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Small-angle x-ray scattering under grazing incidence:
The cross section in the distorted-wave Born approximation
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The specular and nonspecular intensity of x rays scattered from a rough surface with fluctuations in
the electron density is calculated in the distorted-wave Born approximation. The contributions to the
nonspecular intensity of roughness and density fluctuations can be separated. The structure factor is
given by a convolution integral of the Fourier transform of the density correlation function. Special
geometries of density fluctuations are discussed.

I. INTRODUCTION

Small-angle x-ray scattering (SAXS) is a fully
developed and well established method to investigate den-
sity fluctuations on length scales from 10 A to several

0
thousand A. In contrast to real-space microscopy,
SAXS determines statistically averaged quantities, such
as density correlations. Experiments are usually per-
formed in transmission geometry, ' i.e., the sample is put
in the primary beam and the scattering intensity is mea-
sured behind the sample close to the forward direction in
the vicinity of the direct beam.

For many applications, conventional SAXS suffers
from two major drawbacks: First, an oftentimes poor
resolution at the low end of momentum transfer and
second, a lack of surface sensitivity.

As far as the first point is concerned, the resolution at
low momentum transfer is limited by the finite size of the
primary beam. Even if the half with of the beam is very
small, as is the case for most modern synchrotron
sources, the intensity tails of the beam as observed on a
logarithmic scale contaminate the scattering signal at
small angles. In practice, this effect limits the spatial
length scale that can be probed to be less than about
1000—2000 A for most instruments and samples. On the
contrary, it has been shown that under grazing incidence
even by hard x rays of wavelength A, = 1 A, much longer
length scales of up to 10—100 pm are accessible, if a suit-
able scattering geometry is chosen. This has been
demonstrated by the observation of diffraction maxima
from synthetic surface gratings with pm periodicities,
and can be explained by the different relationship be-
tween the scattering angle and momentum transfer in
both scattering geometries. Thus, for structural charac-
terization on long length scales, it is promising to mea-
sure the so-called nonspeeular or disuse scattering, i.e.,
the small-angle scattering in the vicinity of the specularly
reflected beam. Of course, in the pm range, light scatter-
ing can be employed to deduce structural information.
However, this technique does not work for opaque ma-
terials.

The second drawback is simply due to the fact that in
transmission geometry the beam has to pass through the

whole bulk of the sample. Thus, the contributions of sur-
face roughness and other near-surface structures are
negligible in all but a very few cases as compared to the
bulk signal. However, in recent years the interest in sur-
face and near-surface phenomena has created an increas-
ing demand for surface-sensitive characterization. One
may have a number of examples in mind where spatial
fluctuations of the electron density occur only near or at
the surface, or where such fluctuations are to be studied
under the influence of the surface, e.g. , precipitation of
ion-implanted dopant atoms in single crystals, thin layers
of porous silicon, segregation in a binary alloy, polymer
adsorption on a surface, Langmuir films, etc. It is there-
fore of interest to combine small-angle scattering with the
well-known surface sensitivity of grazing incidence
diffraction. The first experiment of this kind has been
reported in 1989 by Levine et al. , who have studied the
growth of gold islands on glass. Nonspecular scattering
of Langmuir-Blodgett films has also been attributed to la-
teral fluctuations.

However, the quantitative analysis of experimental
data requires as suitable theory of the scattering process,
which is available only for relatively simple objects like
periodic surface gratings or some other special
configurations. The classical formulas of small-angle
scattering cannot be expected to hold, as refraction
effects and in particular an eventually complex momen-
tum transfer have to be taken into account. The theoreti-
cal basis can be improved by starting from a general ex-
pression for the scattered wave in the framework of the
distorted-wave Born approximation (DWBA). The main
goal of our paper is to illustrate the general result for par-
ticular geometries of physical interest. In particular, we
want to understand how the various types of density fluc-
tuations can be unambiguously distinguished by means of
their scattering intensity distribution.

One of the most prominent density fluctuations is sur-
face roughness. Indeed, nonspecular scattering of rough
surfaces was the first kind of small-angle scattering to be
described theoretically. In 1988, Sinha and co-workers
calculated the scattering cross section of a rough surface
in DWBA, thereby starting a rapidly increasing activity
in the filed of roughness characterization. Whereas be-
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fore only the electron density along the surface normal
had been studied, with this theory at hand also lateral
quantities of roughness could be determined. The experi-
mental method is often referred to simply as disuse
scattering.

A master formula including both surface roughness
and density fluctuations has been derived by Dietrich and
Haase (earlier efforts for particular cases are described in
Refs. 9—11). However, their very general result has not
been applied to the geometries considered in this paper.
In order to keep the notation close to Ref. 7 and for the
sake of conceptual clarity, we present here a self-
contained discussion of the scattering process. We point
out that our results can be generalized for the case of
neutron scattering in a straightforward manner.

The paper is organized as follows: In Sec. II we use the
distorted-wave Born approximation to calculate the scat-
tered wave from a rough surface with additional bulk
density fluctuations and we discuss conditions under
which correlations between these two contributions can
be neglected. In Sec. III we apply the general result to la-
teral density variations at planar surface, to columnar
disorder, and isotropic ally distributed spherical in-
clusions in the bulk as well as to a buried layer of density
fluctuations. Finally, some concluding remarks are found
in Sec. IV.

II. DISTORTED-WAVE BORN APPROXIMATION

A. The scattering amplitude

Let us consider a semi-infinite medium extending over
the lower half space z &0 with the average surface lying
in the xy plane. The deviation of the surface from its
mean is parametrized by the function h(rf) with

rl =(x,y). The medium is characterized by an average in-
dex of refraction n and is assumed to be homogeneous ex-
cept for the presence of surface roughness and density
fluctuations. The amplitude w(r) of the density fluctua-
tions describes the local deviation from the average index
of refraction.

Let us now assume an x-ray beam impinging on the
surface with an extension much larger than the coherence
length. Then the amplitudes scattered from parts of the
sample separated by distances larger than the coherence
length add up incoherently and the scattering intensity is
determined by a spatial average. Assuming erogodicity it
can be substituted by a configurational average denoted
as ( ). The statistics of h and w are assumed to be iso-
tropic and translational invariant in the xy direction.
Thus, we have (h(x,y)) =0 and (w(r) ) =(w)(z).
Moreover, we choose (co)(z)=0 for z~ —ac, since any
offset w from w can be used to renormalize the average
index of refraction.

The incident wave is described by a wave vector k;
with modulus kII (corresponding to the vacuum wave-
length A, =2m/kc) and the scattered wave by kf of equal
modulus (Fig. 1). The scattering vector is denoted by
q= kf —k;. To distinguish the wave vectors in the medi-
um they carry a tilde, i.e., k, , kf, and g. Due to refrac-
tion and absorption they may be complex. For sma11

gx

FIG. 1. Scattering of x rays under grazing incidence. The in-
cident wave vector k;, the reflected wave vector kf, and the
scattering vector q are illustrated. 8; and Of are the angles of
incidence and exit, respectively; P is the angle between the plane
of incidence and the projection of the 6nal wave vector on the
surface.

+w(r)6[h(rII) —z]] . (2)

The first two terms on the right-hand side correspond to
surface roughness, the third term to density fluctuations,
as illustrated in Fig. 2.

j 'IL
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p

FICx. 2. Schematic of a rough surface with density fluctua-
tions. The average surface lies in the xy plane. Surface rough-
ness and density fluctuations are the two kinds of disorder con-
sidered.

scattering angles with 2m. /q greater than typical inter-
atomic distances, the atomic structure of the medium can
be neglected. Furthermore, for such small scattering an-
gles and for an index of refraction n=1 polarization
effects can be ignored, i.e., electromagnetic waves behave
like scalar waves. This is a valid approximation for hard
x rays, since 1 —n is of the order 10

The amplitude of the electromagnetic field satisfies the
stationary wave equation

(5+kII —V —W)4=0,
with V(z)=k, 6( —z) and k, =kII(1 n). —Here 6( —z)
denotes the Heaviside function and k, is the vertical com-
ponent of the momentum vector at the critical angle 0, of
total external reflection. The ideal surface, equal to the
xy plane, is described by the potential V, surface rough-
ness, and density fluctuations by 8'. The perturbation 8'
has the following form:

W(r ) =k, I 6[h (rI~ )
—z ]6(z)—6[z —h (rII ) ]6(—z)
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Without W, Eq. (1) describes the scattering of scalar
waves from a planar surface and is solved by the Fresnel
function

e '+Re ', ifz&0

Ve ', if z(0

of W and solve Eq. (6) by a recursion procedure starting
with 4' '(r, k, ) which is the solution of the unperturbed
system for an incoming wave with wave vector k, . Up to
first order we get in the far field

ikpr

%(r)=%" '(r, k, ) — d r'4' '(r', —k )4~r f

for an incoming plane wave with k=(kll, k~) and
k~= —Qko —

IkllI . The vertical component of the bulk
wave vector is kz= —Qko —k, —

IkllI and the Fresnel
re6ectivity % and transmittivity V' are given by

2k' k~ —k~T= and A=
k~+kj k~+k~

Using the Green's function,

(b.+ko —V)G'+'(r, r', ko) =5(r—r')

(4)

for outgoing waves, we transform Eq. (1) to the
Lippmann-Schwinger equation

%(r)=%' '(r)+ f d r'G'+'(r, r', ko)W(r')%(r') . (6)

In the far field the Green's function is given by Refs. 8,
14, 18, and 19 and Ref. 20, Appendix B,

Since the 0WBA is valid only for small roughness
o =+&h & (Ref. 7) and since the solution 4' ' of the un-
perturbed system [Eq. (1) with W=O] is continuous at
z =0, we make the following approximation: ' ' The
field above the xy plane but inside the sample is given by
the transmitted part of the Fresnel solutions. Since the
integration in Eq. (8) does not exceed the z range where
the approximation is valid, we may substitute
4' '(r', —k&) and 4' '(r', k;) by V&e and T;e
respectively, where 7;. and 7& are the Fresnel transmis-
sion coefticients for plane waves with a wave vector k,
and —

k& as given in Eq. (4). Thus, the scattered wave
can be written as

%(r)=V' '(r, k, )

lkp 1'

G'+'(r, r', ko) —— 4' '(r', —k ) for z~oo . (7) X f dz'e ' W(r') .

We assume that 4 in Eq. (6) can be expanded in powers
I

Substituting W from Eq. (2) we get

lkp P'

%(r)=%' '(r, k;) — k, T,. '7& f d rIle ll l' f dz'e ' + f dz'e '
w(rl'l, z') (10)

where

lkpT I

k T T d r'e ' ll'll dz'es 4 c i f

lkpP

%'d = —
4 k, 'T Ty f d r

lie4mr 0, —iq~z'
X dz'e '

w(rll, z') . (14)

To calculate the scattered intensity we have to perform

For small surface roughness o we replace the second in-
tegral by

I

f dze '"'w(r'„,z ).
This approximation would be invalid if the density Auc-
tuations were located exclusively in a range of ko rela-
tive to the xy plane. Within this approximation the scat-
tered amplitude has two independent parts, one from the
surface roughness and one from the density fluctuations

(12)

the configurational average as explained above. The
averaged intensity & I%'I &=&4' '(k, )+4, +Cd & can be
written as follows:

& I+I'& = I+'"+ & +, &+ & +d & I'+ & I+, I'& —
I & q', & I'

+&I+ I'& —I&+ &I'

+2 Re( & 4, ql„"&
—

& e, & & 4„'& ) . (15)

The first term describes the specularly reAected intensity.
The other terms are the diffuse intensities written as a
sum of contributions from the surface roughness, from
the density fluctuations, and from their intercorrelations.

B. scattering intensity and structure factor

1. Specular intensity

The specularly rejected intensity depends only on
averaged amplitudes. Obviously the contributions from
the density fluctuations are proportional to & w &. Thus
this term gives the specular rejected intensity since we
only allow density fluctuations with & w(r) &

=
& w &(z).

For the contributions from the surface roughness the



16 858 M. RAUSCHER, T. SALDITT, AND H. SPOHN 52

complete statistics of h is needed and explicit formulas
are available for surfaces with Gaussian statistics. '

Due to our choice & w )(z)=0 for z~ —ao for homo-
geneous density fluctuations & w(r) ) =0 and give no con-
tribution to the specularly reflected intensity. Besides
such homogeneous density fluctuations we will discuss
the case where the density fluctuations are restricted to a
certain layer between z =a and z =b. Thus we substitute
wby

B(z a)B—(b —z)w(rJJ, z ), (16)

0~ b )a, with & w(rJJ, z)) =const=w. This corresponds
to a modulation of the index of refraction in z.

The specular part of the scattered intensity is then
given by

kf =(kJJ;, —k1; ) and amplitude'

(18)

According to Ref. 7 the first two terms in the specular in-
tensity can be combined to a wave field similar to the
Fresnel solutions with a modified reflection coefficient—1/2q~ g~ cr
Ae ' ' which is obtained in Ref. 16 by a different
method. This reflection coefficient is defined as the am-
plitude of the outgoing wave divided by the amplitude of
the incoming wave. Thus the complete reflection
coefficient for our geometry is given by

2

%e '' +k, wV T~ (e ' —e ' ).
qiq~

Ie"'+ &+, )+&q, ) I'

lkp T

= q J"+&q ) —' k'wT 't
s 4 c l f

X(27r) 5(qJJ) (e ' —e '
)

q~

In the far field for z~ao, the rightmost term has the
asymptotic form of a plane wave with wave vector

I

The reflectivity measured in an experiment is the square
of the modulus of the reflection coefficient above.

2. Nonspecular intensity

The nonspecular scattering intensity will be calculated
for the case of statistically independent w and h. Strong
correlations between w and h would make the interpreta-
tion of measured intensities rather difficult. Anyhow, in
many experimental situations, one of the two contribu-
tions is small as compared to the other. The cross term
in (15) is given by

4

(47rr )

O
I

qz
II II

d2r~ d2 d ii @J.
(&

'~l
JJ w(rii)) &e

@
JJ )&w(rii)))

QO

(20)

C1 1R
(21)

and vanishes by assumption. The diffuse intensity in (15) reduces then to & IV, I ) —
I & 1', ) I

+ & I1I1d
I ) —

I & q1d ) I, the
sum of the intensities scattered by surface roughness and density fluctuations.

For rough surfaces with Gaussian statistics, the surface contributions can be evaluated analytically. With the height
correlation function Ci, (lrJJ

—
rJJ'I ) = & h(rJJ)h (rJJ') ) we have '

k4
&I+ I') —I&+ )I'= '

IV I'I& I'L L e
"'""' 'fd'Z e

where RII =rII —rII'. Here L, and L„arethe lengths of the illuminated area of the sample in the x and y directions. Both
L„andL~ are assumed to be large as compared to the vacuum wavelength 27r lko.

Using the density correlation function which is defined as C ( lrJJ
—rJJ'l, z', z")= & w(rJ'J, z')w(rJJ', z") ), the diffuse inten-

sity from the bulk is for qJJAO

k
I&l'I& I'L.L fd'« "JJ "JJf' dz'f' dz"e '"""C (IR l, z', z").

(47rr ) oo oo
(22)

The scattered intensity is proportional to an integral
transform similar to the Fourier transform of the density
correlation function C . By homogeneity, C depends
only on lrJ'J

—rJ'J'I. In the transverse direction we have a
general dependence on both z' and z", unless
& w ) =const, e.g., away from the surface.

The intensity is proportional to the squared moduli of
the Fresnel transmission coefficients. This leads to the
so-called Yoneda peaks whenever the angle of incidence
or exit equals the critical angle. The same effect can be

observed in the scattering from rough surfaces Isee Eq.
(21)] 17

At this point we introduce the differential cross section
der ldA and the difFuse structure factor S(q), which are
defined as follows

I
Ref. 8, Eq. (4.26)]:

k',
I T, I'I &f I'L.L,S(q) .

(47rr )
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Thus for the diffuse structure factor S we have
~ i+ ~

S(q)= fd R e " "f dz'f dz"e
ll

X C ( IR111~z', z"),
(24)

for q11%0. In the following section we will calculate the
structure factors for four representative examples of
correlation functions.

III. GEOMETRIES OF DENSITY FLUCTUATIONS

In Sec. II 8 we derived a master formula [Eq. (24)] for
the diffuse structure factor. In order to illustrate this re-
sult we discuss four different configurations of density
fluctuations which are characterized by specific restric-
tions on the symmetry of the correlation function C .
These four models are displayed in Fig. 3. We first dis-
cuss the case of perturbations located in a 5-like layer at
the top of the surface [Fig. 3(a)], e.g. , variations in the
density of adsorbed atoms. Second, we expand the lateral
pattern to the whole bulk, such that the density fluctua-
tions are constant in the z direction [Fig. 3(b)]. This
geometry would be appropriate to describe columnar
structures. In the third more general case, we assume iso-
tropic density fluctuations with a translational symmetry
in all three directions [Fig. 3(c)]. We will show that in
the limit Imqi~~, the structure factor of this model
reduces to the previous one. In the last configuration, we
restrict the density fluctuations of the third model to a
layer of finite thickness parallel to the average surface
[Fig. 3(d)]. In fact, this is the most general model from
which all previous structure factors can be derived. But
for the sake of clarity we discuss the simpler
configurations first.

A. 5 layer

where t denotes the thickness of the so-called 5 layer. In
this case the contribution of the density fluctuations and
of surface roughness, respectively, cannot be treated in-
dependently as in Eq. (10). Therefore, we assume a per-
fectly fiat surface h (r11)=0 and obtain

S(q)= f d R11e ' '1C (R11)t =C' (q11)t . (26)

Here a "hat" indicates a Fourier transform. This formu-
la has been derived before to describe the scattering of
soft x rays from almost smooth surfaces. ' In the limit
of o ~qJ ~

~0 a rough surface cannot be distinguished
from a surface with such density fluctuations.

To illustrate Eq. (26) let us calculate the structure fac-
tor as corresponding to the correlation function of a disk
with radius R,

2mR

Here J& denotes the first Bessel function of the first kind.
For the example presented in Fig. 4 the radius of the disk
is assumed to be R =1000k, and the index of refraction
n =1—6. 1X10 +i X10, corresponding to a critical
angle of total external reflection of 0, =0.2'. The struc-
ture factor is plotted at constant angle of incidence
0; =0.5' as a function of the exit angle ef and the angle P
(out of the plane of incidence). Except for the eff'ect of
the transmission functions, Fig. 4 shows the intensity as
measured on a two-dimensional detector behind the sam-
ple. The oscillations along P correspond to the radius of
the disks.

B. Columnar model

For co(r11,z') =w(r11~), i.e., density fluctuations constant
along the transverse direction, the structure factor is
given by

C (R11)5(z')5(z")t (25)

Assuming density fluctuations w(r11)5(z )t located at the
surface of the sample [Fig. 3(a)] the correlation function
becomes The only difference to the structure factor of the 6 layer

is the decay in ~qt~.
For the plot in Fig. 5 we chose the same correlation

a)

c)

pII kk~hi::

= =%11~ I [~i

. .
..= III1ilRJ"

~::~kki!

I'

(0
~100

1Q'
(a1Q
~1Q

6
cQ

CD

CQ 1.0
0.7 0.0

FIG. 3. Illustration of the four discussed restrictions on the

geometry of the density Auctuations. A 5-like layer at the sur-

face (a), columnar structures (b), isotropic density fluctuations

(c), and a layered structure (d).

FIG. 4. The diffuse structure factor for a 5-like layer of
spherical disks with radius R = 1000K, is plotted as a function of
P and gf. The angle of incidence is chosen, 8; =0.5, and the
medium is assumed to have an index of refraction of
n =1—6. 1X10 +i X10
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function and the same parameters as for the 6 layer. In
the calculated structure factor a change of slope is ob-
served at the critical angle Of =0, which should not be
mixed up with the Yoneda wings.

C. Isotropic density Auctuahons

To discuss a more general case we assume a correlation
function of the form C =C (lRlll Zl) with Z=z' —z",
i.e., density Quctuations which are both laterally and
vertically homogeneous. Thus surface effects that extend
over a length smaller than the bulk correlation length g
can be neglected here. The structure factor is no longer a
simple Fourier transform of the correlation function as in
the previous subsections. Splitting the (z', z") integration
in Eq. (24) into two parts and interchanging the names of
z' and z" in the second integral, we have

210
. 10'

g10'—10'
CD

EO
1.0

0.7
0.0

FIG. 5. The di6'use structure factor for columnar structures
with the same correlation function as in Fig. 4 plotted as a func-
tion of P and gf. The radius is R =1000k, the angle of in-
cidence 0; =0.5', and the index of refraction
n =1—6. 1X10 +i X10

S(q)= fd'R„e " f "dz"f "dz'e ' "' ' 'e "' 'C„(R , lz' —z"I)
0 z"

+f d"f d'
0 z*' (29)

After substitution of z' by Z= lz' —z"
l

we combine the
integrals again. The integral over z" can be evaluated
analytically. To handle the divergence at Imq~ =0 we in-
troduce a cutoff L, that corresponds to the vertical exten-
sion of the sample. Using the symmetry of the correla-
tion function C in the variable Z we obtain

S(q) =max .L„ 1

2 Imqq

maximum 2Imq~. The convolution damps out oscilla-
tions of C' in Req~, which correspond to the vertical
structure of the density fluctuations.

In the limit of strong absorption, vertical structures
cannot be resolved any more. If the correlation length g
of C„ is large compared to the scattering depth
A = I /l lmqt l

(Ref. 4), then the z integration in (30) can
be evaluated analytically after approximating C'

(qll, Z )

by C (qll, 0). This leads to the structure factor

X fd'Re qll Rile R q'z —&~q, lzlc (R) S(q) =
2 C„(qll),

1

2 (33)

with R=(Rll, Z). By the convolution theorem for
Fourier integrals we get

S(q) =max .L„
2 Imq~

S(q) =L'C (32)

We have Imq~&0 if either the medium is absorbing or
0; & O„respectively, 8f & 0, . The structure factor is then
no longer simply the Fourier transform of the density
correlation function but the convolution of the Fourier
transform of C with a Lorentzian of full width at half

f Imq&
X dpC„(qll,p )—

~ Imq~+(Reqt —p)
where C is the three-dimensional Fourier transform of
the correlation function. The last term in the integral is—

Imper fZJthe Fourier transform of e ' and becomes the Dirac
5 function for Imq~~0. In this case the structure factor
simplifies to

which is identical to the one for the columnar model.
In the opposite case, for a correlation length g much

smaller than the scattering depth, we make the approxi-—Imqq /Z/
mation e ' = l in (30) and get

S(q)= —,'AC (lq, q ) . (34)

In the plots in Figs. 6 and 7 the radius equals R = 1000k,
and the index of refraction 1 —6. 1 X 10 + i X 10,as in
the previous examples. Thus the critical angle is

This is the same structure factor as derived for Imqz =0
in (32) with the cutoff L, replaced by half the scattering
depth.

To illustrate this effect we consider Poisson-distributed
spherical single-particle scatterers of low density. Corre-
spondingly, we substitute for C the Fourier transform of
the correlation function of a sphere with radius R

4m'R33 sinqR —qR cosqR
(35)W

qR
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FIG. 9. The structure factor for the same correlation func-
tion as in Fig. 8, but for a layer from b =0 to a = —2000K,. The
oscillations become shorter due to the greater layer thickness
and the structure factor decreases more slowly for Of —+0 be-
cause the layer starts right at the surface. The angle of in-
cidence is 0;=0.5 .

shown in Fig. 9. There a layer from b =0 to a = —2000K
is assumed. The greater thickness shows up in shorter os-
cillations in 8f.

IV. CONCLUSIONS

In the preceding section we have discussed four cases
with different restrictions on the geometry of density fiuc-
tuations. From the examples, we learn how to distin-
guish these geometries by studying the corresponding
difFuse structure factor and the specularly rejected inten-
sity. Layered structures can be characterized by the
specular reAectivity which gives information about the
layer thickness. The other three models discussed do not
afFect the specularly reAected intensity but can be dis-
tinguished only by the q~ dependence of the diffuse
scattering factor. 5-like density fluctuations have a struc-
ture factor that only depends on q~~, whereas for columnar
structures the structure factor is proportional to 1/~q~~ .
The structure factor of isotropic density fluctuations has
a more complex q~ dependence which corresponds to the
Fourier transform of the correlation function.

In contrast to conventional small-angle scattering, we
had to take refraction effects into account. In the case of
the angle of incidence and exit greater than 0„the irnagi-
nary part of q~ is small and the main effect is a shift and a
slight distortion of the diffraction pattern. If the angle ei-
ther of incidence or of exit is below the critical angle so
that Irnq~ becomes large, the difference to ordinary
small-angle scattering is considerable. First of all, the
scattering signal becomes surface sensitive, as known
from grazing incidence diffraction. Second, the large
imaginary part and the small real part of the normal
momentum transfer opens up the possibility to investi-
gate lateral structures on length scales from nanometers
up to some rnicrometers. These advantages become evi-
dent in two kinds of scattering geometries.

In the first one, 0f is varied at constant 0; & 0, . In this

105=

10 7

0
L .i

/

/

l

I

I

~J
4 6
0, (deg)

case the dependence of S(q) on Reqj is smoothed out by
the large Imq~ and one can take advantage of the enor-
mous

q~~
resolution of the 0f scan. ' This resolution is

due to the slow variation of
q~~

with 0f, which allows us
to measure the diffuse intensity at a large angular dis-
tance from the specular beam while still at very small q~~.

In conventional small-angle scattering, e.g., at 0; )0„the
vertical structure of the density fluctuations would dom-
inate the 0f dependence of the structure factor. Figure
10 illustrates this effect for the example of Sec. IIIC.
Curves (a) and (b) show the structure factor for a 8f scan
for 8, =0.5' and 0. 1', respectively. Whereas curve (a)
shows short oscillations corresponding to the vertical ex-
tension of the sphere, the minima of curve (b) represent
the pure

q~~
dependence of C' . The typical length scale is

in both cases equally 2R =2000k, and the structure factor
for columnar structures with radius 1000k, plotted in
curve (c) shows minima at approximately the same angles
as curve (b).

In the second geometry, both angles 0;,0, (0, and the
diffuse intensity is measured as a function of P. This way,
Req~ is kept small while

q~~
can be varied over a wide

range. If 8;%8f, we can again avoid the tails of the spec-
ular beam while measuring at small

q~~
aIId qz.
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was supported by the Bundesministeriurn fiir Forschung
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FIG. 10. The structure factor as a function of Of correspond-
ing to the correlation function of a sphere with R = 1000K, at (a)
L9; &0, and (b) 0; &0,. For comparison the structure factor of
columnar structures with the same radius is plotted in (c}. All
other parameters are equal to those of Figs. 6, 7, and 9.
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