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Theory of sputter yield Huctuations and calculation of the variance
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A backward-type master transport equation is derived for the distribution of sputtered particles in a
multispecies medium due to one incident foreign particle. The formalism is suitable for determining
both angular and energy densities and correlations, but in this paper it is only used for the distribution of
the total yield. The equations for the mean (densities and yields) are equivalent with standard theory.
The solution of the equation for the second moment can be given through integrals of first-moment (the
Aux and its adjoint) functions. Some specific cases and corresponding formal solutions and solution
methods are discussed in detail. For illustration, an explicit solution is given for the mean and the vari-
ance of the total sputtering yield, as a function of the energy of the incident particle, in a semi-infinite

homogeneous single-species medium employing a simple collision model.

I. INTRODUCTION

Atomic collision cascades in an amorphous medium
are traditionally described by means of linear transport
theory. ' In a medium with a free surface, a collision
cascade leads to sputtering or reAection of the bombard-
ing particle, which can also be described by means of
linear transport theory. Although most often the cas-
cade is described by mean values, Auctuations in a col-
lision cascade are also a matter of interest. One such sit-
uation is when one wants to confirm that statistical devia-
tions from the mean may be disregarded. A second
reason is that the Auctuations may carry information on
the physics of the cascade or properties of the host ma-
terial which is not contained in the mean values.

The first studies of Auctuations in particle cascades,
those in connection with electron-photon cosmic
showers, had their incentives in the first class of reasons
above. This may in fact be the case in general regard-
ing Auctuations in atomic collision cascades. ' On the
other hand, in the field of neutron transport in a multipli-
cative medium, it was the second type of argument that
motivated a stochastic theory. That is, it was found that
the variance of the number of detector counts was a more
sensitive function of several nuclear parameters than the
mean value. Moreover, the variance-to-mean ratio is in-
dependent of detector efficiency or the strength of the
external neutron source. Thus measurement of the
variance-to-mean ratio provided an effective tool for
determining absolute values of certain physical parame-
ters without additional calibration.

One possible use of a thorough understanding of the
Auctuations in collision processes could be the determina-
tion of material properties from Auctuation data. Such a
study was performed by Vicanek and Urbassek' in con-
nection with Auctuations in light ion-induced kinetic elec-
tron emission. One objective of the present paper is to

contribute to the development of this field with a trans-
port theoretical treatment of sputter yield Auctuations.

The above objective is endorsed by the fact that sputter
Auctuations are known to be much larger than Auctua-
tions in, e.g. , specific ionization "and defect creation in
an infinite medium. ' This fact has already been pointed
out theoretically in Ref. 17, and has been confirmed via
Monte Carlo simulations Refs. 18 and 19. In Ref. 19, a
uniform quantitative dependence of the various moments
on energy was found. The authors also derived empirical
scaling laws for the asymptotic behavior at high energy.

To our knowledge, this is the first report on quantita-
tive results from analytical solutions regarding sputter
yield fluctuations. A general theory for fluctuations in
collision cascades was given, e.g. , in Ref. 20. In the
present paper this theory is adapted for treating sputter-
ing problems. A general solution for the variance of the
total-energy-dependent sputtering yield is given in the
form of an integral over first-moment functions. Particu-
lar cases such as a single-species medium will be dis-
cussed in some detail, and useful forms of the integral ex-
pressing the variance are given.

One explicit solution is presented and evaluated quanti-
tatively. It is based on a simple one-dimensional model
with constant cross sections and forward-backward
scattering for a single-species host medium with the same
type of bombarding particle. The variance of the total
sputtering yield and other related quantities such as the
relative variance and relative standard deviation are
displayed and discussed. The results show that two ener-

gy regions with markedly different characteristics can be
distinguished. For low energies, up to about E =40Ed
(where Ed is the displacement threshold), there exists a
nearly constant, less than unity Fano factor (relative vari-
ance). For higher energies the relative variance starts to
diverge, while the relative standard deviation becomes
approximately constant. These results are in a very good

0163-1829/95/52(23)/16877(7)/$06. 00 16 877 1995 The American Physical Society



16 878 I. PAZSIT AND A. K. PRINJA 52

agreement with the numerical findings in Ref. 19, indicat-
ing that this very simple model is capable of reconstruct-
ing basic properties of the sputtering statistics.

It will be seen that evaluation of the analytical expres-
sion of the variance, as well as the transport theory calcu-
lation of the particle densities required for this evalua-
tion, is rather involved even in the oversimplified col-
lision model used here. In a real three-dimensional (3D)
case with realistic cross sections, it is not possible to cal-
culate even the first-moment densities analytically. It
would thus appear that Monte Carlo methods are easier
and more straightforward to use. However, if the first-
moment densities in the variance integral can be deter-
mined numerically, evaluation of the variance integral
will not be more complicated than in the present case.
Analytical-numerical methods can thus be expected to
yield good quality data with modest computing time. In
addition, analytical scaling laws may be derived from the
closed-form solutions.

A natural objection against sputter fluctuation studies
is that currently individual realizations of sputter yields
cannot be measured and thus no comparison with mea-
surements is possible. This obstacle may eventually be
removed by using time-resolved measurements with sta-
tionary ion beams. The theory for fluctuations in col-
lision cascades induced by a steady source was also de-
scribed in Ref. 20. Moreover, there are experimental
values available regarding secondary electron yield distri-
butions. ' The present methods can be applied for treat-
ing such problems as well.

II. STOCHASTIC THEORY OF SPUTTERING

The sputtering process will be treated with the follow-
ing assumptions. We consider a semi-infinite polycrystal-
line or amorphous target containing n different atomic
species. Channeling effects and focused collision chains
are thus not included. Also, we treat the cascade in the
linear regime; that is, we assume a low density of both the
energetic recoils and vacancies as we11 as negligible sur-
face erosion, ' although this may not be a good approxi-
mation at the low-energy tail of the cascade. Recoil and
defect production will be described by the damage model
of Khinchin and Pease, which assumes a deterministic
displacement energy Ez for species k. Only binary col-
lisions are considered, with a macroscopic collision cross
section do; =o;.(r, v~v', v")dv'dv". As was remarked,
e.g. , in Ref. 4, this scattering function can account for
both elastic and inelastic scattering, including electronic
stopping. However, as noted in Ref. 24, if one is not in-
terested in following up the history of the electrons, it is
simpler to treat electronic stopping with a continuous
energy-loss model. It is this method which we will follow
in this paper. The energy-loss mechanism will then be a
deterministic process; that is, it will not directly contrib-
ute to the fluctuation of the sputtering process. This is
not a restrictive assumption since the overwhelming part
of the fluctuations is due to discrete collisions. Neverthe-
less, the existence of electronic stopping, whether deter-
ministic or not, influences the statistics, and thus cannot
be completely neglected.

The quantity of interest in this paper is the probability
distribution P (N

~
x,E, r) ), which is the probability that

there will be altogether N sputtered atoms of type k with
energies between E and E&, as a result of one projectile at
depth x and with energy E and directional cosine g and
type j. Here, as in all later work, it will be assumed that
the analyzing detector has azimuthal symmetry; thus slab
geometry can be used.

A backward-type master transport equation for P can
then be derived by writing P as the sum of mutually ex-
clusive possibilities of the projectile suffering and not
suffering a collision in ds =dx /q, respectively:

P~'(N~x, E,g)= I —
cr~ P(N~x +dx, E dE, g—)

N
+ g f do'~ g P'(N nlx, E', r—l")

m n=0

XP' (n~x, E",g"),

where o.J=+ oJ is the total cross section of species j.
This equation can be converted into an integrodifferential
equation as

PJ'(N~x, E,g) S~(E) —P'(N~x, E, rl)

N= g f do 1 PJ' gP~' (N—n~x, E.'—, q')
n=0

XP' (n~x, E",g") ', (2)

where

dE dE
dx ds

(3)

is the electronic stopping power for species j. The
boundary condition on Eq. (2) is

where U is the surface barrier energy. As was remarked,
e.g. , in Ref. 20, the equation would have exactly the same
form if instead of the yield of one species, the angular
and/or energy-dependent joint distribution of several
particle types were sought, or even the joint distribution
of sputtered particles and energetic particles in the medi-
um. The type of distribution sought would only affect the
boundary condition in Eq. (4).

Following standard procedure, we introduce the gen-
erating function

G (Z, x,E,g)= g Z P"(Nix, E, r)),
N=0

which satisfies

P~ (N~O E g) =5 (e(E UJ )(5~, 5~0)+5~0

q &0, (4)



52 THEORY OF SPUTTER YIELD FLUCTUATIONS AND. . . 16 879

G'(Z, x,E,g) —S.(E) G'(Z, x,E, ri)

= g f doj I GJ'(Z, x,E,g)

—G'(Z, x, E', ri')G' (Z, x,E",g") I .

(6)

Defining the angular density of energetic recoils of type
1 at (xo, Eo, rio), initiated by a fast ion of type j at (x,E,rl)
as P'(x, E,ri~xp, Eo, rjo), which is also a Green's func-
tion, it can be easily shown that N ' can be expressed as

E 0
N~(x, E, r/)= — Pq(x E rI~O Eo rio)rjodEodqo .J ' '

U
&

J

(10)

The boundary condition for (6) is obtained from (4) as

G(Z, O, E,rl)=5 /B(E. —U )(Z —1)+1, q&0 .

The moments of the distribution can be obtained as
derivatives of the generating function. Thus, defining
N/'(x, E,g) = (N &—, i.e., the expected number of l-type par-
ticles escaping the medium due to a fast ion of type j at
(x,E, rI ), one can show that then it follows from (5) that

Equation (10) shows again that N is th. e (positive) num-
ber of particles leaving the free surface in the negative

(7) direction; N is thus a current, whereas P is an angular
density.

Similarly, now defining M' as

M (x,E,rl): (N(N——1) &, (1 1)

QO aG,'N'(x, E,q)= g NP~'(N~x, E,q)=
X—0 Z —1

Applying (8) to (6) and (7), the equation for the mean
number of sputtered particles becomes

N'(x, E, rl) S(E) —NJ'(Z, x,E, ri)

=~,(E)N,/ y f d ~—,.I N,'+N.'" )

+5(x )8(E —
U/ )q8( rl)5, /, —

M (x,E, rI)=
&

G/(Z, x,E,g)

which for the variance of the sputtering yield gives

~' =(N'& —(N &'

=M '(x, E, ri) +.N'(x, E, rI) NJ'(x, E, r—I)

and for the variance-to-mean ratio (Fano factor)

M'
F(x,E,ri)=

/
+1—NJ' .

(12)

(13)

(14)

where the boundary condition has been incorporated as a
source.

With a double differentiation, from Eqs. (6) and (7) one
obtains

M (x,E, r1) S(.E) M—(x,E,ri)=a M/ g f do —IM (x,E', ri')+M (x,E",g")IC}

—2g f der~ N'(x, E', r/')N' (x,E",g"), (15)

M,/(O, E, rl) =0, g &0 .

As was shown, e.g., in Ref. 20, the solution of Eq. (17) for M~(O, E, rI) with a positive g can easily be given as

M'(O, E,g)=2 g f dxodEodrlog"(O, E,rl~xo, Eo, r/o)
k

X g f do'/, ~Nk(xp Ep '/lp)N~(xp Ep /h )

(16)

(17)

This expression can be further expanded if in the second integral the sputtering yields are also generated by the Green's
function P''

M (O, E,g)=2 g f dxpdEpdrippj(O, E, 'g~xp Ep gp)
k

X y f der/, y/, (xpiEp, rip~0, E', q')y~(xpiEp ir/p ~OiE' (18)

Thus the variance is completely determined once the Green's function for the mean is known.

III. SELF-SPUTTERING OF A MONATOMIC TARGET

To simplify numerical work we restrict our considerations to a single species. One can drop all indices and use N and
M for the mean and (N(N —1) &, respectively. The relevant equations are then
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S—(E) N(x, E,rl)= f do tN(x, E, rl) N—(x,E', rl') N—(x,E",rl")I
ax aE

M (0 E 'rl ) =2f dxpdEpd rip/(0 E &~xp Ep gp) fdoN.(x,E', rl')N (x,E",rl" )

Using the single-species version of (10) to express N, one obtains

M(O, E,g) =2f dxodEodrlok(0 E g~xo Eo rlo)

X fd~ f f,k(xo Eo rlo~O, E', q') f f,f(xo Eo halo
~0 E rl )rldrldE 5 de dE (21)

It is without any doubt that even in possession of the
Green's function, evaluation of (21) is a very complicated
task in view of the fact that it contains an 11-fold integra-
tion. Due to energy conservation, the scattering kernel
usually contains a function 5(E E' E—") w—hich makes
evaluation of one integral possible. For that matter, if
N(x, E,g) can be directly determined without using the
Green's function, the evaluation of (20) may be simpler,
since the number of integrals is reduced. In view of the
complexity of the expressions (20) or (21), Monte Carlo
techniques may be more promising to calculate the vari-
ance. However, the closed-form solutions above may be
evaluated by approximations or simplification of the
scattering kernel, making some insight possible into the
physics of the problem. One such case is analyzed below
in some detail.

Following Dederichs, and denoting the energy E"
transferred to the recoil by T, the scattering function can
be expressed as

I

where

ai (Eo, T) =Pi T
1/2

1—
E0

1/2

Pm
0

(23)

N(x, E, rl) = Q N, (x,E)P,(q), (24)

and a similar expansion for the Green's function as

P(0,E,q —+xo, Eo, go)

rip ——Qo.Q' and go =—Qo Q", and P&(rl) is the Legendre
polynomial of degree I. Assuming an expansion of the
mean sputtered yield in the form

o (Eo,Qo~E', Q', E",A")
= g o(Eo T)at (Eo~ T)Pi(halo)

k(xo E Eo)Pk( l)Pk( lo)
k

(25)

1, m

XP (go')5(E E' —T), — after the usual manipulations, for the variance one ob-
tains

E
M (0 E il ) =2 g g g Pk (rl ) Aki f dxp dEpnk (xo E~Eo )f dT o'(Eo T)ai (Eo T)Ni(xo Eo T)N (xo T)

k 1 m

where

1

~ki =f,Pk(n)Pi(n)P (n)dn (27)

is a Wigner factor. In case of isotropic scattering in the
center-of-mass (CM) system and energy-independent
cross sections, o (Eo, T) =o=const, and the e.valuation of
(26) simplifies further. It is thus seen that by application
of the spherical harmonics expansion, the expression for
M is significantly reduced. If a few term series expansion
for N and P can be employed, such that the sums in k, l,
and m can be truncated after a few terms, then using (26)
can be a powerful way of evaluating the variance.

In order to gain some insight through quantitative re-
sults, a solution will be given here for the energy depen-
dence of the variance in a very simple model. Electronic
stopping will be neglected. The surface barrier energy

I

will be assumed to be equal to the displacement energy
Ed. The transport will be assumed to be purely one di-
mensional, such that particles can only move in forward
and backward directions along the x axis. This model
has been used in studies of neutron transport and critical-
ity calculations, ' radiation damage, ' and sputtering
studies. The model has clearly nonphysical features;
nevertheless, it allows solutions to be obtained with
reasonable effort and may still display some basic trends
of the proper solution.

One important advantage of the model is that it allows
the energy and angular dependences to be decoupled.
This enables the angular integrals to be evaluated in the
transport equation and also in the expression of the vari-
ance. The corresponding transport equation can then be
Laplace transformed in lethargy u =1n(E/Ed), and it
will formally be equivalent to a one-speed equation. For
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such cases, as is mentioned in Ref. 20, the optical recipro-
city theorem holds, and this fact can be utilized to sim-
plify the calculation of the variance, as will be seen
below.

The scattering model we shall consider here uses con-
stant cross sections and hard-sphere scattering, combined
with the one-dimensional forward-backward scattering
model. Thus one has

o (E,q~E', g', E",g")
5(E E' —E")—

[5(g—g')+5(g+g')]

A,. k
= f dx e L;(2x)L~(2x)Lk(2x)

0

k p j=3K X X

(l+m +n)!
I!I!n!

a,"„(u)= f du'V, (u —u')
gk

X f du "&J(u")

2
3

l+m+n

(33)

X [5(q —ri")+5(q+g")],
X&k[ln(e" —e" )]e

(34)

„I,(u')
& Y&-=N(u)-=N(O, E,„=1)=f"

0 Q
(29)

where Ij is the modified Bessel function of first kind and
order 1, and ( Y) is the mean sputtering yield.

As it was shown in Ref. 35, in this special case all that
is needed to evaluate the variance is the Green's function

P(x, u)—:fP(u;x, g~O, go= —1)dg

with g=+1 as only possible values. Since the sputtering
yield is invariant to a scaling of the mean free path,
o T

= fd o.= 1 was chosen in (28).
We shall assume a homogeneous semi-infinite mona-

tomic target, with one fast atom of the same type as the
host material impinging on the free surface with q = + 1

and energy E. We assume a displacement energy Ed
equal to the surface binding energy, which will be ac-
counted for by setting all transport functions (sputtering
yield and Green's function) to zero below Ed. We shall
seek the expected value and the variance of the total
number of sputtered particles.

The mean sputtering yield is then given by
N(O, E,q= 1). Solution of Eq. (19) with the scattering
model (28) was given, e.g., in Ref. 34, with the result

Q

Pjk(u)= f du'& (u')

X&k[ ln(e" —e" )]e

and

& (u)= f V (u)+5 o . (36)

From M(u) the variance hY =cr (u), the relative vari-
ance F(u)=b, Y /( Y) and the relative standard devia-
tion o (u)/N(u)—:b, Y/( Y) of the sputtering yield can be
calculated.

IV. NUMERICAL RESULTS AND DISCUSSION

First we discuss the behavior of the mean ( Y) and the
relative variance F(u). Calculated values are shown in

Fig. 1 as functions of u. The numerical values of both the
mean and variance were checked with Monte Carlo cal-
culations with a very good agreement, as seen in the
figure.

The behavior of ( Y }=N(u} is well known and rather
simple. It is monotonically increasing, due to the fact
that there will be more and more recoils created by in-

where, due to reciprocity, P(x, u) is both the density of
the escaping particles due to an isotropic source at x and
also the scalar (angularly integrated) particle density at x
due to one projectile at the surface. The solution for P
was given by Lux and Pazsit as

14—

12—

symbols —Monte

P(x, u)= g L (2x)[P (u)+51 O5(u)], (3O)

where

P~(u)= [jI (u)+2(j+1)I +,(u)( —1)'e"
Q

+(j+2)I~+~(u)] . (31)

Using the above, a simple but lengthy calculation yields,
for M(u},

0
0 1 2

M(u)= —,
' g g g A~k [a;1,(u)+5;(P k(u)], (32)

where

i j k
FICx. 1. Dependence of the total yield N ( u ) and the

variance-to-mean ratio F(u) on the lethargy u =1n(E/Ed ).
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creasing u. It may be interesting to make a comparison
with the number of Frenkel pairs NF created in an
infinite medium

10'

E e"
(37)

10'—
gY

2

Comparing (37) with an upper bound on (29), obtained
from an asymptotic expansion for large u,

10'—

(38) 10'—

shows that the expected value of the sputtering yield in-
creases much slower with energy than the number of de-
fects created. The reason is clearly that in the Khinchin-
Pease model, all particles that slowed down past Ed lead
to a defect; on the other hand, in sputtering, only a frac-
tion of the energetic recoils will escape (those created
near to the surface), and even the total number of gen-
erated recoils is lower, due to the leakage process.

The behavior of F(u) displays another pattern, in
which two distinct areas can be identified. For u &ln2,
F(u) is decreasing. This is because for projectile energies
E &2E„,at most one particle can leave the collision site;
thus one has P(N ~ 2) =0 and (N ) =N. Thus, for
u &ln2, Eq. (29) yields

F(u)=1 —( Y) —1 ——.
u

2
' (39)

Above u =ln2, the probability of two sputtered particles
becomes greater than zero, and at that point F(u) has a
break. It can be shown that for u =ln2+E and ~E~ &&1,
M(u)-E/6. This results in a nearly constant F(u) for u

slightly above ln2. F(u) remains nearly constant and less
than unity up to u -3. It reaches unity at u =3.7; that
is, at E =40Ed, or at = 1 keV with Ed =25 eV.

For larger values of u the relative variance starts to in-
crease, and it diverges asymptotically with the same rate
as the mean. That is, asymptotically F(u) —( Y). From
the latter it follows that the relative standard deviation is
asymptotically constant for high energies. This latter is
illustrated in Fig. 2, which shows the mean, the variance,
and the relative standard deviation on a logarithmic
scale. The data in Fig. 2 are in a very good qualitative
agreement with the energy dependence of the same quan-
tities found by Conrad and Urbassek (see Fig. 1 in Ref.
19), who found the asymptotically constant relative stan-
dard deviation in Monte Carlo simulations with realistic
cross sections. This somewhat surprisingly good agree-
ment between the forward-backward model and the real-
istic 3D model of Ref. 19 shows that the former is actu-
ally capable of reconstructing the most important proper-
ties of the sputtering statistics.

It is thus seen that the second moment has two
differing domains of behavior. For low energies, in the
present model up to u -3.5, there exists a sputter Fano
factor; that is, a nearly constant, less than unity relative
variance. For higher energies, the relative variance in-
creases and hence no Fano factor exists, but instead one
can define a relative Fano factor (relative variance divid-
ed by the mean) since the relative standard deviation be-

0 2

I

10'
I

10'
E./u

I

10'

FIG. 2. Mean yield ( Y), variance hY, and relative stan-
dard deviation b, Y/( Y) of the sputtering yield distribution.

comes constant.
Again, it can be useful to make a comparison with the

variance-to-mean ratio of the number of Frenkel pairs FF
in an infinite medium in the same model. This was calcu-
lated by Leibfried with the result FF=0.15 for energies
larger than 4Ed. In other words, the relative variance of
the defect creation in an infinite medium is asymptotical-
ly constant and significantly below unity.

It is thus seen that the fluctuations in the sputtering
process are asymptotically much higher than in other col-
lision processes, such as defect creation. This was al-
ready noticed in Refs. 17 and 19 and interpreted as being
due to fluctuations in the energy deposited in low-energy
recoil motion close to the surface. In the case of ion-
induced secondary electron emission, the high fluctua-
tions were explained with the fluctuations in the ion tra-
jectory. ' A complementary view of the phenomenon is
as follows. Whether in a cascade (leading to defects or
sputtered particles) F ) 1 or F & 1 depends on the corre-
lations between particles with different energies or spatial
points. The former (F ) 1) prevails if positive correla-
tions dominate, and vice versa. In the sputtering process,
for u &ln2, there are negative correlations, since oc-
currence of a sputtered particle excludes the possibility of
another particle. For u &ln2, there may be more than
two sputtered particles, often from the same or successive
collisions, and thus there will be positive correlations.
Further, collisions near to the surface will likely lead to
several sputtered particles, whereas collisions deep in the
medium will not lead to sputtering at all. Thus the site of
any collision, but especially the location of the first col-
lision, has a large significance on the total yield. All this
leads to large fluctuations. On the other hand, in the de-
fect creation process, at least in an infinite medium, nega-
tive correlations will dominate. A recoil whose energy
has decreased below Ed, and which thus becomes an in-
terstitial, cannot lead to further defects, and this gives a
negative correlation.
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V. CONCLUSIONS AND FURTHER WORK

A closed-form solution for the variance of the sputter-
ing yield was given and evaluated in a simple concrete
case. The solution is in agreement with previous work,
both theoretical and numerical.

The possibility of an analytical solution in the present
work was a consequence of a number of simplifications
regarding the scattering cross sections. However, in real-
istic models, numerical solutions for the first-moment
densities can be obtained whose integration in the vari-
ance formula will presumably not be more complicated
than in the case treated here. There is also some chance
that asymptotic behavior and analytical scaling laws may
be derived.

One complication is that direct comparison with mea-
surements is not possible, but one can get around the
problem by calculating the sputter yield fluctuations for a
steady source, as outlined in Ref. 20. A more straightfor-
ward field of application may be a study of the statistics
of ion-induced electron emission, ' since experimental
data are available there.
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