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DifFusion coefBcient for interacting lattice gases: Repulsive interactions

Zbigniew W. Gortel
Department of Physics and Theoretical Physics Institute, University of Alberta, Edmonton, T6G 2J1 Edmonton,

Alberta, Canada

Magdalena A. Zakuska-Kotur
Institute of Physics, Polish Academy of Sciences and College of Science, Aleja Lotnikom 82/$6, 02 668-

S'arszaaua, Poland

I ukasz A. 'Du. ski
Center for Theoretical Physics, Polish Academy of Sciences and College of Science, Aleja Lotnikour 82/$6, 02 668-

Warszama, Poland
(Received 7 June 1995)

Following a previous model for a difFusion process in a dense lattice gas with attractive inter-
actions, we propose a model which deals with repulsive interactions and permits the analysis of
diffusion in adsorbates undergoing order-disorder phase transformations. Using a generalization of
the local random mean Geld method we derive an explicit expression for the difFusion coefBcient
and analyze its behavior when the thermodynamic parameters, the adsorbate concentration and
temperature, are varied within a physically relevant part of the parameters space.

In our previous rapid communication, a description
of diffusion processes in interacting lattice gases was pre-
sented and shown to be in good agreement with Monte
Carlo simulation results for dense adsorbates with attrac-
tive interactions. Our approach was based on a properly
tailored application of the random local mean-field the-
ory to the Master equation description of a lattice gas ki-
netics. In an absence of interactions between the lattice
gas particles, the transition rates in the Master equation
are site independent. When the interparticle interactions
are present, they result in local fluctuations of the tran-
sition rates. In our recent model, we have assumed that
in the interacting system, the effective transition rates
can be considered to be functions of a random local po-
tential. In general, the diffusion coefficient for the one
particle random walk in a random potential field is in-
versely proportional to the inverse jump rate averaged
over the potential field distribution, ' D C: W
rather than being proportional to the average of W. The
same dependence is exhibited in our model. We have
shown then that when a local mean-field theory for an
interacting system with short range attractive interac-
tions is used to calculate the distribution of the random
local potential field, a simple formula for the diffusion
coefficient emerges. Numerical implications of this for-
mula agree very well with the results of Monte Carlo
simulations. '

Our approach can be generalized and used for dense
adsorbates undergoing order-disorder phase transforma-
tions. This is done here and we extend its applicabil-
ity to cover systems with repulsive interactions between
particles. We investigate here a behavior of the diffu-
sion coefficient when the system undergoes an ordering
transformation to a 2 x 2 phase as the concentration and
temperature are changed. Our model is a simple but not
trivial example demonstrating how the diffusion activa-

tion energy may change when the surface layer orders.
To model a dense adsorbate, we map the system of ad-

sorption sites onto a simple lattice gas with the Hamil-
tonian

'R= J) nns —V) n;.
(i j) 2

Here n; = 0, 1 is the occupation number of the lattice
site i. The on-site "potential" V describes an adatom
interaction with the host solid and contains information
about the ambient gas state through its dependence on
the chemical potential. The summation in the first term
in Eq. (1) is over all neighboring pairs of lattice sites
and the interaction between the gas particles is assumed
to be repulsive, so the coupling constant J is positive.
Therefore, for some range of parameters (adsorbate con-
centration and temperature), the system forms ordered
structures. Depending on the interactions and on the
lattice type, these structures may be of different types.
The simplest one, for a square lattice with the nearest
neighbor repulsive interactions, is the 2 x 2 phase. In so,
ordered phase the particles occupy every second lattice
site. To model this structure in the mean-field approach,
we divide all lattice sites into two sublattices, A and B,
and treat them separately. This enables us to write the
mean-field equations for the adsorbate occupation num-
bers for each sublattice as follows:

n, = —+ —tanh(Ph, . /2),A 1 A

n; = —+ —tanh(Ph, /2),B 1 1 B

where P = 1/kgT. In this formulation, the local field
h; at a site belonging to the sublattice A depends only
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on the occupation number at neighboring sites in the
sublattice B: 6+ = V —JP~ .

~

n+, where the summation

is over the sites adjacent to the site i. Similarly, h;
V —J PU~ n . The separation of the lattice gas into
two sublattices does not result in loss of generality, and
in further calculations, we assume that h and 6 are
given by two different distributions.

To describe the static properties of the system we as-
sume in the lowest order approximation that at equilib-
rium, the system is globally uniform and the Geld distri-
butions are sharply peaked around h,-

' = V —zJn
where n ' are global mean adsorbate concentrations for
each sublattice, n+'+ = g, n, '/N. , with N being the
number of sites in each sublattice. For such a Geld dis-
tribution, the phase diagram can be entirely character-
ized in terms of two parameters: the total mean adsor-
bate concentration n = (n+ + n+)/2, and the parameter
that measures the difference between global occupations
of both sublattices, m = (n+ —n+)/2. Straightforward
algebra leads from Eqs. (2) to the the following expres-
sion for the hne that separates the phases
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FIG. 1. The mean-field phase diagram for lattice gas with
repulsive interactions.

mal and. spatial averages, respectively. Using the same
as in our earlier approachi (the random local field ap-
proach), we finally get the Fourier transforms of the field
distribution functions f (p ),

We plot this line in Fig. 1 as a function of the global
adsorbate concentration n. Above the line, the system is
not ordered and m = 0. Below it, we have the 2 x 2 phase
and m g 0. This line represents the locus of continuous
phase transition points, plotted as a function of n. Note
that in this "antiferromagnetic" model, the concentration
n is not a critical variable and the proper order parameter
for the transition is the "staggered magnetization" m.

To study the diffusion process, we adopt the model
that we have used for the lattice gas with attractive
interactions. We effectively replace the interacting gas
with a system of independent effective particles in a ran-
domly fluctuating field. We have to regard two sublat-
tices separately. Thus, in contrast to the analysis in
Ref. 1, we have now two Master equations,

f (p '
) exp in ' ) [1 ——exp( —ip ' Js;)]

= exp[ —n ~Pi(p~ ) —in&2(p )],
where p+' are Fourier variables conjugated to 6 ' and

A, H) ) [1 (
A HJ )~]

We note that the local Geld 6 depends only on the con-
centration n, and h depends only on the density n+.

To calculate the time evolution of the root mean square
particle displacement

we note that

—( ) = —) [I', P (i, t) + I',. P (i, t)],

where (l), indicates that the sumination is over all vectors
l connecting the site i with its nearest neighbors. The
transition rates are given by

and use the equilibrium values for probabilities at both
sublattices

I',. '—:I'(6; '
) = vo exp( —PV) exp( —Ph, '

) .

The local field distributions are evaluated by means
of formulas being direct generalizations of those used
earlier: '

f(h ~) = (b(h,~ ~ —h, ' ))

dp(exp[ip(h~ ~ —h, ' )]),2'
where the angular bracket and the overbar denote ther-

With that, the final formula for the diffusion coefBcient
becomes

z exp ( —(PV + nz[exp(P J) —1]))
2d coshfmz[exp(P J) —1])
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For m = 0, i.e., for the disordered phase, it reduces to
the expression derived earlier.

We plot in Fig. 2 the difFusion coefIicient given in
Eq. (11) as a function of the inverse temperature PJ for
several concentration values (upper panel) and as a func-
tion of the adsorbate concentration n for several tem-
peratures (lower panel). The on-site potential strength
is V = 1.5J, and for its other values, the results are
qualitatively similar. The region corresponding to the
2 x 2 ordered phase is bounded by the dashed lines. We
see that the behavior of the difFusion coefIicient changes
dramatically across the transition line in both plots. Us-
ing the Arrhenius parametrization for the difFusion coef-
ficient D = Do exp( —PA), we can analyze the activation
energy L dependence on temperature and concentration.

Froxn the P dependence of curves in Fig. 2(a), the ef-
fective activation energy L can be obtained as a func-
tion of temperature for several values of the adsorbate
concentration. Initially, at high temperatures, the slope
of the curves is positive, thus, the activation energy is
negative and has no physical meaning. Then, at lower
temperatures, we note a slow increase of 4, as the tem-
perature falls down. At still lower temperatures, when
the system starts to order, i.e., when we enter the region
corresponding to the 2 x 2 phase, the activation energy
increases discontinuously to relax downwards with fur-
ther temperature decrease towards its stable value for
the ordered phase.

The diffusion coefficient increases rapidly in Fig. 2(b),
with increasing adsorbate concentration, when the sys-
tem is disordered (note the logarithxnic scale used). Upon
crossing the transition line into the ordered region, the
concentration dependence weakens at first to become
stronger again and then slows down returning to the orig-
inal increase law as one leaves the ordered phase. The
lower the temperature below the critical temperature, the
more dramatic is the change in the difFusion behavior due
to ordering. The rapid decrease of the difFusion coefFicient
upon ordering in the adsorbate is consistent with the re-
sults of experiments, of simulations, ' and agrees with
the conclusions based on the entropy calculations.
In Ref. 10, the experimentally determined difFusion coef-
ficient for Pb on (100) surface of Cu was given as a func-
tion of adsorbate concentration for several temperatures.
At high temperatures, the concentration dependence of
D follows closely our theoretical curves for concentrations
above n = 0.2. Upon entering the ordered phase, the ex-
perimental data of Ref. 10 exhibit negative slopes on the
D(n) curves, clearly indicating an admixture of nonequi-
librium processes. These negative slopes are obviously
missing &om our purely equilibrium considerations.

The model analyzed in this work is quite simple. Nev-
ertheless, it describes remarkably well the diffusion pro-
cess in the system undergoing the order-disorder phase
transition. Recall that the expression (11) has been de-
rived assuming a two sublattice model of the adsorbate
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FIG. 2. (a) DifFusion coefficient of the interacting lattice
gas D/Do versus PJ. Adsorbate concentrations n decrease
by 0.1, from n = 0.9 for the topmost line down to n = 0.1
for the lowest one. (b) Adsorbate concentration dependence
of D/Do Paramete. r PJ increases by 0.1 from PJ = 0.9 for
the topmost line up to PJ = 1.4 and then by 0.2 up to 3.0 for
the lowest one. V = 1.5J and Do = voz/2d in both panels.
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and using the simplest possible mean-field approach for
the equilibrium properties of the system. We have also
used quite a simple assumption concerning the local Geld
distribution (6). Several improvements of our model and
of the ensuing analysis are possible. The static part of
the analysis can be made more accurate by going beyond
a simple mean-Geld theory. The local Geld distribution
calculation can also be made more precise. An important
advantage of the local mean-Geld approach is that it can
be extended to models of adsorbates other than a simple
lattice gas model. More sophisticated Hamiltonians than
(1) can be used, and more complex Master equations can
be postulated and analyzed. The Potts model Hamil-
tonian and Potts model kinetics are of primary interest
here. Work along this line is in progress.
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