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Electron relaxation in the conduction band of wide-band-gap oxides
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Using quantum kinetic equations with memory we calculate the time-dependent distribution function
of an electron gas injected suddenly in the conduction band of a wide-band-gap insulator. A comparison
is made with the semiclassical Boltzmann equation approach. We show that due to the large electron-
phonon coupling occurring in such materials a quantum approach is needed.

I. INTRODUCTION

Ultrashort and intense laser pulses available for a few
years have motivated numerous studies on the very erst
events following the injection of electrons in the conduc-
tion band of wide-band-gap insulators on a subpi-
cosecond time scale. ' The way the excited material
goes back to its fundamental state is of primary interest
because its detailed study can give very fruitful informa-
tion on the amount of energy deposited in the material, a
key point for understanding optical breakdown, or on
the defect formation mechanism. In particular, the self-
trapped exciton is considered as a precursor of per-
manent defects such as the well-known E' center. ' This
is well established in Si02 (Refs. 7 and 8) and also in ionic
crystals. In all cases, this type of defect is a manifesta-
tion of a strong electron-phonon coupling. Other evi-
dence of this strong coupling is the direct observation of
the laser heating of free electrons in the conduction band
of e quartz' '" and the very short trapping time into
deep levels lying in the band gap. ' In all cases, the
knowledge of the time-dependent electron distribution
function is very useful because the way the electron gas
thermalizes with the phonon bath is a major key in un-
derstanding such phenomena. Furthermore, the direct
time-dependent observation of this distribution function
is now possible with pump-probe-type experiments. Such
measurements have been recently performed in semicon-
ductors. ' ' These experimental works provide a very
sensitive test for the various theories describing the ener-

gy relaxation of the electron gas, going from Monte Carlo
simulations to the most sophisticated many-body formal-
ism. Quantum calculations, i.e., including memory
e8'ects, are now well developed for typical semiconduc-
tors. ' In insulators, the situation is less advanced
probably because of the lack of precise data about materi-
al parameters, such as detailed knowledge of band struc-
ture. Carrier dynamics in insulators has been mainly
studied in order to understand dielectric and optical
breakdown, which are problems of great importance both
in fundamental physics and in technology. Various ap-
proaches have emerged but since the beginning of
the 1980s, Monte Carlo methods have had authority.
Such simulations have provided relevant results about
electron transport in Si02, and especially about hot-

electron phenomena. However, the major problem
with this type of description is that it is based on the fun-
damental concept of scattering rates. This approach, be-
cause it is based on the Fermi golden rule, excludes any
collision broadening related to the energy-time uncertain-
ty principle, and as a consequence is justified only if the
time elapsed between two collisions is (at least) longer
than the time necessary for the energy conservation to
take place. If not, it seems unrealistic to consider the
whole process as a series of sequential elementary events.
In semiconductors, it has been recently shown that such a
collisional broadening can modify the electron distribu-
tion function. Therefore, because of a much higher
electron-phonon coupling in materials like wide-band-gap
insulators, this regime is expected to have more spectacu-
lar efFects. The semiclassical Monte Carlo method has
been modified in order to address this issue, including the
e6'ect of collisional broadening or using a Feynman
path-integral approach. ' Thus a time-dependent calcu-
lation, as in semiconductors, now becomes necessary to
take into account the non-Markovian behavior of the sys-
tem.

In the present work, we address the problem of the re-
laxation of an electron gas when injected at low kinetic
energy in the conduction band of a wide-band-gap insula-
tor, for example, by an ultrashort laser pulse. The case of
Si02 has been chosen as an example. We start with a
given energy distribution of the electrons and neglect
electron-electron interaction (low excitation density limit)
in a one-band model context. Our goal is to focus on the
kinetic aspects of the electron-phonon interaction. Two
approaches are compared: in Sec. II, we present a calcu-
lation based on the direct integration of the semiclassical
Boltzmann equation. We include explicitly the coupling
of the electrons with two longitudinal optical phonon
branches and the coupling with acoustical phonons. The
interaction with acoustic phonons can be considered as
elastic because the energies involved are very small. We
will insist on the angular aspects of the problem showing
that the acoustic phonons make the distribution isotropic
almost instantaneously. Section III is devoted to a more
sophisticated approach based on quantum kinetic equa-
tions. Our approach is similar to the one developed in
Ref. 23. In contrast with Sec. II, the problem is
simplified by the assumption (justified in II) that the dis-
tribution is isotropic, and we neglect the action of the
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electron-acoustical phonon coupling, since we are mainly
interested in energy relaxation. The comparison between
the two approaches will be commented in Sec. IV before
the conclusion.

II. SEMICLASSICAL BOLTZMANN
EQUATION APPROACH

W-(k, k ) = )(k ~H, ,„~k & ['gE„,—E,+a~, ) . (2)

The upper sign corresponds to the absorption of one pho-
non and the lower to the emission of one phonon. H ph

stands for the electron-phonon interaction Hamiltonian.
Si02 is taken as a numerical example. We consider the

main longitudinal optical (LO) phonon branches (150 and
60 meV) and the interaction with electrons is treated with
the Frohlich Hamiltonian. Only one spherical and para-
bolic band is considered, which is justified for the first
eV's of the conduction band of Si02. Taking the disper-
sion relation as constant, the transition rate can be writ-
ten as

W'+(k, k'}=,[n(coLo)+ —,'+ —,']5(k' —k+q}
q2

x 5(Ek, Ek +~vLO }—
where q is the phonon momentum, AcoLo the phonon en-

ergy, and n(coLo) is the phonon occupation number
(Bose-Einstein statistics). The coupling constant a is

given by

Lo 1
2

a=
2AE, OE, p cp

1 1
(4)

e is the electron charge, and c and cz stand, respective-

ly, for the optical and static dielectric constants.
1/c,&=0.143 and 0.063, respectively, for the 150- and
60-meV LO phonon modes.

Electron-acoustical phonon collisions are also con-
sidered and treated as elastic and isotropic. Using a de-
formation potential approach, the scattering rates read

W~ (k, k') = Q2 2&C q [ ( }+~
—

~ ]
pc@(q)Q

Xh(E,. —E„)6(k'—k+ q) . (5)

The electron distribution function fk is governed by
the Boltzmann equation, which reads for a homogeneous
system without external field,

k Q(t)= f dk'W(k', k)f„(t)[1—f„(t)]
(2~)'

f dk'W(k, k')fk(t)[1 —fk, (t)] .
(2m. )

Q is the crystal volume and W(k, k') is the probability
per unit time (s ') for an electron to be scattered from
state k to state k' because of its interaction with the pho-
nons, evaluated from first-order perturbation theory with
the Fermi golden rule,

=2
q )ksz. co(q) =—v, ksz, n (q) = n (ksz ),

7T
' (6)

where k~z is the wave vector at the edge of the Brillouin
zone, defined by EBz=fi ksz/2m, =5.5 eV, with the
effective electron mass m, =0.5mo, where mo is the free
electron mass. U, is the sound velocity averaged over the
longitudinal and transverse polarizations, U, =4.6X 10
cm/s.

Inserting the di6'erent scattering rates into Eq. (1), one
obtains an integro-differential equation for each vector k.
This equation is numerically solved for each time with a
fifth-order adaptive step-size Runge-Kutta procedure.

The results of this calculation are shown in Fig. 1. For
design clarity, only the most energetic LO phonon
branch is included. We suppose that the electrons are in-
jected in the conduction band at t =0, with an energy of
1.2 eV above the bottom of the conduction band, in two
opposite directions lying along kz. This condition could
be a simplified representation of the initial distribution
following photoexcitation with a laser polarized along kz.
So the electron distribution function in the k space is
highly anisotropic and is composed of two peaks. The in-
teractions with LO phonons and acoustical phonons are
turned on, and the relaxation process can take place. We
observe an ultrafast ( & 5 fs) isotropization of the distribu-
tion function. This is mainly due to the action of the
acoustical phonons. In fact, due to the Coulombic nature
of the interaction with the polar LO phonons, the phonon
momentum q appears in the denominator of (3), and thus
the collisions mainly take place in the forward direction.
However, in the case of acoustical phonons (5), the defor-
mation potential approach takes the interaction as pro-
portional to the relative displacement of ions from one
unit cell to another, and thus proportional to the
modulus of q, so the large-angle collisions are favored.
Therefore, collisions with acoustical phonons make the
electron distribution function rapidly isotropic. From an
experimental point of view, we can note that this isotrop-
ization time is of the same order, and even smaller, than
the injection time in the conduction band by an ul-
trashort laser pulse.

The distribution function is composed of steps. This is
due to the fact that electrons lose their energy-emitting
LO phonons, so the energy-exchange amount is fixed (150
meV). We observe that the distribution function reaches
very rapidly the bottom of the conduction band. Indeed,
each electron suffers a very high number of collisions.
The total rate calculated with Eq. (3) gives typically a
number of the order of 1 fs '. Each collision involves an
energy of 150 meV, corresponding to the optical phonon
branch. In such a case, it is not surprising that the time
necessary to reach the bottom of the band, starting from
1.2 eV, is of the order of a few tens of fs. We will go back
to this point later.

C is the deformation potential [C=6 eV (Ref. 38)] and p
is the density, p =2.6 g/cm . The phonon dispersion has
been approximated as

k~T
q & kBzm(q) = v. q n (q) =

Av, q



ELECTRON RELAXATI ON IN THE CONDUCTION BAND OF . ~ ~ 17 101

t= 10fs

- 60.0 - 0.60

- 40.0 - 0.40

- 20.0

0.0

- 0.20

i 0.0O

0.20

-0.20

t=5fs t=20fs

- 0.80

- 0.60

- 0.40

- 0.20

- 0.00

- 3.0

- 2.0

- 1.0

- 0.0

FIG. 1. Electron distribution function in k s
'

n in space for various time dela sys after the initial conditions: 1 5 10 d 2
~ ~ ~

an 20 fs

Figure 2 shows the evolution of the numb
trons (E t E

e num er of elec-
, )p( )] as a function of the ene

[p( ) being the density of states in the d
e energy and time

Fo tll k p
' '

y d because the main action ofr e sa e o sim licit an
e e istribution isotro-t e acoustical phonons is to make the d' b

pic very rapidly, we neglect such interactions and take
the distribution function as isotro ic. Th 1

is cm and the thermostat temperature is 300 K
(nondegenerate case). We have included the two o ti

to the h
~ ~

s. e iscrete structure correspond
e phonon rephcas is clearly observed. Th

n ing

tions of the two
serve . e contribu-

e wo different phonon branches can be easily
separated, especially for short times. When t
creases the twe wo branch replicas can no ion er be 1

identified and all hn all the linear combinations of the two

p onons were not supposed elastic, supplementary energy

ous and they would tend to smooth thee energy spectrum,

short times.
u the phonon replicas would still be obs i e o servable for

I.S +
Energy (eV)

2.0x 10+

) 0 )0+16

50.0

(fs)

A

0

2
U
CD

0
A
O
'a

O

FIG. 2. Number of electrons
differen

rons as a function of energy for
i erent time delays in the semiclassical approach

III. QUANTUM DYNAMIC APPROACH

The quantum description of trans ort hnsport has been greatly
uring t e last few years, es eciallp 'a y for the

case. i erent models have emer ed
using nonequilibrium Green's f t

erge,
s unctions ' and more re-



17 102 PH. DAGUZAN, P. MARTIN, S. GUIZARD, AND G. PETITE 52

H =H, +H„h+H, ph .

We adopt the standard second quantification notation,

H, +H h
=g c kc k +g fitoqb qb

Ak
2me

(7)

m, is the electronic efFective mass (we use as in Sec. II a
parabolic band approximation), and ck (ck) and b

q (bq )

denote creation (annihilation) operators for electrons and
phonons.

The electron-phonon interaction is represented by the
standard Hamiltonian,

cently equations of motion of single-particle density ma-
trix. ' The Hamiltonian describing the system of
noninteracting electrons, phonons, and their coupling is
written,

tion of fk because the expectation value of such three-
body operators is unknown. A first-order contribution
could be obtained by factorizing the expectation values,
as in the random-phase approximation. But, when
neglecting coherent phonon states, the single expectation
value (b ) vanishes and, as a consequence the assisted
density matrix does too. The idea is to compare the time
evolution of the three-body operator sk+q k. Doing this,
the three-body operator evolution depends on four-body
operators, and an infinite set of differential equations is
obtained. One needs to introduce suitable approxima-
tions in terms of a nonvanishing factorization of expecta-
tion values to truncate this process. Note that this
method is the analog of the well-known Bogolivbov-
Born-Green-Kirkwood- Yvon hierarchy used in the kinet-
ic theory of gases. The time derivative of sk+ k is eval-
uated from the motion equation

H, „=ggqck+qck(bq bq—) .
k, q

d 1 i
d sk+q, k

A A
gqk+q~q~k&Hdt ' iA

(13)

In the case of the Frohlich Hamiltonian, g reads explic-
itly

l
gq=

The physical quantity of interest is the distribution func-
tion for the electrons, which is defined as fk

= ( ckck ) . In
our calculation, we neglected the variation of the number
of ptionons [(d/dt)nq=(d/dt)(bqb )] of the heat bath
which can cause a significant heating of the lattice. This
is consistent with the low electronic density limit we con-
sider here.

We start directly with a single-particle density matrix
by considering the equation of motion of the distribution
in the Heisenberg representation,

(Ckck ) = ( [Ckck, H] )
1

dt iA

The calculation of the right-hand side of the above equa-
tion is straightforward and gives the result

d k =2 Re g(sk+ k Sk k ) (12)
dt

where sk+q k=(i/h')gq(ck+qbqck) are the so-called
phonon-assisted density matrix, introduced by Zimmer-
mann. ' Equation (12) is exact. However, as explained
in Ref. (23), Eq. (12) is not suitable to compute the evolu-

+, Igql'Ifk+q(1 fk)( q+ )—
@2

fk(1 fk+ (14)

At this level of approximation, (12) and (14) form a closed
set of differential equations, which can be numerically
solved. Without entering into details, note that the above
set of equations reduce to the semiclassical Boltzmann
equation if a Markov process and an adiabatic hypothesis
are supposed as shown in Ref. 19. However, we found, as
mentioned by other authors, ' for some initial condi-
tions, unphysical results such as distribution functions
negative or larger than unity. It has been shown recent-
ly that such a difficulty can be avoided by including
higher-order contributions in the hierarchy mentioned
above. Without repeating the explicit calculation given
in Ref. 23, the above set of equations must be
transformed by including a supplementary quantity in the
first term on the right-hand side of (14) as follows:

After a long but straightforward calculation one ob-
tains, bp using the approximation
(ck+q qckbqbq) =fknq 6~ q, the following exPression
for the evolution of assisted density matrix:

dsk+q, k .Ek+q Ek ~~LQ
Sk+q k

(Ek+q Ek —iricoi o)/R~(Ek+q —Ek RcoLo)/fi+—i I'k+—+i I k,
where

( I iu+ pout) /2

~ g lgq I &(Ek+q Ek —&ttiLo)f k+q("q+ 2
+ 2~ )

q

I k"'=
g Xlgql'&«k+q —Ek —&~Lo)(1—fk+q)(nq+ 2+ 2) ~

q

(17)
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to reach the right final distribution (Fermi-Dirac or
Maxwell-Boltzmann). One has to take into account a
more realistic dispersion relation for the phonons or add
other scattering processes. This is consistent with our re-
sults. , The quantum calculation presents the same
behavior with respect to the number of branches included
in the calculation as in the semiclassical one. However,
as we will discuss in the next section, we note that the
time necessary for a stabilization of the energy is much
longer than in the Boltzmann equation treatment case.

FIG. 3. Number of electrons as a function of energy for
different time delays in the density matrix approach.
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FIG. 4. Comparison between semiclassical and quantum ap-
proaches of the averaged electron energy as a function of time.

The above set of rate equations acts as a damping and is
equivalent to assigning an intrinsic broadening to energy
levels.

We present in Fig. 3 the evolution of the number of
electrons as a function of the energy and time including
the two LO phonon modes. In contrast with Fig. 2, the
phonon replicas have disappeared. This is a consequence
of the time-energy uncertainty principle. This point will
be discussed in detail in the next section.

Figure 4 shows the evolutions of the average energies
of the distribution functions for one (150 meV) and two
(150 and 60 meV) LO phonon modes in the semiclassical
case (dotted) and in the quantum case (full). Concerning
the semiclassical calculation, note that the final energy in
the two-phonon-mode case is lower (40 meV) than in the
one-mode case (95 meV). These values must be compared
with the "theoretical" result which is 39 meV (—,'kT) for a
Maxwell-8oltzmann distribution. Therefore, the final
distributions deviate from the unexpected equilibrium
distribution, but including a supplementary scattering
mechanism can give a better result. In fact, it is well
known that the model under consideration is too simple

IV. DISCUSSIDN

The differences between the spectra shown in Figs. 2
and 3 are striking. As already mentioned, in the quan-
tum simulation, all traces of phonon replicas are lost.
Semiclassical methods are based on the concept of col-
lision rate (s '). As is well known, these rates are ob-
tained by using the Fermi golden rule, in which energy
conservation takes place. The problem is solved by as-
suming that the relaxation process is a series of indepen-
dent events (Markov process) excluding any memory
effect. This approach is correct if the time elapsed be-
tween two collisions is much larger than the time neces-
sary to build up the energy conservation in the golden
rule which can be estimated from the time-energy uncer-
tainty principle. For example, in the case of GaAs and
by considering the case of LO phonons (coLo=36 meV),
this time is found to be of the order of 20 fs. On the oth-
er hand, the time between two collisions calculated with
Eq. (3) is of the order of 150 fs. As shown in Ref. 23 in
this particular case, the electron spectrum is broadened
but phonon peaks are energetically resolved, as we found
too. The case of wide-band-gap insulators such as quartz
is more dramatic. Considering the 150-meV LO phonon,
the associated time is of 5 fs, while the time between two
successive collisions for a kinetic energy of 1 eV is of the
order of 2 fs. In such a case, the energy broadening is
larger than the phonon energy and the discrete structure
is unresolved. This shows that it is incorrect to consider
the relaxation process as a series of elementary events
and that a quantum calculation including memory effects
is necessary to describe the evolution of the electron pop-
ulation.

The behavior of the mean kinetic energy of the elec-
tron is different in the semiclassical case and in the quan-
tum case. The energy relaxation rate is slower in the
latter case. This can be understood by using the general
argument that an electronic system is in an equilibrium
state when all the memory of its initial state is lost. In
the approach based on the Boltzmann equation, the Mar-
kovian description of the temporal evolution is that the
system has no memory at a11. In such a case, it is easy to
understand that it is able to reach its equilibrium state
faster than in the approach based on the density matrix
formulation which contains, at least partially, . memory.
From a more technical point of view, note that these con-
trasted behaviors can be attributed to the particular form
of the Frohlich Hamiltonian and especially to the fact
that it contains a 1/q divergence coming from the
Coulombic origin of the electron-LO-phonon interaction.
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In the quantum case, transitions involving an energy ex-
change close to zero are favored in contrast with the
semiclassical case where the exchange is fixed. ' One
must be careful about the long time behavior, because the
final energy value can be strongly influenced by the
choice of the model (idealized scattering mechanisms, no
interaction between carriers, effects of the hierarchy trun-
cature, initial conditions, etc.). As is well known, the
passage from a kinetic regime to a thermodynamic equi-
librium is a very hard physical problem. However, we
observe that for times about 100 fs, there is a strong
difference between the semiclassical calculation and the
quantum one. The amount of deposited energy in the
material differs significantly from one case to the other.
Even if this difference has to be more precisely studied, it
is a real fact. This can have important physical conse-
quences in the interaction between femtosecond laser
pulses and the material, especially for a precise descrip-
tion of the mechanism of optical breakdown, or for the
ultrafast carrier trapping and defect formation in wide-
band-gap oxides. '

poral evolution of an electron gas injected suddenly in the
conduction band of a wide-band-gap insulator. We show
that the strength of the electron-phonon coupling in such
materials makes the spectra smooth without any phonon
replicas and this is in contrast with semiconductors like
GaAs. In agreement with other authors, we find that the
thermalization rate is slower in the density matrix formu-
lation case than the semiclassical case. This is certainly
true. However, let us point out that our calculation
neglects all effects related to carrier-carrier interactions
and that the choice of the initial condition (instantaneous
promotion of the electron gas in the conduction band) is,
even in the case of ultrashort laser pulses, unrealistic.
The role of multiphonon processes should also be investi-
gated. ' ' Furthermore, note that the fact that the
infinite hierarchy has been truncated at second order is
equivalent to a loss of information on the system we con-
sider here. This can probably influence the relaxation
time of the electronic density. More experimental works
are needed to clarify the applicability range of such a
model.
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