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DifFusion in a generalized (dense and mobile) model of a lattice gas
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Following a recent theory of diffusion in a lattice gas, we present a generalization of the local
mean-field approach to study diffusion in a dense system in which particles are mobile. Our model
reduces in well-defined limits to the lattice gas and fiuid models which we have proposed recently
for an adsorbate diffusion on the surface of a metal.

I. INTRODUCTION

Description of a diffusion processes in dense and low
dimensional systems attracts considerable attention in
view of their fundamental importance for many branches
of physics, chemistry, and biology, and their self-evident
technological applications. In spite of that, theory of
diffusion processes in a low dimensional system, for ex-
ample, in adsorbates, is incomplete, particularly when
the density becomes suKciently high for mutual parti-
cle interactions to be of importance. Experiments re-
veal the temperature and the density (coverage) depen-
dence of the diffusion coeFicient, which is diKcult to
account for by following conventional theories. These
theories employ usually lattice gas models of different
complexity or, rather in&equently, are based on con-
cepts of modern fluid dynamics like memory functions or
cellular automata. The lattice gas model provides a
convenient description of many equilibrium properties of
dense low dimensional systems and of adsorbates, allows
us to chart their phase diagrams, and is easily simulated
numerically by means of the Monte Carlo techniques. Re-
sults obtained in this way are generally in a good agree-
ment with the available experimental data. The use of
lattice gas models to describe dynamical processes is a
much less successful endeavor. In a recent publication,
we have shown how the properly tailored application of
the local mean-Geld technique can bring the lattice gas
kinetics into very satisfactory agreement with results of
Monte Carlo simulations for diffusion in dense interacting
d = 2 systems. s

In spite of this, the kinetic lattice gas description has
still some shortcomings, because it ignores the momen-
tum distribution of the particles and, therefore, is ill
suited to describe all phenomena related to the "flow"

properties of the system. The diffusion process in a dense
system comprise both hopping like and flow aspects of
redistribution of particles and therefore, as we believe,
a generalization of the conventional lattice gas descrip-
tion which takes care of the changes of particle momenta
and goes away with instantaneous "jumps" of particle
betvreen (quasi-)equilibrium positions is necessary. In a
sense the cellular automaton models of diffusion ' are
complementary to the lattice gas description. Indeed,
in the cellular automata models, the primitive physical
process responsible for the system behavior is the particle
velocity change upon suitably defined collisions. These
models suffer &om other diFiculties, often of a more fun-
damental nature, which are well documented in the abun-
dant literature of the subject.

In the present paper, we propose a model which, as we
believe, bridges the gap between our lattice gas, cel-
lular automata, and mesoscopic models of diffusion.
The basic ingredient of our model is generalized to the
2d-dimensional p-space master equation, which in well-
defined limits reduces to the standard form of master
equation or to the Boltzmann-Lorentz kinetic equation,
an essential element of the cellular automata analysis in
Ref. 6. We show that our model provides a description of
the diffusion processes in which fluidlike characters of the
process, emphasized in Refs. 6 and 5 are combined with
the hopping mechanism of Ref. 8. Using suitable gener-
alization of the local mean-field analysis &om Ref. 8, we
derive an expression for the diffusion coeKcient, which
permits us to analyze its dependence on several param-
eters, like temperature, density, and a value of the cou-
pling constant measuring the strength of mutual particle
interactions. In view of our interest in physics of dense
adsorbates, we couch our discussion in a way that per-
mits us to use the available experimental data on surface
diffusion as a guiding rule in the analysis of our results.
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II. THE MODEL

Consider a d-dimensional, classical, many particle sys-
tem dense enough so the mutual particle interactions can-
not be neglected. We describe the state of such a sys-
tem by a p-space distribution function F(r, v, t), where
r and v denote the particle position and velocity, re-
spectively. The customary normalization of F(r, v, t) is

f drdvF(r, v, t) = Niot, t where Nt~t is the total num-
ber of particles in the system. This distribution func-
tion obey the generalized master equation in the p space,
which we postulate in accord with two fundamental re-
quirements.

The first one is that this equation reduces to the well
known master equation for a lattice gas (in the contin-
uum limit) when the velocity degrees of freedom of par-
ticles are "averaged out. " This means that in some limit,
discussed below, the diffusion process described by our
model has to reduce to that discussed in Ref. 8. The
second requirement is that in the opposite limit, when
Quid properties of the system are of greater importance
than the hoppinglike ones embodied in master equation
of Ref. 8, we recover the Quidlike description provided
either by mesoscopic model of Ref. 5 or by the cellular
automaton model. This in turn implies that the master
equation in the p space must bear a similarity with the
Boltzmann-Lorentz kinetic equation, an essential ingre-
dient of the model in Ref. 6. The third condition imposed
on our model is that it must take into account mutual
interactions between particles in such a way as to make
the applications of the local mean-field model discussed
in Ref. 8 possible.

The master equation, which fulfills above conditions
reads:

BiF(r, v, t) = —v V'F(r, v, t) + W(F) .

where P~(v) is the Maxwell-Boltzmann distribution
function. The sum in Eq. (2) runs over all z nearest
neighbors of the particle located at a site r. The coefIi-
cients I' are the transition rates for particle short range
"jumps" between the sites r and r + a. Equation (2)
resembles closely the generalization of the Boltzmann-
Lorentz collision operator. Indeed, replacing I"s by av-
eraged values and replacing &P~(v) f dv' by the integral
operator averaging velocities over the surface of a unit
sphere in the velocity space, we obtain the Boltzmann-
Lorentz operator. Cellular automaton version of this col-
lision operator was important in the construction of the
model in Ref. 6.

In a general case, the operator R' is nonlinear due to
the F dependence of the transition rates I'. The local
mean-field method assumes that I"s are defined as space
dependent functions and the local adsorbate state depen-
dence for them is introduced by the procedure described
below. Strictly speaking, the definition of TV given above
should be considered only in its long wavelength limit.
The most convenient way of writing it is to go over to
the Fourier space representation. We can write then the
Master operator as

(WF) = —z ) dv'I'~ ~ 8(v —v')

4'a(v) F '(v t)

where z is the coordination number and S& is the static
structure factor S~ = P exp(iq. a) —z. The construction
presented above satisfies the fundamental requirements
imposed above Eq. (1). In the following section, we shall
analyze its predictions.

The crucial step in our analysis is the construction of
the operator W (Fj. In Ref. 8, the operator analogous
to W was build containing the local values of the effec-
tive field, felt by the lattice gas particle undergoing the
transition &om one lattice site to another. This local
field was subsequently treated as a stochastic (quenched)
variable, distribution of which was calculated using a gen-
eralization of the procedure proposed in Ref. 7. We adopt
here the same point of view modified in two ways. First,
we consider a continuum description of the difFusion pro-
cess (i.e. , an appropriate long wavelengths limit of the
lattice version). Second, we consider the full p-space dis-
tribution as a cell variable. The cells are constructed by
splitting the configuration space into a (quasi-) lattice
with a spacing a and letting a particle in each configura-
tion space cell explore the entire momentum (or velocity)
space.

The operator TV acting on the phase space function
F(r, v, t) can be written down explicitly in the following
form:

T(r,tttt) = vtta (v) f d )t'(r v+ a, t)S'(r + a, v', t)
a

—zI'(r)F(r, v, t), (2)

III. LOCAL MEAN-FIELD APPROXIMATION

The local mean-field concepts ' rely on replacing the
many body master equation by the effective single par-
ticle one in which the transition rates are functionally
dependent on a single-site effective field that is randomly
distributed. The effective master equation has to obey
the H theorem, thus for each realization of the local
field distribution, the density differs from its global mean
value po by a factor oc I'

I =r-' h.
Po

f dhf(h)l —'(h) '

where I'(h) is the efFective transition rate, which depends
on the value of the local field h, and f (h) is the field dis-
tribution. The main point is now how one gets the field
distribution f(h). The explicit mean-field procedure for
the construction of f (h) was provided in our earlier work
Ref. 8 following the procedure proposed in Ref. 7. We
adopt here the same construction in view of its consid-
erable success in bringing the results of the lattice gas
model into a remarkable agreement with the results of
the Monte Carlo simulations.
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We assume &om now on that the values of the transi-
tion rate coefficients in Eq. (1) are random functionals of
the local 6elds. To proceed with an analysis of this equa-
tion, we use the pedestrian form of the Chapman-Enskog
procedure. In order to do this, we use the time Fourier
transform to rewrite Eq. (1) as

(a( —q v + izr~) F~(v, a() = i[S~ + z]P~(v)r~p~(~),

(5)

where p~(ur) = f dvF~(v, at). Integrating both sides
of Eq. (5) over velocities and introducing the current
j~(~) = f dvvF~(v, ~), we obtain

( —'s,r, )p, ( ) =q j,( ) (6)

Equation (6) is the continuity equation in our model.
Multiplying now Eq. (5) by a velocity and then integrat-
ing over the velocities, we obtain the second equation in
the hierarchy that relates the particle current and density
to the kinetic stress tensor:

(-+*&.)i.(-) = ~ f&-~-+.(--),

~ g 2

((u —iS~r~) (~ + izr~) p~ = p~,mp

where m is the adsorbate particle mass and P = 1/k~T.
The standard assumption that for diffusive modes we

expect u cx q together with the small wave vector be-
havior of S& oc —q a gives, with an accuracy up to q,

r..~,.) .
m z g

(9)

In the above, we have used well known properties of the
Boltzmann distribution function.

To close the hierarchy, we use the lowest order
Chapman-Enskog-like approximation, namely, we set
Fz(v, cu) = P~(v)pz(at). We obtain the relation valid
for each realization of the local fields distribution:

pend. We note in passing that if the model described by
Eq. (1) were supplemented with a nonrandom term akin
to that used in a Vlasov plasma and describing weak long
range adatom-adatom interactions U&, then these inter-
actions would modify our results by changing the sound
velocity of the system, c = gl/mP, in such a way that
it would contain both the temperature and the potential
energy contributions to it: c = g(1 + ppoUO)/mp.

Final simplification, following Ref. 8, is obtained by
assuming that p~ = b(q)p = poI' /(I' ), viz. (4). We
obtain then the Bnal expression for the diffusion coeK-
cient averaged over the local field fluctuations:

a c (I' )
(r ') (r ')

( c'=D...„..l1+ —(r ') i,a2 (12)

IV. NUMERICAL RESULTS

where Dh ~~;„g is the value of the diffusion coefBcient
following the simple kinetic lattice gas model discussed
in Ref. 8.

The above equation combines two contributions to the
diffusion process: the one which is due to Quidlike prop-
erties of the system and that which is due to its lattice
gas properties. It is the inverse averaged transition rate
dependence of this coefFicient that makes a comparison
with the Monte Carlo data in our recent work so effec-
tive.

Equation (12) can be compared with the expressions
for the diffusion coeKcient obtained in Refs. 6 and 5.
Both of these models, meant to be valid for dense fluid-
like adsorbates, express the diffusion coeKcient in terms
of the ratio of the sound velocity squared to a single par-
ticle &iction coefFicient determined by the scattering of
an adatom off the host lattice excitations its surface
and bulk phonons. This coeKcient becomes identical to
the second term in Eq. (12), provided we identify the
friction coefBcient with the appropriate ratio of averages
involving the inverses of I'.

Equation (9) is the "quenched" diffusion equation. To
obtain the diffusion coeKcient &om it we note that the
diffusion equation for the density averaged over the dis-
tribution of local fields reads

iu)(pq) = q'D(p~),

where the angular brackets denote the field average (A) =
f dhf(h)A(h). Comparing now the right hand sides of
Eqs. (9) and (10), we obtain the following expression for
the diffusion coeKcient:

We find it convenient to rewrite the diffusion coeK-
cient D given in Eq. (12) as a sum of the hoppinglike
term Dh ~~;„z and the fluidlike contribution to it. To
see how these terms compare numerically for real sys-
tems, we choose the parametrization of the transition
rates I' analogous to that used in Ref. 8. Let V be the
on-site potential and let J be the coupling constant mea-
suring mutual short range repulsive interactions between
the lattice gas particles. Following Ref. 8, we write the
transition rates as I'(h) = vo exp( —PV) exp( —Ph). The
same algebra as in Ref. 8 gives

cubo, q-+0 q2 p~ m z g

D = Do(exp[ —poz(e~ —1)]

+AT exp[poze~ (e~ —1)]exp [2PV]), (13)

Note that in Eq. (11) we have treated the short range lo-
cal interactions between adatoms as causing the fluctua-
tions of the local fields on which the transition rates F de-

where A = k~/(mz av) oand vo is the overall rate fac-
tor setting a universal inverse time unit of our model.
Do ——voa2 exp( —PV) is the diffusion coefficient for the
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FIG. 1. Diffusion coefBcient, Eq. (13), for T = 400 K plot-
ted as a function of density po. The dotted line is for pure
lattice gas model, the dashed one is the "Quid" contribution to
the difFusion coe%cient, and the solid one is the total difFusion
coefFicient. A = 10 K and J = 200 K.

FIG. 2. DifFusion coefBcient, Eq. (13), for density po ——0.4,
plotted as a function of inverse temperature 1/T. The dotted
line is for pure lattice gas model, the dashed one is the "Quid"
contribution to the difFusion coefBcient, and the solid one is
the total difFusion coeKcient. A = 10 K and J = 200 K.

noninteracting lattice gas. For heavy adsorbates on metal
surfaces, the prefactor vo is typically of the order of 10
sec . Assuming the mass of an adatom to be that of
an oxygen atom and using the square lattice model with
c = 10 cm we, obtain A = 0.00143 K . Varying
the mass and using different values of the prefactor, we
And that A may change between 10-' & A ( 10 ' K
In Fig. 1, we show the density dependence of the diffu-
sion coefBcient D and that of its both constituents, the
hoppinglike and the fIuidlike contribution.

Values of the on-site potential and of the exchange cou-
pling are chosen as in the Monte Carlo simulations of
Gomer et al. and in Ref. 8. At low densities the hop-
ping term dominates, while for larger ones the contribu-
tion, due to the Quidlike behavior, starts to grow and
eventually it dominates. Note that our model is not very
reliable for high densities, because we have neglected the

particle correlations using in Sec. III a simple minded
Chapman-Enskog-like ansatz.

In Fig. 2, we show the inverse temperature dependence
of the difFusion coeKcient and that of its constituents for
a relatively large value of the adsorbate densities. Again,
one sees that at low temperatures the fiuid contribution
starts to dominate the behavior of the diffusion coeffi-
cient.
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