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The theory of sum-frequency generation (SFG) upon re6ection from isotropic media is considered.
The emitted SFG radiation is expressed in terms of four bulk (quadrupole-allowed) and four surface
nonlinear polarizabilities. These parameters are evaluated for the jellium surface.

I. INTRODUCTION

Optical second-order nonlinear phenomena~'2 (three-
wave mixing, uq + uq ——us) are particularly suitable
for studies of boundaries of centrosymmetric media be-
cause of their intrinsic surface (interface) sensitivity. 2

The degenerate (uq ——ur2) three-wave mixing, surface
second-harmonic generation (SHG), has been a focus of
many experimental ' and theoretical studies during
the last three decades. SHG has been shown to be a
powerful tool to study symmetry, electronic and mag-
netic properties, fast surface dynamics, and other char-
acteristics of surfaces and buried interfaces. The SHG
spectroscopy, i.e., measurements of the SHG intensity in
a wide &equency range, is especially effective because
it allows one to probe different electronic resonances of
surfaces and interfaces. Since 1987 the nondegenerate
(~q g w2) three-wave mixing, sum-frequency generation
(SFG) spectroscopy, has also been introduced in surface
science by Shen et al. and Harris et al. One of the
fundamental &equencies is often chosen to be in the mid-
dle in&ared range) which allows one to obtain in-
formation about vibrations of adsorbed molecules, while
keeping the intrinsic surface sensitivity of the three-wave
mixing. SFG has other advantages in comparison with
SHG. For example, the resonant structure of the SHG
response can be caused by resonances at either the fun-
damental or the second-harmonic frequency. The possi-
bility of independent variations of two fundamental fre-
quencies in SFG allows the origin of surface resonances
to be clarified. An interesting application of doubly
resonant infrared-visible SFG (two frequencies coincide
with molecular resonances) has been recently proposed
to study electron-vibration coupling in adsorbates. 24

One of the most dificult problems in applications of
the nonlinear optical techniques for surface-science stud-
ies is the lack of detailed microscopic understanding of
the physical processes that are involved in the nonlin-
ear interactions at boundaries. On metal surfaces, for
example, it took more than 20 years for both theory
and experiment to converge their results for SHG even
for simple metal surfaces. Theoretical results by Weber
and Liebsch, Chizmeshya and. Zaremba, and Liebsch
and Schaich on jellium surfaces have demonstrated im-

portance of the normal component (y„,) of the surface
nonlinearity in SHG. This element has been found. to be
the most surface sensitive among the isotropic surface
terms. Experimental results by Murphy et al. and Janz
et al. on well-characterized. clean Al surfaces were found
to agree with the most accurate theoretical models.
Also, the effect of alkali-metal overlayers and some other
adsorbed species on the SHG response &om simple metal
surfaces has been qualitatively understood ' within
the jellium model. Recently, a similar semiquantitative
agreement was achieved in interpretation of the rota-
tional anisotropy of SHG on Al surfaces. The impor-
tant result of recent developments in theory of SHG on
metal surfaces is that the leading isotropic term, y
and the anisotropic terxr, y, are sensitive to differ-
ent aspects of the surface structure, ' which allows
SHG to be used for a selective characterization of metal
surfaces. In spite of a rather large amount of remain-
ing problems that must be solved, the progress in this
field is obvious. In contrast, the theoretical description
of SFG upon reHection &om the boundary of centrosym-
metric media is still in its infancy. Theoretical results
may help to understand better the experimental data, to
raise important questions, and to optimize future exper-
iments. First of all, it is necessary to develop a general
phenomenological theory of SFG. Using this theory, it
should be possible to conduct measurements with the
aim of finding the actual magnitude of different nonlin-
ear polarizability components for real systems. As the
second step, the microscopic calculations of these nonlin-
ear parameters should be performed in order to find the
relation of these parameters to the surface microscopic
structure.

This paper is an attempt to provide such a system-
atic theoretical investigation of SFG, in the present case
to SFG at isotropic surfaces. The theoretical considera-
tions can be extended later to more sophisticated surface
calculations, which may include the anisotropic surface
properties and other physical effects. The paper consists
of two main parts. A general phenomenological consid-
eration of SFG is presented in Sec. II. The radiated SFG
outgoing field is expressed in terms of the surface and
bulk nonlinear polarizabilities. Based on the most recent
developments of the microscopic theory of SHG, these
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nonlinear parameters are evaluated in Sec. III for the jel-
lium surface. The results are illustrated in Sec. IV on a
practical example, and the conclusions and outlook are
given in Sec. V.

surface nonlinear parameters are introduced and the ra-
diated field at the sum &equency is evaluated.

A. Bulk SFC contribution

II. PHENOMENOLOC ICAL TREATMENT
OF SFG

Figure 1 shows the reHection geometry that is com-
monly used in SFG experiments. Two laser beams of fre-
quencies uq and u2 are incident on the surface at angles
Oi and 02. We assume that the upper medium is linear
with dielectric constant e(w) = 1, so that the nonlinear
interactions take place only in the lower media and the in-
terface region. For compactness, the dielectric constants
in the bulk of the nonlinear medium at the fundamental
frequencies u~, w2, and the sum frequency w3 ——wi + ~2
are denoted as ~q, ~2, and e3, respectively. Both funda-
mental beams and the surface normal are considered to
be in the same plane (plane of incidence). The linear
and nonlinear properties are assumed to be uniform in
the direction parallel to the surface plane, so that the
reHection condition for the outgoing wave at w3 is

(L)3 sin 03 ——wi sin Oi + w2 sin 02 (2.1)

where 03 is the reHection angle shown in Fig. 1. Note the
difference in definition of the sign of incident and reHected
angles. While Oi and 02 are positive on the left-hand side,
03 is positive on the right-hand side.

This section is divided into two parts. In the first the
bulk (quadrupole-allowed) nonlinear polarizabilities are
introduced phenomenologically for the isotropic media.
The outgoing field, which arises from the bulk, is calcu-
lated as a function of linear [the dielectric function e(u)j
and nonlinear parameters. The second part is devoted to
the discussion of the surface contribution to SFG. The

In the uniform bulk, i.e. , deep enough into the non-
linear medium, the eKect of the surface on optical polar-
izabilities can be neglected and the medium considered
as infinite. In most cases, the bulk optical response can
be written in terms of the multipole expansion because
of a slow variation of optical fields within the nonlocal
length. For the nonlinear polarization at the SFG fre-
quency P (ws) this expansion takes the form2

&; (~s) = ~,", (~i ~2)E'(~i)E~(~2)

+X,,„~(~i ~2)E (~i)7AE&(~2)

+X,~I,&(~2, ~i)E~(~2)V'I E~(~i) +, (2.2)

E(r, ~ ) = E e'~-', (2.3)

where n = 1, 2. The components of the (generally com-
plex) amplitudes E and (complex) wave vectors q of
the transmitted waves in Eq. (2.8) are given by the usual
Fresnel expressions (for metals at frequencies not equal
to the bulk plasma frequency)

where y,".k(wi, wz) is the dipole (local) second-order po-

larizability, y, &&(wi, w2) describes the quadrupole (first
order in n.onlocality) contribution, etc. Note the difFer-
ence in dipole and quadrupole terms in Eq. (2.2): In
y,".

& (wi, urz) the field indices and the frequency arguments
can be interchanged, i.e. , y,".&(wi, w2) = y;z (w2, wi). On
the other hand, the same role cannot be applied to the
quadrupole term because of the presence of the gradient
operator. For centrosymmetric media, the first term in
Eq. (2.2) vanishes because of syminetry, but the second
one can contribute to P (ws).

The fundamental field in the nonlinear medium can be
taken as a sum of plane waves

E, ((u ) = I'„((u ) sinO E„'"((u ), (2.4a)

E. (~-) = +~(~-) s- E,'"(~-) (2.4b)

E„((u ) = E, ((u ) E.'"((u ), (2.4c)

q = sin 0
C

(2.4d)

FIC. 1. Sketch of sum frequency generation in re8ection
from an interface between a linear medium at z ) 0 and a
nonlinear centrosymmetric medium at z ( 0. The directions
of the electric field for p-polarized components of two (in-
cident) fundamental and (outgoing) SFG beams are shown.
Dashed arrows display the directions of mirror reQection of
the fundamental beams.

where

gc, z = ~n)
C

2 cos O~

E~ cos 0~ + 8~

(2.4e)

(2.4f)
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)
2cosO~

s + cosO
(2.4g) y..., (~1,u) 2) = D2 + D2 + D2,

&""(~»~1)= 1+ 1+Q

(2 7g)

(2.7h)

s = e —sin O (2.4h)

4~ BE„"((u3) = Pll sin O3
e3 cos 03 + 83

~ 83(ld181 + &282)/&3 6 83+ J 7
a

The wave in the reflected direction, which is radiated
by a given polarization P (w) in the bulk of a semi-
infinite medium, was first calculated by Bloembergen and
Pershan. Following Ref. 1, the reflected wave at the SFG
frequency can be written as3

Thus, taking the fundamental Belds as a sum of plane
waves (2.3), the quadrupole bulk polarization P at ~3
can be written in the vector form as

P~(r, ~, ) = ie'l '+&'l'

& D1q1 E1 E2 +D2q2 E]

+D1 (E2 . q1) E1 + D2 (E1 q2) E2

+DtE~ (q, F|)+Dr E(q~ E~)).
(2.8)

4Vr (ur181 + (u282)/(u3 —83E," P„2.5b
E'3 —6' s3+ cosO3

for p-polarized and s-polarized SFG, respectively. Here

2

q1+ q2

(w1 sin 01 + ~2 sin 82) + (41181 + (d282)
2

CO 3
(2.5c)

iiq1+ q2ii denotes the (complex) length of q1+ q2. The
bulk SFG source (2.2) is decomposed into three parts,

( 3) = ( 3)+ ii( 3)+ ~( 3) (2 6)

. . (Ld1, (d2) = D2,

X...;(~1,~2) = D2,Q

y..., (~1,~2) = D2,Q

X,~;, (~ ~12) = D1~

X,~~;(~2i~1) = D1 ~

X;;~~ (~2~ ~1) = D1 ~

(2.7a)

(2.7b)

(2.7c)

(2.7d)

(2.7e)

(2.7f)

where P„(ur3) is normal to the plane of incidence,

Pii (u3) and P&(u3) are in the plane of incidence with

Pii x (q1+ q2) = 0 and Pz . (q1+ q2) = 0.
In order to complete the phenomenological theory of

SFG, the results of Ref. 1 presented above must be sup-
plemented as follows. The symmetry arguments should
be applied to the bulk quadrupole-allowed nonlinear po-
larizabilities (2.2) and three components of the nonlinear
source (2.6) must be calculated. Here only isotropic me-
dia are considered. The present results can be easily gen-
eralized to cubic crystals [similar to work in SHG (Refs.
31—33)]. For isotropic media the independent nonvanish-

ing elements of y&& are given by pp +pp D1 + D2 ~12 + + &1~] D1 + ~2~2 D2

—(&i+ &~)~i~~q")/v~', (2.9a)

P~ „„——ApplV D2 —D1+ D2 —D1 ~1u)2V

D1&161 + D2Cd2 C2 (2.9b)

for p-polarized waves at both u1 and w2 (p-u1, p-m2) with
B
v,pp

Since (q ET) = 0, the last two terms in Eq. (2.8) do not
contribute to the nonlinear source P(u3) and the nonlin-

ear coeKcients D will not appear below. It should be
noted that for collinear SHG interactions (single funda-
mental plane wave at w) the D polarizabilities also do
not contribute to the nonlinear source (2.8). In SFG,
however, q1 is not parallel to q2 even if O1 ——O2 because
of the re&action index dispersion. Therefore, the D
terms (if they are nonzero) are able to contribute to the
nonlinear polarization P (~3).

We note that a noncollinear excitation SHG geometry
can be used (two fundamental waves of the same fre-
quency, but at two different incident angles 01 and 02).
In such a case there would be two reflected SHG waves at
O1 and O2 and one wave at O3 in between O1 and O2 due
to the cross interaction with both fundamental waves.
Measuring the SHG intensity at O3 can open additional
possibilities (in comparison with those in usual collinear
SHG experiments) because of the possibility to indepen-
dently change two fundamental field polarizations, etc.
On the other hand, it seems to the present author that
the theoretical support for such experiments is still miss-
ing. The present results can also be used directly for
noncollinear SHG experiments.

After some manipulation with (2.8) and (2.4), the am-
plitudes of the components (2.6) of the nonlinear polar-
ization can be written as

for all i and j except i = j. Nonlinear parameters D
D, and D are introduced for compactness. The diag-
onal elements are

D1+ D2

+D1QJ1E]- + D2M2@2 6 ) (2.9c)
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P~ „=A..(D2 —Di)cui(u2W/~or

for 8 M] f s-w2 wit, h Py „=0, and, final ly,

(2.9d)

Py p, = Ap, ~3~2' D2 (2.9e)

+~(~i) +~(~2) &I"(~i) &,'"(~2), (2.10a)

for p-(ui, s-cu2 with PP, = P~ „,= 0. In Eqs. (2.9) the
following notations are introduced:

feature at the boundary. In contrast, there is a strong
normal electric field E, i = 47—r(P, + P, ) at the bound-
ary. One can show that apart from this field, the fields
E(w3) —zE (w3) and B(w3) are of order (d /AQ)E, .

The screening effects are then very important for ra-
diation of light by the normal surface polarization
P, + P, while their role is very much weaker for tan-
gential components.

In this way one can find the proper solution of
Eqs. (2.11) with the nonlinear source strongly localized
at the interface. For the amplitude of the radiated p- and
s-polarized field E3" in the free half-space one has

V = sys2 + sin Oy sin 02 (2.10b)

W = s~ sin 02 —s2 sin Oi, (2.10c)
Eeut

3p
4vricu3 'P e3sin03 —g s3

c ~3 cos03+ s3
(2.12a)

where P and p in (2.10a) deiiote corresponding polar-
ization. The expression for s-wi, p-w2 can easily be
found from (2.9e) after changing the sign of W and re-
placing D2 by Di. We also note that in collinear SHG

=o.J,pp J,ss yps
Equations (2.9) and (2.5) provide the relation be-

tween the radiated field at u3 ——wi + w~ and the bulk
quadrupole parameters Di, D2, Di, and D2 for any com-
bination of fundamental and SFG polarization, angles of
incidence, etc.

B. Surface SFG contribution

Near the surface, the inversion symmetry is broken and
the first term in Eq. (2.2) can contribute to the nonlin-
ear polarization at u3. Moreover, the fundamental fields
vary very rapidly, so that the multipole expansion in the
form of Eq. (2.2) cannot be used because the multipole
terms are no longer small. The nonlinear interactions at
the surface are therefore very much stronger than those
in the bulk. On the other hand, the strong surface non-
linear polarization P~(~3) is essential only within a thin
layer of thickness d that obeys the inequality d && Ao.
Here As is the shortest of the wavelengths (or penetra-
tion depths) of the fundamental and SFG waves in the
nonlinear medium. The SFG field, which is radiated byP, can then be found approximately to Grst order in
the small parameter (d /Ao). To calculate the SFG field
radiated by the surface polarization, one has to solve the
Maxwell equations for the electric and magnetic field at
&3 =My+&2,

47[ ZM3 Py
s3+ cos03' (2.12b)

respectively, where 'p = Jl[P (cu3) + P+(w3)j dz is the
screened surface SFG polarization, integrated over the
surface region I.

It is useful to introduce an eBective surface nonlinear
polarizability y,--& which relates the integrated surface

polarization P to the fundamental fields at the bound-
ary. Since the normal components of the fundamental
fields change significantly at the surface due to screening
effects, one should take the "surface" fundamental fields
just above or below the surface screening region to ob-
tain an unambiguous definition of y, k. Following the
tradition used in studies of SHG, we take here the fun-
damental fields inside the nonlinear medium, which are
given by Eqs. (2.4a) —(2.4c). Thus, the definition of y~.

&

is

&*(~3) = ~,',~(~i ~2) &i,,&2,~ (2.13)

where the field components are given by (2.4) and all
screening eKects are incorporated into y,. .&. For the
isotropic surface the symmetry-allowed elements of y,
are

V' x K((u3) = B(~3),c (2.11b)

V' x B(~3) = — E(~3) + 4~P (~3) + 4vrP (A&3)
C

(2.1la)

S
XZZZ7

S S
~xxz +yyz ~

S S
~xzx +yzy &

(2.14a)

(2.14b)

(2.14c)

where P (u3) is the linear induced polarization at w3,
and Ps(ws) behaves as a 8 function at the boundary.

An important point for the solution of Eqs. (2.11) is
that the magnetic field B(w3) is finite, i.e. , has no b-like

S
+ZAN ~zyy (2.14d)

After some straightforward algebra the surface contribu-
tion becomes
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4nuus F„((ui)F„(urs)F„((us)E'"j~1 E'" ~2

~ 9 8c3 sin 6 & s1n l92 sin 83 + g 638'182 sin 03 —g 81 sin 6283 —g s1n 018283 (2.15a)

4~i(us F,((ui)F„(~2)F„(~s)
E~ ldi E~ 4)2 gg~~ es Siii 03,

C 2cos 83
(2.15b)

4vn~s F„((ui)F,((u2)F, (u)s)
8& 4Ji E laPp g slii Oi,

C 2 CQS V3
(2.15c)

and gout gout gout gout O where the 6PPB PBP - BPP BBB

script in E&"& stands for polarization of the fundamental
wave at u~, the second at cu2, and the third for polariza-
tion of the reflected SFG wave at (d3. The Fresnel factors
Ep{~ ) are given by (2.4f) and (2.4g). F,„"» can be found
Rom Eq. (2.15c) after cyclic permutation of indices 1 and
2, and replacement of y~ by y~

The reflected outgoing field at the sum frequency
(L 3 —Mi + 4/2 is then given by the sum of the bulk (2.5)
and surface (2.15) contributions. For isotropic surfaces
the SFG intensity is determined in general by four bulk
(quadrupole-allowed) nonlinear susceptibilities and four
surface second-order paraIneters. In contrast, in collinear
SHG experiments the nonlinear isotropic response de-
pends on only one bulk and three surface terms. '

XXX. SFC ON THE JELLXUM SURFACE

usual way, the second-order correction vs(r) to v(r, t)
at ~3 —ug + ~2 can be found,

v'3 r E~+ EI.Q F2
(d y(d24P3

1 1
[Ei x B2] — [E2 x Bi]

Ct)1(d3C (d2413C

&[Ei(r) E2(r)l.
(dy&g4)3

{3.3)

The nonlinear current at ~3 is given by

J(lds) = —(r»ovs + Aivz + Aevi), (3 4)

where no is the electron density without the fields (3.2),
v and n = (I/iu )div(nov ) are, respectively, the ve-

locity and density of electrons, linearly induced at ~
(a = 1, 2). One obtains for the nonlinear SFG polariza-
tion

In this section the bulk and surface nonlinear pa-
rameters, which are phenomenologically iI1troduced in
the preceding section, are evaluated for the jellium sur-
face. These results can be used presumably for semi-
quantitative estimations of isotropic SFG for simple met-
als like Al (Refs 25 and. 26) and may also be relevant
as an order-of-magnitude estimate for nonresonant SFG
in reflection Rom metals with a much more complex
structure. ' ' '22 In the latter case numerical values
of the nonlinear parameters can difI'er significantly, how-
ever, and should therefore be measured experimentally.

We start with the hydrodynamic equation of motion of
the classical &ee-electron gas

P(~s) = 1 Ap
3(~s) = &(Ei E2)

Cal y(d2(d3

1+
1

E,div(no E2)

E2div(noEi). (3.5)

In the bulk (no ——n = const) the last two terins do not
contribute to P+(ws) since divE = 0 at frequencies far
from the plasma frequency. Comparing Eq. (3.5) with
(2.2) and (2.7), the bulk quadrupole phenomenological
parameters for jellium are

Ov' 1+ (v V)v = —E(r, t) ——v x B(r, t),t C
(3 1) D, =D, =o, (3.6a)

where m is the electron gas velocity at the point r and the
time t. We use atomic units (5 = 1, the electron mass
and charge are equal to 1 and —1, respectively) unless
otherwise noted. Since the fundamental fields

n
D i =

2 it (cd 2 ~ (d i ) &

Cd y M2M3
(3.6b)

E(r, t) = E,(r) e ' "+E2(r) e ' "+c.c.,
B(r, t) = Bi(r) e ' ' + B2(r) e ' ' + c.c.,

(3.2a)

(3.2b)
with

D2 =
2 d((di, (d2)~

4)1(024)3
(3.6c)

are small in respect to the atomic field, Kq. (3.1) can
be solved using a perturbation approach. Following the d(ldi, 412) = d(ld2 ldi) = 1. (3.6d)
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X~~~(~i~~2) = 0~ (3 7)

i.e. , the same as the jellium result for SHG. ' For the
tangential SFG surface polarization one has

The dimensionless parameters (3.6d), which are trivial in
the present simple model, are introduced here since they
can difFer &om 1 in. more sophisticated theories [due to
lattice effects, for example, as it has been found earlier
for the SHG parameter d(ur)].

At the boundary both no and the normal components
of the fundamental fields change dramatically, and it is
necessary to describe correctly the surface profile along z.
Moreover, as mentioned in Sec. II B, the screening effects
for the normal polarization P, (us) should be taken into
account. Therefore, calculation of y, requires more de-
tailed study. Other elements [(2.14b)—(2.14d)] of the sur-
face SFG polarizability, however, can be found directly
&om Eq. (3.5). Since the tangential components of the
fundamental fields E~~(~ ) are not screened at the jel-

lium surface, 7 (ups) is small when only E~~ (cu ) is present.
Thus,

6(M i, Cd 2 ) = b ((rf2, (d i ) = —1 . (3.9c)

.
, (3.10a)

where

The physical origin of y and y, can be seen
in Eq. (3.4). The integrated screening surface charges
0 = I dz n (z) are mainly determined by the bulk di-
electric constants e . These surface charges are moved in
the tangential direction by the unscreened fundamental
fields E~~ (u ), where (n, n') = (1,2) or (2, 1), so that the
contribution given by (3.9) is not sensitive to details of
the surface structure.

As mentioned above, the calculation of y„requires
more detailed study. We use here the earlier results for
the second-order response of the jellium surface to a static
electric field applied along z. Using the local-density ap-
proximation (LDA), Weber and Liebsch, for example,
have calculated the density profiles n(z) at neutral no(z)
and slightly charged n(z, cr) jellium surfaces. At small
surface charges o., the profile n(z) can be written as a
function of the surface charge in the form

P~~( ) =

+ 2
Cd& )(d2413

0Ei
ii
—(noE2 )(d1(d2(d3 BZ

I 0
E2, ii~, ( &,.} (3.8)

20
(3.10b)

nf (z) = n(z, o) + n(z, —0) —2n(z, 0) (3.10c)

which can be easily integrated over the surface screening
region, since E~~(u ) is not screened at the boundary.
Thus,

describe the linear and second order induced changes in
the electronic density. One can assume that the surface
charge 0., which is induced by an external normal electric
field, depends on time as

X (~»~2) =
2 t)(~i ~2), (3.9a) o(t) = a.,e ' "+ cr2e * "+c.c. , (3.11)

X (~i ~ ~2) =
2 f)(~2 i ~i) ~

(d1QJ2Gd3

where for jellium

(3.9b)
where the &equencies ~ are low enough so that the elec-
tron density profile responds on o.(t) adiabatically ac-
cording to Eq. (3.10a). Keeping terms up to the second
order in o (t), we write the time-dependent profile as

n(z t) = ne(z) +2(c ze', +nzez)n(')(z) + (nzn(')(z)e ' "+ezn(')(z)e

+ ' ~')( )
'*-"+ ' ')( ) -"-"y2nnn(')(z)e *(-+-)'+ee e'n(')(z)e *(- -)'+cc)

=ne, (z)+{ ( )e n' ' z+n, (z)e * ' ynz, (z)e * ' + (zn)ze
(3.12)

Thus, Eq. (3.12) establishes the tiine-independent pro-
file np„ the low-frequency linear-induced response n of
the jellium surface, and the low-&equency nonlinear SHG
n2, SFG n, +, = n, , and differential-&equency re-
sponses n, , Note that the factors 2 in n, +, and
n, , are absent in n2 . The normal component of

+oo
P (~)s) = — dz z n (z), (3.13)

the integrated nonlinear polarization is determined by
the first moment of n
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where up ——2u for SHG and ~p ——u3 for SFG. Weber
and Liebschs have also calculated the adiabatic (w m 0)
value of the dimensionless SHG parameter a(u), which is
introduced via

where ev = e(uv), EiR = e((diR). Therefore, using (3.15),
the SFG dimensionless parameter a(urv, wiR) at low uiR
is related to d~(u, harp) via

'P, (2~ ) = cr',
4n

(3.14)

~ dz (~v, Op)a(~v, (uiR -+ 0) = 2n—
190p

(3.18)

where n is the bulk electron density. The adiabatic value
of a(u) was subsequently calculated by Kiejnas within
the model of a stabilized-jellium surface. Using (3.12),
(3.14), and the relation between the screening charge
cr = (e —l)E+, /47r and the screened field E+, in the
interior of the jellium, one has for SFG

G (dy, (d2
P~((us) = ' 2o.i0.24n

(1 —el)(l —e2) T z'= a((ui, A&2) E, ,E2,
2 4' 2n

n T T= a( i,~2), E, ,E2, ,
2~a~2

(3.i5)

+OG

di((u) = dzzn (z)/o. (3.16)

where the Drude form of the jellium dielectric function
is used in the last step, and at uq -+ 0, u2 —+ 0 the di-
mensionless SFG parameter a(ui, u2) coincides with the
adiabatic value of the SHG parameter a(u). The study
of the frequency dependence of the SHG a(w) parame-
ter by I.iebsch and Schaich within the time-dependent
local-density approach showed that the values of a(ur) are
close to their adiabatic limits at 2u 2 eV. a(u) changes
at higher &equencies and exhibits a feature for 2u near
the threshold for electron emission and a second one for
2u near 0.8u„, where u„= +4zn is the bulk plasma
&equency. One can therefore expect that the adiabatic
values of the SFG a(~i, u2) parameter can also be used
at ~3 2eV

One can make contact of a(ui, u2) with the position of
the image plane d&(u) on slightly charged jellium sur-
faces. d~(u) corresponds to the position of the center of
mass of the surface screening charge o. = f n (z) dz,
induced by the normal component of the optical field,

Note that in Eq. (3.18) op is the number density and,
therefore, the surface is charged negatively for o & 0.
Unfortunately, Gies and Gerhardts have calculated
d~(u, harp) only for too strongly charged jellium surfaces
and it is therefore impossible to evaluate the derivative
Dd~(tu, op)/Bop with sufficient accuracy from the results
published in Ref. 40.

The magnitude of the normal component of the surface
SFG polarizability (2.14a) is then determined by

S ny„,((ui, (u2) = a((ui, ur2)
2&i (d2

(3.i9)

where a(ui, w2) coincides with the adiabatic value of a(u)
when ui ~ 0, w2 ~ 0, or can be found from (3.18) when
only one of the &equencies is low. We note that the
estimate (3.19) of g„,(uzi, u2) for SFG at the degeneracy
limit (ui ~ u, u2 -+ u) is twice as large as the SHG value

y„,(u) = a(ur)n/(4~ ), which determines the normal
component of the screened SHG polarization, excited by
the normal component of the fundamental field, '

'P, (2~) = g„((u) E, (~)E, (~) . (3.20)

'P (2~) = g, ((u)ETE, + ys, (ur)ETE~
= 2y, (~)E E,
= b(ur) E E,

24)
(3.2i)

Furthermore, one can compare the SFG terms (3.9) with
the corresponding SHG values. To do this, one must
introduce the SHG y, (u) and ys, (~) elements in
the same way as for the SFG values. Since the defini-
tion of the surface nonlinear polarizability in the form of
Eq. (2.13) implies the summation over all indices j and 0,
the x component of the surface current for SHG is given
by

n2
2 2
V IR

Gies and Gerhardts, for example, have calculated the
image plane position d~(w) as a function of the static
surface charge o.p. In the in&ared-visible SFG studies,
the in&ared &equency u~R is usually much lower than
any resonant &equencies of the jellium surface, and the
eKect of the fundamental field at ~yR can be treated ap-
proximately as the adiabatic charging of the jellium sur-
face. Using (3.13) and (3.16), one can then find the
normal surface polarization 'P at the SFG &equency
usF ——uv + ujR for low upR and any &equency uv of
the visible fundamental component

Pz (~sF) ~ d~(~v, Op) (1 —~v) (1 —~iR)
ET(~v) ET (~iR) Bop (4~) 2

~ dz (~v, Op) (3.17)
OCJp

where we have made use of the fact that y;.&(ur)

y;i, (u) for SHG. The jellium values for b(ur) is —1, i.e. ,

the same as for b(ui, ~2). Thus, y, (u) = y, (tu) =
b(u)n/(4u ) elements for SHG, introduced in the same
way as for SFG, a factor of 2 smaller than the corre-
sponding SFG terms (3.9) in the degeneracy limit.

To clarify the problem of "discontinuity" we note that,
in the limit SFGmSHG, the fundamental field at u is
E(ur) = Ei(ui m (u) + E2((u2 m (u) or, if Ei ——E2, is
twice as large as the field that is used in expressions for
SFG. Since the SHG response is proportional to the sec-
ond power of the fundamental. field amplitude, the non-
linear polarization at 2u, given by (3.20) and (3.21), is
larger by a factor of 22/2 = 2 than the SHG limit of the
corresponding SFG polarization (3.9) and (3.19). The
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reason for this factor is that the SFG term does not in-
clude the second-harmonic polarization, excited by the
Ei(t'ai) and E2(u2) fields. If one adds the 2ui and 2u2
contributions, the physically meaningful quantities are,
of course, continuous in the degeneracy limit. This point
can be seen clearly in Eq. (3.12). From this consideration,
it is clear that the SHG and SFG polarizabilities estab-
lish relations between different physical quantities. For
SFG the y (ui, u2) tensor is the coefficient between the
product of two different components E(ui) and E(~2) of
the fundamental field, and the sum-&equency polariza-
tion, which describes only a part of the nonlinear source
in the degeneracy limit. In contrast, the SHG y (u) ten-
sor establishes the relation between the product of two
identical fundamental fields E(u) and the uthole nonlinear
SHG source.

This problem of "discontinuity" can be formally solved
by redefining the surface nonlinear terms. Eq. (2.13) may
be replaced by

Ig(~s) 2vr Eg"'((us)

Ip(~i)I~(~2) c Ep"(~,)E~"(~2)

where P, p, and 8 denote corresponding polarization. In
Eq. (3.23) we have used the fact that the real fields are
introduced here as shown in Eq. (3.2). Using the results
of the general phenomenological treatment of SFG, pre-
sented in Sec. II, one has

7Zppp = A„pp as sinOi sinOq sinOs a(ui ~2)

2s3
(nisi sin 02 + (u2s2 sin Oi) b(~i, ~2)

2' yCd 2 V sin Os d((ui, (u2)
Cd3

(3.24a)

2Cd y Cd2
sin Os d(cui, (u2) (3.24b)

&pss = +ss
2Cd 2 sin Oi b(~i, ~2) (3.24c)

(3.22)

where two terms on the right-hand side are equivalent
since g, & (~i, ur2) = y, &

. (u2, ui), and the summation
over the indices j and k is implied [see also the defi-
nition of the bulk quadrupole second-order polarizability
(2.2), which is "continuous" in the SHG limit]. Thus,
the SFG surface nonlinearity g (uzi, u2) introduced via
Eq. (3.22) is half as large [with respect to that intro-
duced via Eq. (2.13)] and coincides with the SHG value
in the degeneracy limit. In the present work, however,
the ("discontinuous" ) definition in the form of Eq. (2.13)
is used for the surface terms.

Using the estiinates of the quadrupole bulk (3.6) and
dipole surface (3.7), (3.9), and (3.19) nonlinear terms,
one can calculate the normalized SFG intensity

where

(2vr) sess)s2

m4c&

Fp (~i)F~ ((u2) Fp (~s)
X 2 22 cos 03 Cd& Cd2

(3.24d)

Fp(u ) and V are given by (2.4f), (2.4g), and (2.10b).
In Eqs. (3.24) we have made use of the fact that for jel-
lium b(uri, u2) = b(u2, uzi) and d(ui, u2) = d(~2, ui). We
have converted Eq. (3.24d) into conventional units for
convenience. All other coefficients in (3.24a) —(3.24c) are
dimensionless and, therefore, Rp~g can be found &om
(3.24) either in esu or atomic units.

IV. PRACTICAL EXAMPLE

In order to discuss the present results in more detail,
we consider a particular example with ~q = cd~ ——2
eV (Av = 620 nm) and u2 = ~iR = 0.2 eV (viR
1600 cm i), which are close to typical experiinental
parameters. 2 The subscript "1"is replaced in the fol-

lowing by "V," "2" by "IR," and "3" by "SF." For jel-
lium with p, = 3 a.u. [n = 3/(4vrrs)], one has ev = —20,
eiR = —2000, and esF = —16. Figure 2(a) shows the
dependence of QRp~g on the angle of' incidence 0 for
collinear excitation of SFG (Ov = OiR = OsF = 0). For
a(wv, uriR) the adiabatic value of —11.3 of Kiejnas~ is
used (this value is also quite close to a(~ + 0) = —12.9 as
calculated by Weber and Liebsch ). According to (3.6d)
and (3.9c), d(~v. , miR) = 1 and b(~v, uiR) = —1. As
can be seen in Fig. 2(a), the intensity of ppp SFG is the
largest one at almost all 0. SFG with ssp, pss, and sps
polarization combinations has practically the same in-
tensity when 0~ ——0IR. In order to see the effect of a
noncollinear SFG excitation (Ov g OiR), the dependen-
cies of the normalized SFG intensity against 0V ——0 for
fixed 0yR ——60 and against 0yR

——0 for fixed 0~ ——60
are shown in Figs. 2(b) and 2(c), respectively. Since one
of the angles of incidence is now fixed, the dependencies
are no longer symmetric about 0 = 0, and the ssp, pss,
and spa SFG intensities difFer when Ov g OiR.

In order to analyze ppp SFG in greater detail, we show
in Fig. 3 the corresponding angular dependencies of three
difFerent terms in Eq. (3.24a). When Ov = OiR = 0
[Fig. 3(a)], the angular dependencies of difFerent terms
are similar to the angular dependencies of the corre-
sponding terms in SHG upon re8ection from the jellium
surface. i As in SHG, the bulk contribution (the d term)
and the tangential surface contribution (the b term) have
practically the same angular dependencies, whereas the
normal surface contribution (the a term) has a sharper
maximum at large 0 and decreases more rapidly towards
smaller angles. In order to understand this similarity,
it should be noted that all three &equencies (uv, uiR,
ursF) that are used in this example are significantly lower
than the plasma frequency cd„= 9.1 eV for the jellium
with p, = 3. In such a case ~e~~ = ~1 —(up/u~)

~
)) 1.

Thus, taking s ~e —i&up/w, Eq. (3.24a) can be
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approximated as

]4esF ]
sin 8v sin 8IR sin 8sF n(~v, ~IR)2 1

ppp pp

sine~ +

sinopia

6((dv, Q)yR j2

sin OSF+ d(~V ~IR)
2

(4.1)

2
For 0~ —— OyR ——0 the expression in - has ex-
actly the same structure as the corresponding jellium
expression for SHG at 2u « up. This result is essen-
tial, because diferent components of the Presnel fields
(2.4a), (2.4b), and (2.4c) for visible and IR light dif-
fer significantly since ]eiR] )) ~ev~ )) 1. Inside the jel-

lium, for example, the tangential component E (u ) ofT

the fundamental field is of order 2E„'"(ur )/ge(~ ) oc

whereas the normal component is much smaller
E, (~ ) 2E'"((u ) sin8 /e(u ) oc u . This significant
difFerence in the Fresnel 6elds is, however, compensated
by the frequency dependence of the nonlinear polarizabil-
ities (3.6), (3.9), and (3.19).

Equation (4.1) can also help to understand the fea-
tures of the angular dependencies shown in Figs. 3(b)
and 3(c). In particular, the 6 contribution disappears in
the counterpropagation geometry (Ov = —8IR). The d
contribution depends mainly on the direction of the SFG
reflected beam, i.e. , 86F. Since ~IR && urv, 86F [Eq. (2.1)]
and hence the bulk contribution [Fig. 3(c)] depends only
slightly on OyR. It is important that @pe SFG is the result
of interference between the terms shown in (3.24a) and
(4.1). In particular, due to this interference, R,„„„van-
ishes at certain angles (Fig. 2) at which the radiated field
E " changes its sign. An important question is also the

p
frequency dependence of 'Rp~p. Within the same approx-

By-—BiR=8

Oy=B

cv

O
I

CD

CV

C)

I

CD

(b) By=S

B&-—8 8 =60

CL
Q.
CL

Q

(c) Op=8, ay= 60

0 '
-50 50

o- (deg)

FIG. 2. The normalized SFG amplitudes QRp~s versus
angles of incidence 8v and 8iR. (a) Both angles 8v = 8IR
are changed, (b) 8v = 8 is changed, 8iR = 60, (c)
OyR ——8 is changed, 8~ ——60 . The polarization combina-
tion P78 = ppp (solid lines), ssp (dashed), pss (dotted), and
sps (dotted-dashed). The scale for ssp, pss, and sps polar-
ization is changed by a factor of 5. u~ ——2 eV, ~yR ——0.2 eV,
rs = 3 a.u.

-50 50

8 (deg)

FIG. 3. The angular dependencies of amplitudes of differ-
ent contributions to +7Z„„„in Eq. (3.24a). Panels (a), (b),
and (c) correspond to those in Fig. 2. Solid lines show the
a-term contribution; dashed, b; dotted-dashed, d. The dotted
lines present the sum of the b and d contributions.
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imation that is used in (4.1) and for not very large angles
0 [so that g~e ~

cos0 &) 1 in Eqs. (2.4f) and (2.4g)],
one has for jellium 'Rp~a(~V, ~1R) oc (~V + ~1R) = uSF.

V. CONCLUSION AND OUTLOOK

A general phenomenological theory of SFG upon re-
Hection &om surfaces of isotropic media has been devel-
oped, and the relation of the emitted SFG radiation with
four bulk and four surface nonlinear polarizabilities has
been established. Using the latest developments of the
microscopic theory of SHG, these nonlinear parameters
are estimated for the jellium surface. The angular depen-
dencies of the SFG intensity are calculated and discussed
for a particular example.

It is necessary to point out that several effects that
can be of importance for SFG on metal surfaces have not
been considered. In particular, a more precise evaluation
of y„(uq, ur2) for the jellium surface may be necessary
if the fundamental &equencies cannot be considered to
be small. Even more serious problems may arise &om
the fact that the nonlinear parameters of real metals can
differ significantly &om the corresponding jellium values.
For example, it has been found that the adiabatic value
of a(~ ~ 0) for silver surfaces is a factor of 2 (Ref. 43) or
3 (Ref. 44) smaller than the corresponding jellium result.

also depends on the surface orientation, as it was
found in SHG for Al single crystals. ' In addition, lat-
tice effects result in new anisotropic nonlinear surface
and bulk contributions, which have angular dependen-
cies, different &om those presented in Figs. 2 and 3.

It should be noted that the metal surface is typically
covered by an overlayer of adsorbed molecules in SFG
experiments. The presence of such an overlayer greatly
afFects the second-order nonlinear SFG &om metal sub-
strates. The effective repulsion between the molecular
and metal electrons pushes the latter electrons into the
metal, and the electronic density profile is usually steeper
and less polarizable. One can therefore expect that, if
u~, ujR, and ~SF do not coincide with electronic and
vibration resonances of adsorbed molecules, the value of
a(wv, w1R) is decreased due to molecular adsorption on

the metal surface.
On the other hand, the direct contribution to SFG

of adsorbed molecules may also be important, especially
when one or both fundamental &equencies coincide with
molecular resonances. The study of such a contribution
requires a more detailed consideration, which is beyond
the scope of the present work. However, one can formu-
late a simple approximate selection rule for the resonant
molecular contribution, which is especially strong at IR
frequencies because e(w) of metals diverges at low fre-
quencies. Since the Fresnel field outside the metal sub-
strate with high refractive index (where the adsorbed
molecules are located) is mainly oriented in the normal
direction (E~ ~ g~e~~ E~~ ~), the molecular contribu-
tion to the y element can be expected to be the largest.
Further study of this contribution is necessary. In par-
ticular, the local-Geld effects can be of importance.
A special treatment would be needed in the case when
the metal electrons are directly involved in adsorbate
vibrations. We are currently studying some of these
effects on SFG.

It is necessary to point out that in many SFG experi-
ments performed to date, the main focus was on the vi-
bration resonant contribution &om adsorbed molecules.
On the other hand, as is clear &om the previous results
for SHG and the present results for SFG, the nonresonant
SFG response from metal surfaces (e.g. , the y„, term)
depends very sensitively on the surface electronic struc-
ture. In this sense, the nonresonant part of the SFG re-
sponse possesses similar information to SHG, and a more
detailed analysis of both vibration resonant and nonres-
onant SFG parts may provide more information about
the surface under study. An exciting example of such a
complex use of the SFG technique was given recently by
Yeganeh et al.

ACKNOWLEDGMENTS

It is a great pleasure to acknowledge many useful dis-
cussions with Ansgar Liebsch and Win&ied Daum. I
would like to thank Robert Jones for a critical reading of
the manuscript.

' Permanent address: Institute of Crystallography, Russian
Academy of Science, 117333 Moscow, Russia.

t FAX: +49-2461-612850. Electronic address:
a.petukhov Qkfa-j uelich. de
N. Bloembergen and P.S. Pershan, Phys. Rev. 128, 606
(1962).
Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New
York, 1984).
For reviews, see, for example, Y.R. Shen, Nature 337, 519
(1989); Surf. Sci. 299/300, 551 (1994); S. Janz and H.M.
van Driel, Int. J. Nonlinear Opt. Phys. 2, 1 (1993).
N. Bloembergen, R.K. Chang, S.S. Jha, and C.H. Lee,
Phys. Rev. 174, 813 (1968).
J. Rudnick and E.A. Stern, Phys. Rev. B 4, 4274 (1971).

J.E. Sipe, V.C.Y. So, M. Fukui, and G.I. Stegemann, Phys.
Rev. B 21, 4389 (1980).
O. Keller, Phys. Rev. B 33, 990 (1986).
P. Guyot-Sionnest, W. Chen, and Y.R. Shen, Phys. Rev.
B 33, 8254 (1986); P. Guyot-Sionnest and Y.R. Shen, ibid
35, 4420 (1987); 38, 7985 (1988).
M. Weber and A. Liebsch, Phys. Rev. B 35, 7411 (1987).
A. Chizmeshya and E. Zaremba, Phys. Rev. B 37, 2805
(1988).
A. Liebsch and W.L. Schaich, Phys. Rev. B 40, 5401
(1989).
For recent developments of the SHG theory on semiconduc-
tor surfaces, see E. Ghahramani, D.J. Moss, and J.E. Sipe,
Phys. Rev. Lett. 64, 2815 (1990); Phys. Rev. B 43, 9700



52 SUM-FREQUENCY GENERATION ON ISOTROPIC SURFACES: 16 911

(1991); M. Cini, ibid. 43, 4792 (1991); C.H. Patterson,
D. Weaire, and J.F. McGilp, J. Phys. Condens. Matter.
4, 4017 (1992); V.I. Gavrilenko and F. Rebentrost, Appl.
Phys. A 60, 143 (1995).
X.D. Zhu, H. Suhr, and Y.R. Shen, Phys. Rev. B 35,
3047 (1987); P. Guyot-Sionnest, J.H. Hunt, and Y.R. Shen,
Phys. Rev. Lett. 59, 1597 (1987).
A.L. Harris, C.E.D. Chidsey, N.J. Levinos, and D.N. Loia-
cono, Chem. Phys. Lett. 141, 350 (1987).
A.L. Harris, L. Rothberg, L.H. Dubois, N.J. Levinos, and
L. Dhar, Phys. Rev. Lett. 64, 2086 (1990).
P. Guyot-Sionnest, P. Dumas, Y.J. Chabal, and G.S. Hi-
gashi, Phys. Rev. Lett. 64, 2156 (1990).
Q. Du, R. Superfine, E. Freysz, and Y.R. Shen, Phys. Rev.
Lett. 70, 2313 (1993).
A. Peremans and A. Tadjeddine, Chem. Phys. Lett. 220,
481 (1994).
A. Peremans and A. Tadjeddine, Phys. Rev. Lett. 73, 3010
(1994).
M.S. Yeganeh, S.M. Dougal, R.S. Polizzotti, and P. Rabi-
nowitz, Phys. Rev. Lett. 74, 1811 (1995).
P. Cremer, C. Stanners, J.W. Niemantsverdriet, Y.R. Shen,
and G. Somorjai, Surf. Sci. 328, 111 (1995).
K.A. Friedrich, W. Daum, C. Klunker, D. Knabben, U.
Stimming, and H. Ibach, Surf. Sci. 335, 315 (1995).
T.F. Heinz, F.J. Himpsel, E. Palange, and E. Burstein,
Phys. Rev. Lett. 63, 644 (1989); W. Daum, H.-J. Krause,
U. Reichel, and H. Ibach, ibid. 71, 1234 (1993).
J.Y. Huang and Y.R. Shen, Phys. Rev. A 49, 3973 (1994);
J.C. Vallet, A.J. Boeglin, J.P. Lavoine, and A.A. Villaeys,
Chem Phys. Lett. 241, 203 (1995).
R. Murphy, M. Yeganeh, K.J. Song, and E.W. Plummer,
Phys. Rev. Lett. 63, 318 (1989).
S. Janz, K. Pedersen, and H.M. van Driel, Phys. Rev. B
44, 3943 (1991).
A. Liebsch, Phys. Rev. B 40, 3421 (1989); H. Ishida and
A. Liebsch, ibid. 42, 5505 (1990).
M. Kuchler and F. Rebentrost, Phys. Rev. Lett. 71) 2662
(1993).
A.V. Petukhov and A. Liebsch, Surf. Sci. 320, L51 (1994);
334, 195 (1995); H. Ishida, A.V. Petukhov, and A. Liebsch,
ibid. 340, 1 (1995).
See also Chap. 6.4 in Ref. 2.
O.A. Aktsipetrov, I.M. Baranova, and Yu.A. Ilinskii, Zh.
Eksp. Teor. Fiz. 91, 287 (1986) [Sov. Phys. JETP 64, 167
(1986)].
J.E. Sipe, D.J. Moss, and H.M. van Driel, Phys. Rev. B

35, 1129 (1987).
A.N. Anisimov, N. A. Perekopaiko, and A.V. Petukhov,
Kvant. Elektron. 18, 91 (1991) [Sov. J. Quantum. Elec-
tron. 21, 82 (1991)];G. Liipke, D.J. Bottomley, and H.M.
van Driel, J. Opt. Soc. Am. B ll, 33 (1994).
In some special cases one can distinguish between the
field-nonuniformity-induced and medium-nonuniformity-
induced contributions to the surface second-order polariza-
tion (Ref. 8). One can also extract a surface-properties-
independent contribution to the total surface nonlinear
source (Ref. 8). For many systems, however, these distinc-
tions are conditional and are not used in the present work.
J.E. Sipe, Surf. Sci. 84, 75 (1979).
A.V. Petukhov, Phys. Rev. B 42, 9387 (1990); A.V.
Petukhov and A. Liebsch, Surf. Sci. 294, 381 (1993).
A. Kiejna, Surf. Sci. 331-333, 1167 (1995).
Using Eq. (3.18) and unpublished data by A. Liebsch, it has
been estimated that for jellium with r, = 3, a(uv, uiR ~ 0)
does not change much at u~ ——2 eV with respect to the
adiabatic value.
P.J. Feibelman, Prog. Surf. Sci. 12, 287 (1982).
P. Gies and R.R. Gerhardts, Europhys. Lett. 1, 513 (1986).
It should be noted that many authors introduce the

, (u) = 2y, (u) = b(cu)n/(2u ) element for SHG
and forbid the permutation of the Cartesian indices in
Eq. (3.21). The present formal definition of y (u) cor-
responds to the element Bqs of Ref. 32.
In Eq. (3.24d) one can use values n and u in atomic units
together with c = 137 a.u. and I, = e = h = 1. For 'Rp~g
1 a.u. = 5 /(m e ) = 1.56 x 10 cm s/erg = 1.56 x
10 cm /W.
M. Weinert (private communication).
G.C. Aers and J.E. Inglesfield, Surf. Sci. 21'7, 367 (1989).
In experimental SHG studies on Al surfaces, for example, it
was found that the value of a(u) reduces from [a(u)~ 30
on clean Al (Ref. 25) down to [a(cu)] 1.5 on Al/glass
[J.C. Quail and H.J. Simon, Phys. Rev. B 31, 4900 (1985)]
interfaces. Some exceptions are known, e.g. , alkali-metal
overlayers on metal substrates with more dense electronic
gas can increase y„, (Refs. 27 and 28).
W.L. Schaich and B.S. Mendoza, Phys. Rev. B 45, 14 279
(1992); C.M.J. Wijers, R. Lantinga, and P.L. de Boeij, Surf.
Sci. 331-333, 1323 (1995).
B.N.J. Persson and A.I. Volokitin, Surf. Sci. 310, 314
(1994); F.M. Hoffmann, B.N.J. Persson, W. Walter, D.A.
King, C.J.Hirschmugl, and G.P. Williams, Phys. Rev. Lett.
'72, 1256 (1994).


