) Fro0=kin1 5 107 Buozkii 5 102

Li LDA 6.56 3.49 -1.4 3.4

EXX 6.23 3.63 -1.3 2.7
Na LDA 6.45 3.25 -0.2 -0.1

EXX 6.51 3.23 -0.3 -0.2
K LDA 10.44 2.21 0.0 1.3

EXX 10.50 2.19 0.0 0.6
Rb LDA 12.76 2.01 0.1 4.5

EXX 12.45 1.99 0.4 2.9
Ca LDA 28.07 4.36

EXX 14.85 4.57
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ilar procedure through Eq. (5), where E, is replaced with
E.. In such an improved scheme beyond LDA, the EXX
method could be extended to a universal method, which
can treat simple metals as well as moderately correlated
systems on an equal footing. We are now implementing
EXX to the Korringa-Kohn-Rostoker method. It will be
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shown in a subsequent paper, together with results for
transition metals.
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