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Doping of Mott insulators is analyzed in the mean-field-like limit of large lattice coordination or
high dimensions. In this limit, it is demonstrated analytically that doping a Mott insulator induces
states in the Mott-Hubbard gap, resulting in a narrow peak in the spectral density well separated,
for weak doping, from the Hubbard bands. The energy at which this feature appears—the critical
chemical potential for doping—is calculated as a function of U. It is also shown that the criterion
for linear instability of the insulating Mott phase is the equality of chemical potential and the band
edge. The nonlinear instability analyzed here always occurs strictly before the chemical potential

reaches the band edge.

The behavior of a Mott insulator as it is doped away
from half filling is a long-standing open problem. It has
received renewed theoretical and experimental attention
motivated by attempts to understand the metallic state
of the copper-oxide superconductors, which are obtained
by doping Mott-insulating parent compounds.*

Exact results on this problem are very scarce. In
one dimension, the exact solution of the Hubbard model
yields that the jump in the chemical potential at half fill-
ing in going from electron to hole doping is the same as
the value of the Mott Hubbard gap, defined as the lowest-
energy excitation in the charge spectrum at half filling.?
The main question on which we will focus, is whether
this remains true in higher dimensions, or whether, in
contrast, doping away from half filling will occur before
the chemical potential reaches the edges of the Hubbard
gap.

Numerical studies of the two-dimensional Hubbard
model suggest that when the number of particles is
slightly less than one per site, the chemical potential is
again simply located at the top of the lower Hubbard
band of the insulator. Correspondingly, when the density
is slightly greater than one particle per site, the chemi-
cal potential jumps to the bottom of the upper Hubbard
band.® Large N studies of a model exhibiting a metal
to charge-transfer-insulator transition reveal that upon
doping the chemical potential also jumps from the bot-
tom of the upper Hubbard band to the top of the lower
Hubbard band.* Different results on this model have been
obtained, however, via a different slave boson treatment
of the same model.®

Our goal here is to make exact statements about this
problem in the limit of large lattice coordination.® It
has been recognized in the past few years that results
obtained in this limit have a mean-field character, and
this mean-field theory appears to account for many qual-
itatitve features, which are seen in transtion metal ox-
ides. The quantitative agreement for some properties is
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also surprisingly good.” The hope is that this limit will
also be useful in understanding weakly doped Mott insu-
lators.

There are now several studies of the mean-field Hub-
bard model away from half filling, using the quantum
Monte Carlo method.®710 In particular, quantum Monte
Carlo and the maximum entropy technique have been
used to analyze the spectral functions of the doped Mott
insulator for very small values of doping.® These stud-
ies have been interpreted as indicating that the chemical
potential jumps from the upper to the lower Hubbard
band upon doping away from half filling.!! Studies of
the doped Mott insulator, using an exact diagonaliza-
tion algorithm,'? have also been performed.!31% As in
the half-filled case,!® this method gives the general fea-
tures of the phase diagram correctly, but the spectral
functions calculated with this technique lack the reso-
lution necessary to address the questions posed in this
paper.

It is apparent, from the numerical studies, that the be-
havior near to the Mott phase in infinite d is generally
characterized by the vanishing of the renormalized Fermi
energy. The presence of this small energy scale makes it
difficult to analyze the low-energy behavior numerically.
To overcome this problem, we use, here, the projective
self-consistent method, which was introduced in a previ-
ous publication® to study the Mott transition at half fill-
ing. We thereby establish analytically that, contrary to
expectations, doping the Mott insulator in large dimen-
sions induces states inside the Mott Hubbard gap for all
U above the Mott transition value U,.. The discontinuity
in chemical potential is, therefore, strictly smaller than
the gap. We calculate this discontinuity as a function of
interaction strength U and conclude that the shift of the
chemical potential from the band edge is appreciable for
intermediate values of the interaction. Furthermore, we
show that the naive Mott-Hubbard criterion, equality of
the chemical potential and the band edge, represents the

17 112 ©1995 The American Physical Society



52 MIDGAP STATES IN DOPED MOTT INSULATORS IN . ..

spinodal line, i.e., the linear instability condition for the
metastable insulating phase (which is strictly metastable
in mean-field theory).

The Hamiltonian of the Hubbard model with coordi-
nation number z is given by

H=— S (fhfia+ flafia)
U fhfaflfi = 1Y flafia (1)

where the hopping is scaled as t;; — t//z (Ref. 6) to
yield a sensible z — oo limit. In the limit of infinite di-
mensions, all local correlation functions of the Hubbard
model can be calculated in terms of an Anderson impu-
rity model,’” which focuses on a single site

Ham = Z ekc;rmcka + Z Vk(flc;w + H.c.)

ka ka
+erfifa + Ungrngy, (2)

the “bath” {cko} representing the electrons on other
sites. The energy levels, €, and the hybridization cou-
plings V}, of the bath must satisfy a self-consistency con-
dition, which involves the Hilbert transform Dg(2) of the
density of states po(€) of the noninteracting system.
The impurity Green’s function Gleg, Vi](iw,) =
— foﬁ dTei“’""'(T,.fa(r)fl(O))HAM[ek,Vk] is a functional of
the parameters €, V%, which must be determined self-
consistently. Introducing the hybridization function,

M(iw,) = Z ;‘—uvk—{_t;; s (3)
k n

G will be a functional of IT, and the self-consistency reads
simply,

Do[G~Y{II} + 2II] = G{II}. (4)

The position of the f level €5 in Ham equals minus the
chemical potential of the Hubbard model.}”

In order to make better contact with physical systems
in finite dimensions for which the bandwidth is finite, we
will consider bounded bare densities of states, and view
Egs. (2-4) as mean-field equations to be used for a fi-
nite dimensional system. For definiteness, our numerical
results were obtained for the case of a semicircular bare
density of states, po(€) = V/4t2 — €2/2wt?; in this case,
the self-consistency equation that determines the param-
eters of the Anderson impurity model has the simple form

Glex, Vi (iwn) = T(iwn). (5)

In this paper, we will focus entirely on paramagnetic
states that are likely to be realized at sufficiently large
U in strongly frustrated models at all but very low tem-
peratures. Note that for the fully frustrated completely
connected graph with t;; random in sign, the density of
states is a semicircle, there is no antiferromagnetism, and
our results become exact.19:20

The equations for the hybridization function II(iw,)
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are strongly nonlinear. We will show that, for U suffi-
ciently large, there is a finite range of chemical potential
for which two solutions coexist; a doped metal and an
undoped insulator. We will discuss first the conditions
for the appearance of the doped metal, and then later
argue that the insulator is metastable, disappearing at
a spinodal line. We will focus on hole doping; particle
doping is equivalent from the particle-hole symmetry of
the Hubbard model under p - U — p.

From extensive work on the half-filled Hubbard model
in infinite dimensions, it is known that as the Mott tran-
sition is approached from below, a narrow Kondo res-
onance appears at low energies with a spectral weight,
w, and concomitant energy scale, wt, which goes to
zero continuously at a critical U, U,. Numerical and
other approximate work suggests that similar behavior
occurs as the electron density is raised towards half fill-
ing for U > U,.: i.e., that a narrow quasiparticle res-
onance appears at the Fermi energy with weight and
width which disappear at some critical chemical potential
p- (U), corresponding to the lower range of u for exactly
half filling.5710

To analyze the disappearance of the metallic state as
u / p, we assume that this general behavior occurs,
and we use the projective self-consistent method devel-
oped earlier to handle the small energy scale near the
Mott transition. The key idea is to separate the set
{k} of “bath” electrons into sets keH and keL with cor-
responding couplings {ef,V} and {eF, V;L} describing
the high- and low-energy features. We then project out
the high-energy degrees of freedom to obtain an effective
self-consistent problem for the spectral density, involving
the low-energy variables only.

The spectral function of the quasiparticle resonance is
pE(€) = 34 (ViE)?6(e — €k), where ViE = V4, for keL and
zero otherwise; for notational clarity, we also affix an L
to € and cgo for keL. The weight of this quasiparti-
cle resonance, w = [ dep%(e), is the small parameter in
our (singular) perturbation theory. (Note that there is
a formal similarity between w and the Bose expectation
value representing the mean-field value of the quasipar-
ticle residue in the slave boson technique of Ref. 18.)

The projective self-consistent method allows a detailed
analysis of the low-energy behavior by projecting the sys-
tem Eqgs. (2—4) containing three energy scales wt, ¢, and
U onto a system in which only the smallest energy scale
wt appears. The projected self-consistency condition will
require that the impurity low-energy Green’s function
Gy, calculated with an effective Hamiltonian ’H‘}lﬁ, is re-
lated to the low-energy part of the hybridization function,
Iy (iwn) = Y (—Vl‘ifig For the semicircular bare den-

a,keL

twn —€y

sity of states case, we simply have
GL(twn, {IIL}) = UL (iw,), (6)

where the low-energy Green’s function, G, is the time
ordered Green’s function under the low-energy Hamilto-
nian ’H"Lfr of an operator /wF,, representing the action
of the operator f, of the original Anderson model Ham
at low energies.
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To construct the effective operators and the effective
Hamiltonian to leading order in w, we first separate the
impurity Hamiltonian Eq. (2) into three parts as

Ham =Ha +Ho +Hm - (7
The high-energy (“atomiclike”) part H, is given by
Ha = Unprng, — p(ngr + nyy)

+ ) VE(flel + He)
o,ke H

1
+ ) e (cha) i - (8)
a,ke H

To zeroth order in w, this high-energy part will be
the Hamiltonian of the half-filled Mott insulator. It thus
has a spin doublet pair of ground states |+)q, |—)o. We
define Hubbard operators Xog = |a)q o8| acting on this
low-energy impurity doublet.

The low-energy spectrum of the impurity Hamiltonian
consists of this doublet combined with excitations of the
low-energy bath electrons, which have Hamiltonian

Z ex” (P ra) el ke (9)

a,k€L

He =

These low-energy states are mixed with the high-energy
excitations of H,, by

Ho= 3 VE(fleka +He)
a,keL

(10)

since fl or f, acting on |£), create particle or hole states
with energies increased by at least the particle or hole
gap. It is convenient to define canonically normalized
operators of the local low-energy bath electrons at the
impurity site, '

1
o = VL L ; 11
CLa = —7= E : k Cka ( )

keL

the mixing term is then simply

Hom = Vwt(flera + H.c.),

whose perturbative nature is manifest.

The effective Hamiltonian, ’H{;ﬁ, of the low-energy
Hilbert space, |£), ® {k € L}, can now be found by
conventional perturbation theory in H,,. The form of
H.n and the intermediate excited states of H, give rise
to couplings in H; expressible in terms of Green’s func-
tions of H,. Defining at zero-temperature

(12)

G2, i, ) = — f AT T folT) F(0) |V ae™"

{» ‘).
L 1/>a . (14)

— -
a</’f ‘fﬁ Ziw + Ega — ,Hafa

1 t
faiw+Eg —'Hafﬁ

(13)

spin symmetry requires that

Ghvop = Nopvdap + T'(200008u — 6,4u008), (15)
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with A = 13" G2
m

PR the incoherent linear combination

that enters the self-consistency condition Eq. (12) in the
insulating phase.

Notice that the Green’s functions appearing in Eq. (14)
are functions of w, u, and U, but depend on y and w only
via the combination iw + u, because the ground states of
the insulator are independent of the value of the chemical
potential. In the following discussion of the destruction of
the metallic state, we will evaluate the Green’s functions
of Eq. (14) at zero frequency, and study their dependence
on chemical potential, denoting A(iw = 0) and I'(iw = 0)
simply as A and T'.

The effective low-energy Hamiltonian is found to be

Hig =Ho + J?a S+ K ZCEaCLa + const, (16)

with
T, =1 i Fr=23clocs?
a = EZXQ@ af and SL= EZCLO‘CL’B af
af af

(17)

the effective spin operators acting on the ground states
of #, and on the low-energy local bath electrons, respec-
tively. The spin and potential couplings are simply

J = 4wt’T (18)

and

K = wt?A . (19)

The effective operator which, acting on the ground

state |gz) of ’Hfjﬁ, gives the low-energy part of the Green’s
function Gyp, is

\/EFQ = —\/EtACLa - 2\/1._Utr Z cLgXpa » (20)
B
with

GL(7) = —w(gr|T-Fy (T)F{(0)lgz) - (21)
At frequencies high compared to the low-energy scale wt
but still small, the self-consistency condition for the semi-
circular case II;, = G, reduces to ({FT,FT*})L =1, with
()L, denoting expectations in the ground state |gr) of
HL;. This yields the requirement that

t2[A% + 302 — 8T%( S, - F1)z] = 1 (22)
to leading order in w.

The condition Eq. (22) implies that for a self-consistent
solution to exist in the limit of small w, A and I" must be
of order 1/¢, implying J ~ K ~ wt. The full low-energy
self-consistency, which has the form II; = G for the
semicircular case, is more generally

Ga(0) + Gy :Do[Ga

—(0)1——_4-G_Z + ¢3[M + Ha(o)]] ,

(23)

where G,(0) = A, and I, (iw = 0) satisfy the mean-field
equations in the insulating phase G, (iw) = Do[G,(iw) +
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t’I1,(iw)]. The t? in Eq. (22) is then replaced by
A=%2 4+ dPy(A)/dA, with Py(A) the inverse of the Hilbert
transform Dg. The solutions of the low-energy self-
consistent problem are such that the {ef} are of order
wt. This is to be expected: in infinite d, Fermi liquid
theory implies that in a paramagnetic metal, the density
of states at the Fermi level is unchanged by the inter-
actions at fixed particle number, therefore for the low-
energy spectral density to have weight w, it must have
energy scale wt even for large U.%!

In the limit of small w, higher order corrections to
HL;, Fa, and the high-energy parts of the self-consistency
conditions are negligible. A (unique) self-consistent solu-
tion to the w-independent low-energy problem given by
Egs. (16), (20), and (23) can then be found only for a
one parameter family of A,T". Since these are properties
of the Mott-insulating state, depending smoothly on U
and p, a metallic solution with a narrow quasiparticle
resonance with infinitesimal weight w can occur for each
Uu > U, only for a specific pair of values of chemical
potential uF(U) corresponding to infinitesimal particle
or hole doping. Note that particle-hole symmetry im-
plies that u; = U — uf, it 1s thus convenient to define
,u' #_%750tha‘t ’l’c =—Mc'

What i 1s the physical significance of the critical u£(U)?
For p > pt or p < p7, the numerical solution of the full
self-consistent problem indicates that higher order terms
in w will stabilize the width of the narrow resonance. The
form of these higher order terms, which can, in principle,
be computed in detail, indicate that, for, e.g., hole dop-
Be —n

ing, w ~ . But a straightforward perturbative anal-
ysis shows that a continuation of the insulating solution
will also persist beyond pF. Thus, we must determine
which solution has lower (free) energy E(f,U) (at zero-
temperature F' = E = () as we have incorporated —uN
into ). As discussed in Ref. 16, this can be determined
by considering “gg| i, which is simply proportional to
the fraction, n,, of singly occupied sites. The metallic
solution for small w can readily be shown to sacrifice
potential energy to gain kinetic energy by decreasing n,
relative to the insulating solution by O(w). Integration
of %Iﬂ down from U,(fi) then yields that the weakly
doped metallic phase has lower energy than the contin-
uation of the insulating phase: Epr ~ Er — C(p — pc)?.
The insulator is thus unstable to the nonlinear formation
of a large amplitude [the peak of p”(e) is of order 1/¢]
narrow resonance at the Fermi level for u just beyond
pe. We now turn to the computation of 4 (U) and show
that, as claimed, they are strictly inside the Mott gap of
the insulator

The determination of the critical uF(U) has, as de-
scribed above, been reduced to two self-consistent prob-
lems, each with a single energy scale. The low-energy
self-consistent effective Hamiltonian, 'Hfﬁ, can be found
rather well for any fixed ratio of A/T" by representing
the bath plus the impurity approximately by a small
cluster of sites. As discussed in Ref. 16, with judicious
choice of the parametrization and means of approximat-
ing the self-consistency conditions, studies of clusters of
size N = 4,6,8, and 10 are found to have converged
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by N = 8. For fixed A/T, the critical value of I' (and
hence, A) is determined uniquely by the low-energy self-
consistent solution, from Eq. (22). For A/T’ = 0, this
reduces to the symmetnc half-filled problem at U = U,
and half filling, u* = 2

In principle, the needed quantities from the high-
energy parts, I'(¢, U) and A(u, U) can also be determined
numerically by computing the self-consistent insulating
solution. This works well for U not too much larger
than U, from which it is found that, g ~ +/U — U,
for U > U, as expected from smoothness, with iF ap-
proaching nearer to the numerically determined upper
(and lower) Hubbard band edges as U increases. Unfortu-
nately, for larger U, the proximity of u. to the band edges
causes numerical problems; thus, an analytic method is
needed.

In the limit U > t, the insulating solution becomes
simple with spectral density consisting of an upper and
lower Hubbard band with the two band centers separated
by U. For the semicircular case, the Hubbard bands
have the same shape as the bare density of states and
the Green’s function at zero energy for p near the lower
Hubbard band is simply

1
FzAzGa(O):E(p—\/;Lz—M?). (24)
The critical p is then given by
_ 1-Ap
~ot| ——2k ), 25
= (29)
where
Ap=(S.-Su)1 (26)

We thus see that as long as Ay is negative, which it
must be because of the antiferromagnetic exchange in
HL., po will be strictly greater than the band edge at
2t. Numerical solution of the low-energy problem yields,
for A/T = 1,A =~ —0.23 (about half the value for the
particle-hole symmetric case analyzed previously). We
therefore obtain

po ~ 2.036t (27)

very close to, but still of order t above, the lower Hubbard
band edge at 2t.

For intermediate values of U, the needed Green’s func-
tions I' and A can be obtained either numerically or by
a perturbation expansion in ¢/U;?? the lowest nontrivial
order in ¢/U, properly symmetrized, agrees with the nu-
merics down to U,.. The full critical curve u.~(U) for the
semicircular bare density of states case can then be ob-
tained by combining this with the numerical solution of
the low-energy problem, the results are plotted in Fig. 1.

To show that, for general bare density of states, doping
always creates states inside the Mott Hubbard gap, we
must examine the conditions that determine the band
edges of the insulator. For this purpose, we use tech-
niques similar to the ones used to study the disappear-
ance of the metal, with the part of the spectral density
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FIG. 1. Position of the quasiparticle resonance fiz for in-
finitesimal doping as a function of the interaction strength
(squares). The circles indicate the top of the lower Hubbard
band fis (fis = ps — u/2) measured with respect to the chem-
ical potential at half filling. The results for fiz are accurate
within 3% while the error bars in the determination of s
are three times as large, due to the finite-size effects near the

band.

of the bath of conduction electrons near the band edge of
the interacting theory, I8, playing the role of the low-
energy density of states IIy in the previous paragraphs.
The problem is well posed only for a bare density of states
po(€), with bounded support. It can be shown that, in
this case, the density of states of the “bath” electrons,
—21ImII(e + i0), must vanish continuously at the band
edge in the interacting system. This implies that the
impurity will be only weakly coupled to the bath elec-
trons near the band edge. In the following analysis, the
Green’s functions in Eq. (14) are evaluated as a function
of w with the chemical potential set equal to its half-full
value p = U/2; generalization to other p in the insulating
phase is trivial.

The singular part of the impurity Green’s function, G,
near a band edge will be dominated by processes in which
the impurity electron at some time hops into a near-band-
edge bath state remains there for a long time, and then
hops back. Other processes will involve integrals over
intermediate energies and thus give rise to less singular
contributions to G. The full amplitude for the impurity
electron to hop into a near-band-edge bath state will be
given in terms of the Green’s functions of f excluding the
near-edge part of the bath. But since the bath spectral
density is small near the edge, these will essentially be
those of the full impurity-bath system. An explicit cal-
culation in a controlled expansion of the near-edge parts
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of the bath yields, for iw near the band-edge energy, b,
si t2 i .
GIEE ™ 5D Gy (D)L (0)Gussp(b),  (28)
1%

with a,3,7,6 spin indices and Go3 = Géog (and simi-
larly for I1,s) from spin rotational invariance. Note that
Eq. (28) includes the effects of the added electron ex-
changing spin with the spin of the ground state of the
insulator [|v), to |u = —v),] and creating a near-edge
bath electron with the opposite spin.

From Eq. (28), we see that

Ging ~ tZ[AZ(b) + 3]:\2 (b)]Hsing , (29)

where A(b) and I'(b) are Green’s functions of the insulat-
ing phase at the band edge; these are identical to those at
zero frequency with the chemical potential corresponding
to the band edge. For the semicircular case, the self-
consistency condition simply implies that

A%(b) + 3T2(b) = 1/¢*, (30)

more generally, the condition will involve the derivative
of the inverse Py, of the Hilbert transform Dy:

[A‘z + d—&(A)] (A2 +3r?) =1. (31)
dA

The condition Eq. (31) is seen to be exactly that for the
instability of the insulator to a narrow resonance with
the Fermi level at b—the generalization of Eq. (22)—but
with the factor Ay = 0, i.e., no singlet developed. Be-
cause A2 and I'? increase as the energy moves away from
a band edge into the gap, the nonlinear instability to the
metal will always occur, since Ay, is strictly negative, for
p strictly inside the gap, as claimed. Note that the con-
dition Eq. (31) corresponds to the condition for a linear
instability of the insulating solution to a small spectral
feature at the Fermi energy.

The insulating solution disappears when the system
Egs. (2-4) cannot be solved in the space of functions sat-
isfying ImG(iw,,) — 0 at low frequencies, i.e., insulating
solutions. In this space, an insulating solution is extend-
able to a slightly changed U, provided that the matrix

_ 0G(iwn)

Mm,n - Jm,n = m

- Jm,n k] (32)

with wp, , Matsubara frequencies, is invertible. This
ceases to occur when one of the eigenvalues of M,
becomes equal to one; this corresponds to a spinodal
line, and occurs at g = pF(U). The matrix M,,, is
given by a connected correlation function of the impu-
rity model;23 it is closely connected to the matrix X,I,’;,m
whose trace gives the compressibility (in the semicircu-
lar case), j—z = tr[xtn ., via (xF)7 = 21 — M7Y).
The zero eigenvalue associated with the linear instability
condition thus corresponds to an infinite eigenvalue in
the compressibility matrix me’n. If the eigenvector cor-
responding to the first eigenvalue of M to become unity
involves spectral density in the gap, the analysis becomes
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just like that used above to determine the band edge
and similar to that for the metallic instability, but with
Ar = 0. The important part of M,, , is dmn times the
combination of G’s that relates II*i"8 to G*"¢ in Eq. (28),
here evaluated at b = 0 and viewed as a function of the
chemical potential.

We thus see that, unless some other instability inter-
venes, the condition for the spinodal line uF(U) is that
the chemical potential coincides with the band edge and
that the phase transition occurs at puF with |uf| < |uE|.
The same arguments show that at half filling the insulat-
ing solution becomes unstable at a value U, (called U,
in Refs. 10 and 20) strictly less than U..

In this paper we have shown that, contrary to domi-
nant current views in the literature, the states induced
in doping of the Mott-insulating phase of the Hubbard
model on strongly frustrated lattices lie within the Mott
Hubbard gap. The splitting of these states from the edge
of the Hubbard band is of order ¢, but, in practice, may
be appreciable only for values of U close to the Mott
transition.

For unfrustrated lattices, antiferromagnetism will cer-
tainly occur for intermediate U at temperatures much
greater than the energy scales involved in the weak-
doping physics discussed here. Nevertheless, for large
U our results may still be informative. We consider bi-
partite lattices, such as the infinite coordination num-
ber Bethe lattice, which has a semicircular bare den-
sity of states. The simplest scenario involves only two
phases: the undoped commensurate antiferromagnet,
and a doped paramagnetic metal. For U > t, the en-
ergy of the antiferromagnetic solution at half filling will
be lower than the paramagnetic solution by an amount of
order t2/U (i.e., the Heisenberg exchange energy). But
as the chemical potential is lowered through, say, u_, the
difference in energy will become

EP—EAF%CAtz/U—CB(;LC——,Ll,)z/t (33)
[with coeflicients C4,Cp = O(1)]. Thus, when g < ua
with p —ua = gﬁ%%, the paramagnetic metal will
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have lower energy. For U > t, this will occur when
the position of the narrow quasiparticle resonance is still
of order t above the main lower Hubbard band, but its
width is only of order ¢3/2/U'/2. Thus, for doping & less
than some value 4, the system will phase separate into
an undoped antiferromagnet and a doped paramagnet
with doping d4 ~ 4/t/U and a narrow quasiparticle res-
onance with weight w of order 64. The effect of extra
repulsive interactions, which suppress phase separation
and can lead to regimes of doped antiferromagnet, will
be discussed elsewhere.

We thus see that even in more realistic situations, it is
still possible, within the infinite-d mean-field theory, to
get a regime of small doping with a narrow resonance at
the Fermi surface. This results from the effects of strong
correlations and makes the problem of doping the Mott
insulator very different from the doping of an ordinary
band insulator.

In finite dimensions the problem is still open. But a
serious cautionary note is in order: the conventional wis-
dom on this problem is based on numerical calculations
on small systems, or at rather high temperatures. When
similar techniques are applied to the infinite dimensional
Hubbard model, they miss the effects discussed here,
yielding the erroneous result that doping creates states
within the Hubbard bands.!!

A crucial aspect of the mean-field theory of correlated
Fermi systems is not understood: whether it shares with
its classical counterpart a variational character. If this is
the case, then our results could be used as the basis of
calculations, which might provide a bound on the value of
the chemical potential needed to dope a Mott insulator,
at least in the limit of large U where the effects of ex-
change are small. Resolving the subtle problem of weakly
doped Mott insulators may have to wait for progress in
this direction.
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