
PHYSICAL REVIE& B VOLUME 52, NUMBER 24 15 DECEMBER 1995-II

Electronic structure and superconductivity in strongly correlated systems
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We propose effective potentials from a screened Coulomb interaction which arises from spin-
Buctuation effects within a three-dimensional Hubbard single band model for systems with strongly
correlated electrons within the pseudogap regime. This regime is characterized by the existence in
the normal state of at least two structures located at both sides of the Fermi level and split by a
gap or pseudogap. This is the most crucial assumption in the analysis performed in this work. We
consider the proposed effective interactions between fermions, analyzing the possibility of obtaining
superconductivity by means of the formulation of the corresponding Dyson-like equations for the
normal and anomalous one-body propagators in the state with bosonic condensation. We also
include vertex effects within these effective fermion-fermion interactions and discuss their inBuence
in this formalism in order to consider a Migdal-like theory appropriate to Hubbard systems. In cases
where superconductivity is found, the critical temperature is obtained and the in6uence of the band
and potential parameters is analyzed.

I. INTRODUCTION

A relevant feature of the strongly correlated systems
(SCS) is that the strong short-range interactions (SSRI's)
and the hybridizations of localized states with others
more extended cause a depletion in the density of quasi-
particles near E~ leading to a pseudogap. ' The spec-
tral functions Ak(cu) yield a density of quasiparticles, the
pattern of which can be described by at least two peaks,
one at each side of E~. The regime of these SCS with
such Ag(w) is called pseudogap regime (PR). The even-
tual increasing of the strength of the SSRI's can pro-
duce a true gap over the entire Fermi surface and then
the system becomes an insulator, perhaps antiferromag-
netic. The interest of the PR analysis is that the pres-
ence of this pseudogap is determinant in the appearance
of instabilities. One of them can be superconductivity,
the properties of which (superconducting gap, transition
temperature, pairing potential, etc.) are quantitatively
dependent on the density of states (DOS) near Ep. The
charge and spin Huctuations are SSRI's which govern the
PR state and thyrse Huctuations are strongly dependent
on the occupation ratio of the localized states, with re-
spect to the extended ones. This ratio is crucial for the
appearance of superconductivity in both heavy-fermion
systems and doped (molecular and high-T, ) superconduc-
tors. Therefore, the charge and spin fluctuations can be
considered as the starting point for obtaining a mecha-
nism for superconductivity in systems with strongly cor-
related electrons. ' These Huctuations originate inter-
fermionic coupling potentials, the features of which may
be compatible (or not) with the existence of bosonic con-
densation and superconductivity, depending on the band
parameters of the electronic structures of these strongly

correlated systems. It is still not clear which effective
potentials are able to give rise to these kinds of super-
conductivity when introduced into the strong-coupling
superconductivity equations. In the present paper, we
deal with the efFective interaction between fermions with
antiparallel spins. The study is performed considering
an appropriate scheme for a generic strongly correlated
system in the pseudogap regime. In this regime, the
partial DOS of each strongly correlated orbital in the in-
teracting system without pairing and superconductivity
can be simulated by two Lorentzians, at least, one at
each side of E~, split by 2A and with half widths A. The
pattern of this PR electronic structure can be seen in
previous literature. ' This DOS is used to determine
a susceptibility response function and the corresponding
fermion-fermion interactions which produce the pairing
potential. This pairing potential is obtained by means of
the well known Berk-SchriefFer theory for the spin Huc-
tuation exchange. We also analyze the conditions of
the band parameters for obtaining a Migdal-like theorem
in the case of a fermion-fermion interaction arising &om
the "Hubbard U" in SCS in PR. We introduce the re-
sulting fermion-fermion interaction into the Dyson equa-
tions appropriate to the case with bosonic condensation,
in order to elucidate which band parameters describing
the electronic structure are more favorable to yield super-
conductivity. In recent works, some authors4 have solved
similar equations without taking into account vertex ef-
fects and considering two-dimensional Hubbard systems
with a tight-binding band and within the half-filling con-
dition. The use of the half filling of the band and its tight-
binding dispersion energy is justified in two-dimensional
systems, among other reasons, because of the high com-
plexity and diFiculty of the calculations without consid. —

ering these conditions; however, both conditions are not
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clearly compatible with all strongly correlated electronic
structures, especially in SCS in PR (for instance, in inter-
mediate valence, heavy-fermion systems, and molecular
crystals). The model for the susceptibility response func-
tion y(u) and the consideration of vertex effects is what
makes our analysis fundamentally different &om that of
Ref. 4. Vertex effects can be important and even decisive
in the pairing potentials for some band parameter values
(narrow bandwidths and large U). The y(u) proposed in
our work is obtained from a DOS which is valid for some
three-dimensional Hubbard systems that present the PR
features and, in addition, our model does not require the
half-Ailing condition, although this condition facilitates
the calculations.

In short, the aim of this paper is to analyze the relation
between the electronic structure and the superconductiv-
ity of the strongly correlated systems considering short-
range interactions and an isotropic form for the supercon-
ducting gap. In addition, we exploit the characteristics of
the DOS of the strongly correlated systems in the pseudo-
gap regime. The scheme of the fermion-ferrnion interac-
tion is considered within the Berk-Schrieffer-like theories
of the spin fluctuations, and we solve the Dyson equa-
tion at finite temperature within the boson condensation

state. In Sec. II, we analyze the different interactions
with and without vertex efFects. In Sec. III, we calculate
the full nondiagonal Green's function in the supercon-
ducting state, and we also analyze the evolution of the
transition temperature as a function of the several band.
parameters. In Sec. IV, we summarize the conclusions.

II. EFFECTIVE FERMION-FERMIQN
INTERACTION

To study the effective interaction between fermions
with antiparallel spins, we consider the Berk-Schrieffer
theory, which takes into account the diagrams corre-
sponding to the subset of the random-phase approxima-
tion (RPA) series with an odd number of U interactions,
and also the diagrams of the electron-hole ladder approx-
imation (EHLA) [see Fig. 1(b)]. These interactions cor-
respond to spin fluctuations. The reason for formulat-
ing the perturbative treatment &om these two series is
that both series, RPA and EHLA, are nonredundant and
complementary in the sense that the former is dominant
in systems with a large number of interacting particles,
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to (a) effective interaction between fermions
with antiparallel spins from the correspond-
ing subset of the RPA series; (b) effective in-
teraction between antiparallel spins obtained
From the EHF A series; (c) RPA effective
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spins; (d) recurrent vertex equation; (e) and
(f) Dyson-like equations for the normal and
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while the latter is significative for a small number.
These two effective interactions (see Fig. 1), are given

by

RPA U
(~~) =

1 U, ,
( )

VEHLA ~d( ") =1+U,(..)
(2)

~R»+EHLA
( )

U
1 —U2y2(~g)

U+ —U1+ Uy(urq)

where y(~) is a linear susceptibility response, which is
crucial in the determination of the effective potentials
and self-energies, ~& stands for the &equency transferred
by the interaction, and ~d corresponds to the difFerence
of the &equency of the outcoming particle 2 and that of
the incoming particle 1. The term —U appears in Eq.
(3) in order to avoid redundances when summing both
series RPA and EHLA. The q dependence is dropped by
averaging over the first Brillouin zone. This local approx-
imation has always been justified in Hubbard systems
by the localization of the strongly correlated electrons
since, in these systems, it is commonly accepted that
the efFective interactions arising &om the U energy de-
pend slowly on the quasimomentum when one consid-
ers an electronic structure where the localization effects
are implemented ' in the calculation of screening. Of
course, the local approximations of the effective interac-
tion and self-energies are more compatible in the tridi-
mensional Hubbard systems than in the 2D ones. The
general expression for this g averaged y(w) is given by

where o. , p, and I' are parameters that depend on
A, B, A, A', A, and A' . When the splitting
between the two Lorentzian curves is large enough so that
their overlap is small, the parameters o. , p, and I in
(6) have the meaning of n = n (1 —n ) (where n is
the occupation of the m orbital symmetry), p = A +
A' (the splitting between the two Lorentzian curves of
the m symmetry DOS of the strongly correlated orbital),
and I' = A + A' (the sum of their two half widths).

In Fig. 2, we compare the results of y(u) obtained from
Eq. (6) with the numerical result of the integral (4), for
a DOS constituted by a double-Lorentzian characterized
by the parameters A and A. In this figure, we can see
that the evolution with these band parameters is similar
in both cases, although there are quantitative difFerences,
especially when A A. Therefore, this figure allows us
to conclude that the expression (4) should be used in the
cases in which A A, and (6) may be used in cases
in which A )) A. However, we note the qualitative
similarity of the their evolutions in both cases.

The efFective interaction (3) can be written in the case
of double Lorentzian DOS, in terms of the band param-
eters:

~R»+EHLA(~ ~ ) U+U
~( (dg —Oi (dg —O2 )

(7)

where the strengths of the oscillators are of opposite sign
and with values equal to

fi = (Oi —&')/2

and

f2 = —3fi,

and

X ~+ x —x'+ zO+ (u + x' —x —zO+

0 OO

g((u) = ) dx dx'N (x)N (x')
—oo 0

(4)

2 p2 ( ~T)2

Oi=P +2nUP,
O2 = P —2nUP = 2y —Oi,

(9)
(1O)

(11)

B A'
- ((u)+A )'+A2 (u) —A' )2+A'~)+

where the index m runs over the strongly correlated or-
bital symmetries, A and R are the weight of the corre-
sponding Lorentzian curve, A (A' ) is the energy of the
resonance located below (above) EJ, and A and A'

are the corresponding widths of these resonances. Then
the susceptibility response y(ur) of expression (4) can be
written as

~(~) =): +,T + + zI' (6)

As we have said above, in a generic SCS in PR, the
interacting-system DOS is given by

where a, 7, and I' are defined in expression (6). Ex-
pression (7) can be understood as the sum of a repul-
sive interaction U, plus two oscillators with a strength
given by the corresponding numerator, and each oscil-
lator can be physically interpreted as a fermion-ferrnion
interaction produced by an intermediating boson char-
acterized by the corresponding pole Op. Each oscillator
intervenes in the time-dependent effective interaction as
a damped oscillating function, the &equency of which is
the real part of Oy and the damping constant of which is
the imaginary part of OI, . This picture arising &om the
potential (7) appears in a similar way in other theories
with intermediating bosons, which can present the pair
potential as sum of two oscillators, each one with its own
frequency. The main parameters which intervene in the
boson condensation are the strength of the oscillator, the
value of the oscillation frequencies, and the damping con-
stant, which is described by the imaginary part of these
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FIG. 3. Solid line: real part of the effective potential from
the full RPA series; dashed line: RPA effective interaction
between parallel spins; dotted line: RPA+EHLA interaction
between antiparallel spins as a function of su~ with u = 0; see
below Eq. (12).

Effective fermion-fermion interaction
with vertex effects

The exclusion of the vertex effects in the effective inter-
action in superconductors with mediating phonons is jus-
tified, because of the large mass of the ions, with respect
to the electrons, so that the infIuence of these Feynman
diagrams is small, due to the weak phonon-electron cou-
pling. This assertion constitutes the Migdal theorem,
which has been sufficiently proved in phonon-mediated
superconductors. However, when the effective pair cou-
pling interaction comes &om the Hubbard U, this theo-
rem has not been established and many authors claim
that vertex effects should be included in the efFective
fermion-fermion interaction, both in the Eliashberg-like
equations and in the calculation of the screened Coulomb
interaction, ' above all if one considers that these ver-
tex effects can origin instabilities. The dressed vertex
in the local interaction approximation considered in this
paper satisfies the equation [see Fig. 1(d)]

y(~) ( i) yRPA
(

1.2

11

1.0

1, .50

1.25

1.00

0.75
I I I I I

being fi, Oi, 02, and y, those of expressions (8)—
(11). The Green's functions which appear in (13)
correspond to the interacting system. They are self-
consistently calculated in the following section, by means
of the so-called Eliashberg equations. The first step for
the calculation of (13) is to perform the double sum

, Gzl (w")G~i p(w" —w), which is obtained from the
interacting-system DOS coming from the full Green's
function [i.e. , N, (cu) = —Pk ~ImGg((u) [].

The p equation is solved self-consistently, and the re-
sults for the first iteration and the self-consistent solution
(given in the real axis) are shown in Fig. 4. From inspec-
tion of this figure, we can deduce that this vertex func-
tion is symmetric versus u', has variations in an interval( 10 eV, and tends to 1 (vanishing vertex effects)
for large w'. In addition, we can see in this figure that
the self-consistent solution differs from the first iteration
when the splitting between the two resonances at both
sides of E~ and the width of these resonances are narrow.

The effective interaction considering vertex effects
which has to be included in the Dyson equation for ob-
taining the anomalous self-energy, can be written as

2—

XV~t, (ld —td )7tg((d, (d )dM (13)

where V&R&PA(w) is the RPA potential with an odd number
of electron-hole RPA loops and the analytic expression of
which can be deduced &om [see Fig. 1(c)]
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This interaction, considering the susceptibility (6), can
be expressed as

FIG. 4. Vertex function, see Eq. (13), with cu = 0 for
different values of A and A. Solid lines correspond to the
first iteration vertex function and dashed lines represent the
self-consistent solutions. (a) for A =1.5 eV and A =1 eV;
(b) for A =0.75 eV and A =0.50 eV; (c) for A =0.50 eV and
A =0.25 eV.
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10 where K(w) is the DOS of the interacting, nonsupercon-
ducting state, which is fitted by an expression of the type
(5), and K~(u, ur') and K~(u, m') have the following ex-
pressions:
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FIG. 5. EfFective potential with and without vertex efFects
corresponding to Eqs. (16) and (12), respectively, for different
values of A and A. Solid lines correspond to potentials with
vertex efFects and dashed lines to potentials without vertex
effects. (a) A =1.5 eV and A =1 eV; (b) A =0.75 eV and
A =0.50 eV; (c) A =0.50 eV and. A =0.25 eV. In all cases,
m=0.

III. ELIASHBERG EQUATIONS

Given the existence of a large region where the po-
tential is attractive, one expects it can originate su-
perconductivity. To check this possibility, we have de-
veloped the corresponding anomalous and normal self-
energy equations considering the potential (16) and we
have obtained

W(~) = J d~'Kw(~, d)

—N(x) W((u')
Z2(~') 2 —x2 —W (~') 2

S(~) = —/ d~'ICg(~, d)

N(x) [(u'Z((u') + x]
~'~ Z(~') 2 —x2 —W(~') 2

In Fig. 5, we represent the efFective interaction with
and without vertex efFects. Both potentials are drawn
for ~ = 0, and one can see that the pair potentials with
these efFects present a deeper negative region. They also
present sharper variations in the repulsive zone. In addi-
tion, it is important to note that the difFerences between
the corresponding pair potentials, with and without p
function, are smaller for increasing splitting and band-
widths of the characteristic PR resonances, being vertex
efFects irrelevant (i.e. , pgt 1) for values of A )1.5 eV.

It should be noted that in Eq. (19), Og are the poles
of both the potential (7) and the p function. Although
the two potential poles (Oi and 02) and y depend on
the band parameters (A, A, and U), we have considered
them as independent in order to study separately their
influence on the band-parameter space superconducting
region.

As a first step we have solved self-consistently Eqs.
(17) and (18) using potential (7), i.e. , without consid-
ering vertex efFects. The solution is diR'erent from zero
for some of the band parameters. The range of A and
A values for which a nonzero convergent solution can be
obtained is large: it ranges &om about 1.5 eV to more
than 3 eV and from 1 eV to also high values, respec-
tively. We note that in this region, vertex efFects are
small: p 1. The superconducting solution of (17) and
(18) found in this region of the A-A space is obtained with
values of the potential parameters Oq, 02, and y, which
are different from those arising from expressioiis (9)—(11).
The values of A and A compatible with the employed po-
tential parameters according to these expressions should
be 0.15 eV. This implies that the potential (7) can
yield superconductivity, but only if one of its poles has a
lower value than the given by expressions (9)—(11). This
discrepancy may be interpreted by considering that the
spin Huctuation arising from the potential (7) is, in this
case, unable to by itself obtain superconductivity and it
requires either the aid of another lower energy oscillator
or a more complex pairing potential. The convergent so-
lutions for the gap E(w) = W(cu)/Z(u), which result in
this case from the self-energy equations, are represented
in Fig. 6 for various values of the real part of the pole
Oi [as defined in expresion (7)]. The shape of the curves
is as expected for a superconducting gap function and
similar to other cases, as those analyzed by Monthoux
and Scalapino in Ref. 4: it is positive up to a given
frequency where there is an oscillation and for larger fre-
quencies the gap is negative, tending to a constant and
negative value. Although it is usual to find several peaks
in the gap A(w), we obtain only one, because our pairing
potential is simplified and has only two poles with only
one of them causing oscillations in the potential.

In a second step, we have solved Eqs. (17) and (18) in
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ing to (9)—(ll) and, as said above, this means that the
spin fIuctuations with vertex effects could be sufFicient
for obtaining susperconductivity in strongly correlated
systems. The density of states of the superconducting
state can be directly obtained from expression (5) and
the convergent solutions of W(w), by means of the fol-
lowing expression:

N, (~) = —) ~lmGk((u)~ = Re . (21)
k v'~' —&'(~)

I I I I I I I I I I I I I I I I I I I I I I

2 5 5 75 10 12 5

FIG. 6. Superconducting gap obtained from the Eliash-
berg equations without vertex effects for different values of
the potential parameter ReOq. Solid line: ReOq ——1.43 eV )

dot-dashed line: ReOq ——1.25 eV; dashed line: ReOq ——1.00 eV;
dotted line: ReAg ——0.80 eV. Inset: V + f
of uq (with w = 0) corresponding to the same parameter val-
ues. In all cases, ImOq ——-0.31 eV, y = 0.3 —0.15i eV, U = 9
eV, A = 2 eV, and A = 2 eV.

the region where vertex effects have an important con-
tribution, that is, for smaller values of A and A. We
have found convergent solutions, which present a struc-
ture with several peaks due to the bigger complexity of
the potential with vertex effects (see Fig. 7). It should
be remarked that these solutions are obtained with val-
ues of A and A compatible with those of the poles accord-

I I I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5

For the cases as that in Fig. 7 (i.e. , with vertex effects~') )

st presents a complex pattern, with more peaks than that
corresponding to the gap of Fig. 6 (i.e. , without vertex
efFects). However, in both cases the optical supercon-
ducting gap Ao defined by Ao ——A(~ = Ao) presents
similar values.

The PR features of the renormalized DOS are, obvi-
ously, reinforced in the superconducting state due to the
appearance of the superconducting gap, since this en-
hances the splitting between the structures near to E~.
As a consequence, the conditions for implementing the
PR model are ensured and one can fit N, (w) by means
of analytical expressions of the type (5). Thus, the cal-
culations of the p and W(~) functions [Eqs. (13) and
(17)] of the superconducting state are facilitated. Be-
sides, taking into account the different energy scale of the
superconducting gap and the splitting between the lower
and upper Hubbard bands, only the structures close to
E~ have decisive infIuence in the Eliashberg equations.
However, it should be noted that the decrease of the num-
ber of states near to E~, due to existence of a nonzero
solution for W(w), is in detriment of the appearance of
the superconductivity. This is why the relaxation of the
pair formation described by the iterative process used to
solve (17) and (18) leads in most of the cases to a zero
solution for W(ur). The vertex effects have two contrary
consequences: they largely complicate the iterative pro-
cess, because they produce a narrowing of the splitting
between the central electronic structures, but this also
implies subsequent population of states at the proximity
of E~, this fact being decisive for obtaining superconduc-
tivity for some values of the band parameters.

In addition, it is worthwile to say that when one finds
a point on the space of the band parameters where super-
conductivity is possible, the process for obtaining solu-
tions in near points presents a great computational sim-
plification, since one can use this solution of the p and W
functions as the zero iteration for the new points where
one looks for superconductivity. This largely decreases
the number of iterations needed to obtain convergent and
nonzero solutions for W(ur) in these new points.

Transition temperature

FIG. 7. Real (solid line) and imaginary (dashed line) parts
of the superconducting gap function considering vertex ef-
fects. Here, n = 0.5 (half occupation), U=9 eV, y = 0.3—0.15i
eV, and Oq ——1.25 —0.31i eV; A = 0.15 eV and A = 0.075 eV.
Inset: detail of the real part of the gap near the origin.

In the superconducting region, we also have deter-
mined and analyzed the transition temperature. We are
now interested in the evolution and tendency of the gap
function and the critical temperature when varying the
band and potential parameters (A, A, U, n, Ai, 02, y),
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w(~) = f A(~, ~')W(~')d~', (22)

A((d, (d ) = K~((d, (d ) X Im GZ
N(z—)

(23)

S((d) = — Ks((d, (d )d(d X Im dX,
N(x)

(24)

and for the sake of the simplicity, we will focus on the
region of large bandwidths. The critical temperature is
found by considering in the integrand of (17) and (18)
that IrV((d') (( (d'Z((d') for all (d' and thus, for T ~ T„
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with K~((d, (d') and Ks((d, (d') being the same as in (19)
and (20), respectively. We have also solved (22-24) self-
consistently, fixing a T and determining the U value for
which there is a convergent result of A((d). This calcula-
tion, see Fig. 8, allows us to give U = U(T„B,, A, A, n),
and, therefore, T, = T, (U, 0, A, A, n). In this figure, we
show the evolution of T versus U for difFerent values
of the splitting A and of the width A of the Lorentzian
DOS, using Eqs. (22—24). Several points can be noted.
(i) When comparing with the results obtained with the
full RPA efFective interaction given in Ref. 3, one ob-
serves that the necessary U to have a given T is now
much lower: the antiparallel-spin effective interaction is
more eKcient for coupling the fermions because with a
value of U around 5 times smaller than in the RPA case
we obtain a similar T, . (ii) With this plot, it is not clear
whether a minimum U energy is required to give rise
to superconductivity or not. (iii) T, is very sensitive to
variations of the band parameters A and A. The latter
is reasonable, as suggested by the strong variation of T
with the hydrostatic pressure, which is an external agent
that modifies the DOS near the Fermi level.

The dependence of T on the band parameters has been
extensively studied in this work (see Figs. 8 and 9). In
Fig. 8(a) is shown the variation of T vs U for different
values of A, the semisplitting of the structures at both
sides of E~, fixing their half-widths A. We find that for
a given value of U, T, is enhanced as one lowers A, and,
therefore, as the DOS near E~ increases. This behavior
holds until a quite low value of A is reached. Figure 8(b)
shows the evolution of T vs U with variations of A for a
fixed value of A. The result is, in a sense, surprising. For
any fixed U value, T rises when increasing A until A A

[see curves A, B,C of Fig. 8(b)]. For larger values of A

(i.e. , for A ) A), the behavior is opposite: T, lowers when
A increases (see curves D, E, I") This implies t.hat there
exists a value of A that is optimum (with T, maximum)
for each value of A.

To explain this behavior of T„we consider that a larger
DOS in the energy interval where the gap A((d) is positive
(see Fig. 6), reinforces the superconductivity, inducing
a higher T . In opposition, a higher DOS in the energy

interval where the gap is negative, implies a decrease of
the transition temperature. This is also coherent with
the fact that the potential is attractive for small ener-
gies, and repulsive for energies larger than a given value.
When varying A with A Axed, the evolution of the DOS
is such that for decreasing A, the DOS is enlarged in the
interval between the two Lorentzians, that is, in the in-
terval where the gap is positive. Thus, the behavior of
Fig. 8(a) is reasonable given that T, augments when de-
creasing A, because in this case the DOS in the interval
corresponding to positive values of the gap always in-
creases. The evolution of the critical temperature shown
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FIG. 9. T, vs U for diferent values of ReOq. In all cases
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FIG. 8. Evolution of T, versus the U energy for various
values of A (a) and A (b). In all cases Bq ——1.25 —0.31i and

y = 0.3 —0.15i.
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in Fig. 8(b) is somewhat more complex, but is also rea-
sonable. For increasing values of A up to A A, the T
rises because the DOS in the interval where the gap is
positive grows faster than in the region where the gap
is negative (region of larger energies). The total balance
is an increase of T . However, when A ) A, there is a
less important growth of the DOS in the energy interval
with positive gap and a simultaneous larger growth in
the interval where A(w) is negative. Therefore, the bal-
ance in this case is a decrease of T for increasing values
of A. On the other hand, the fact that the A variations
mod. ify the critical temperature after a balance of two
opposite simultaneous effects is reflected in the fact that
T, is much more sensitive to variations of A (which irn-

ply the increase of the DOS only in the favorable region)
rather than to variations of A, as may be seen in Fig. 8.

As we have said above, the poles hO» and hO2 have the
physical meaning of energies of the effective bosons inter-
mediating in the fermion-fermion interaction. Therefore,
it is interesting to know the evolution of the supercon-
ductivity as a function of these energies. Recall that,
according to expression (11), Oq and O2 are related to
each other. If one considers O» as the independent pa-
rameter, one sees that an increase of ReO» hardly changes
ReO2, but prod. uces an appreciable increase in ImO2. In
Fig. 6, the dependence of the gap on ReO» is shown.
The effect of lowering ReO» is to diminish the frequency
range where the gap is positive, while it hardly mod. -
ifies the magnitude of the gap near the origin, except
when one appreciably decreases ReO». Of course, the gap
should disappear below a certain width of the coupling
region of the potential. The large-&equency part of the
gap is what more appreciably changes, diminishing when
ReO» decreases. In Fig. 9 is shown the dependence of T
on U for various values of ReOq (and, therefore, also of
ImO2). One sees that for a given U, the critical tempera-
ture varies slightly, perhaps more appreciably when T is
larger. However, the tendency is that T rises when ReO»
decreases. This might be surprising because it means
that T, is larger when the frequency range where the po-
tential is negative is smaller. However, there are several
reasons that may enhance the critical temperature in this
case.

(i) When ReOq is smaller, the value of the potential at
the origin is more negative (attractive), as shown in the
inset of Fig. 6.

(ii) The negative part of the gap lowers very apprecia-
bly when ReO» decreases, while the positive part of the
gap decreases but more slowly, at least until a certain
value of ReO» is exceeded.

(iii) Considering the temporal Fourier transformation
of the potential expressed in Eq. (7), one sees that the
real part of each pole OA. gives the &equency of the corre-
sponding oscillating potential, while the imaginary part
is the damping rate of this oscillator. Then, for each pole,
the corresponding effective interaction term is attractive
during a time interval m/ReOI„and this would yield a
larger T for smaller ReOy. However, this does not seem
to be a useful argument since on the other half period the
potential is repulsive so it would lead to the contrary con-
clusion. On the other hand, RehOA, can be interpreted as

the energy of the intermediating boson which produces
the pair potential. In phononic superconductors in which
the electronic DOS is considered as constant in the prox-
imity of E~, an increase of the Debye frequency (which
could be considered equivalent to ReOA, in our model)
implies an augment of T . Therefore, it seems clear that
the increase of the exchanged boson energy is what im-
plies a growth of T in these cases. In the spin-fluctuation
pair potential as studied in our case, the T depend. ence
on ReOp presents an additional complexity, because the
normal-state electronic DOS is not constant, but presents
the PR characteristic structures near E~. This may even
invert the tend. ency of T when varying Ok. The non-
constancy of the electronic DOS has been quoted as a
determinant characteristic in other families of theories
for explaining SCS superconductivities. In our model,
the importance of the DOS effects is manifested, for in-
stance, by comparing the larger depend. ence of T on A

and A (shown in Fig. 8), with respect to the smaller de-
pendence of T, on ReOg (see Fig. 9). If the DOS effects
on the Eliashberg equations were neglected, as in Ref. 3,
a similar curve of T, vs U for various Ok values would
show the expected increase of T, when enlarging ReOk.

(iv) We also note that increases of ReOq imply larger
values of ImO2, since they are related by Expression (11),
while ReO2 remains almost constant (see the values used
in Fig. 9). Larger values of ImO2 also contribute to a
lowering of the pairing effects, because then the damp-
ing rate of this second oscillator is larger, and this also
contributes to the decrease of T,. However, it should
be noted that the second oscillator has less inHuence be-
cause, for reasonable values of the other parameters, the
imaginary part of its pole O2 is larger than that of O»,
so the damping of this oscillator is also larger.

(v) We finally remark that it should be taken into ac-
count that all the parameters defining the DOS and the
pair potential are related. Fixed. U and the band occupa-
tion n, a smaller OA, requires smaller values of A, which
imply strong increases on T, as shown in Fig. 8. There-
fore, the net effect when decreasing ReOA. is, in fact, an
augment of T, but rather due to the necessary narrowing
of the splitting between the DOS structures close to E~
than to the variation of ReOA. . It should be noted that
when one varies a band parameter in the spin-fluctuation
scheme, one is indeed switching on several competitive ef-
fects, especially when one is looking for a superconduct-
ing state, and, therefore, the behavior is very sensitive to
changes of the band parameters.

IV. CONCLUSIONS

We have found and analyzed. an effective potential be-
tween fermions with antiparallel spins with the corre-
sponding terms of the RPA, plus those of the EHLA
series. We have obtained a &equency range where this
interaction is attractive. Vertex efFects are also consid-
ered and we have determined that they are important
for small values of the bandwidths (splitting between the
two resonances at both sides of E~, and their respec-
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tive widths). We have introduced this efFective potential
into the Eliashberg-like equations and found that they
yield solutions compatible with superconductivity. The
parameter compatibility is full in some cases when we
include vertex effects in the pair potential. When one
considers the pair potentials without vertex effects, it
is possible to obtain superconductivity, but only if one
takes the real part of the frequency for some equivalent
oscillator smaller than that deduced by means of the ex-
pressions arising from the spin-Guctuation theories within
the Berk-Schrieffer scheme. We have carried out an ex-

tensive analysis of the evolution of T with the band pa-
rameters and remarked that there are optimum values of
the DOS near E~ for obtaining high transition temper-
atures: they correspond to two Lorentzian curves, where
the width and the splitting between them have similar
values.
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