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First-principles local-density approximation optimizations for Pt(331), Pt(221), Pt(211), and Pt(533)
slabs, the surfaces of which are vicinal to Pt(111), are used to extract approximate theoretical energies
per unit length for the two varieties of unkinked step on Pt(111). As expected on the basis of bond
counting, the calculated energies of the (111)-type and (100)-type steps are nearly equal, about 0.46-0.47
eV per step-edge atom. Near equality of the step-formation energies does not agree with Michely and
Comsa’s finding that (111)-type edges are about 50% longer than (100) edges for islands on Pt(111) equili-
brated at 700 K, corresponding to a formation free energy that is 13% lower.

I. INTRODUCTION

The energetics of atoms in and near surface-defect
structures, particularly monoatomic steps, are basic to an
understanding of both crystal growth and surface chemis-
try. First-principles calculations of a surface-defect elec-
tronic structure have, nevertheless, been long in coming,
because the low symmetry of defects complicates their
analysis. With a few exceptions,1 such calculations have
only been done for s-p bonded materials.>? It is timely to
proceed further: Adsorption at transition-metal steps is
the focus of numerous experimental studies, with goals
ranging from the fundamental, e.g., the measurement of
surface diffusion barriers,* to the practical, e.g., improved
automotive catalysts.’ The burgeoning scanning tunnel-
ing microscopy (STM) literature of d-band-metal growth
morphologies begs for interpretation. A notable example
is the study of equilibrium island shapes on Pt(111), by
Michely and Comsa (MC).% It directly yields a fundamen-
tal parameter, the ratio of the energies per unit length of
the two close-packed step types (see Fig. 1) that can exist
on this surface.

Until now, most simulations of surface defects have
been based on semiempirical interatomic-force models.”
The reason is that the semiempirical schemes are compu-
tationally very fast. They are, therefore, well adapted to
the study of systems with many inequivalent atoms. But
the speed of the semiempirical methods comes at a cost,
the a priori simplification of the interatom force laws. In
the popular embedded atom method (EAM),? for exam-
ple, directional bonding and charge-transfer contribu-
tions are dropped at the outset. The reliability of the
concepts drawn from semiempirical simulations rests on
the assumption that the database used to construct the
force laws is suitable for the surface geometries of in-
terest. This questionable assumption can be avoided, or
at least tested, by applying first-principles methods,
specifically, local-density approximation (LDA) calcula-
tions.® The cost is, of course, much lengthier computa-
tions.

Here, I apply the first-principles approach to the ener-
getics of monolayer-high (111)- and (100)-type steps on
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the Pt(111) surface [see Figs. 1(a) and 1(b)]. I report
LDA-optimized geometries and corresponding surface
energies for Pt(331), (211), (221), and (533) thin slabs,
whose surfaces are vicinal to Pt(111). These surfaces
have relatively narrow (111) terraces. Those of the (331)
and (211) crystal slabs are three atom rows wide, while
those of the (221) and (533) films are four rows across.

FIG. 1. (a) Schematic of a monolayer high, (111)-type step on
a fcc(111) terrace. Notice that the step-edge atoms have seven-
nearest neighbors, two along the edge, two on the upper terrace,
one inside the solid and two at the step bottom. The percentage
changes shown, of the bond lengths relative to ideal, LDA Pt,
are those calculated for a 36 atom/unit cell, Pt(221) slab, i.e.,
one that is nine (111) layers across. (b) Schematic of a mono-
layer high, (100)-type step on a fcc(111) terrace. Again the
step-edge atoms have seven-nearest neighbors, two along the
edge, two on the upper terrace, but now two inside the solid and
only one at the step bottom. The percentage changes shown, of
these bond lengths relative to ideal, LDA Pt, are those calculat-
ed for a Pt(533) slab, nine (111) layers across.
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The (331) and (221) surfaces have (111)-type steps. The
steps on the (211) and (533) surfaces are (100) type. To
extract isolated-step formation energies, I extrapolate the
surface energies obtained for these relatively narrow-
terraced films to the arbitrarily wide-terrace limit.

The result of the extrapolation is a ratio of step ener-
gies, close to 1:1, that disagrees with MC’s experiment.
Similarly to the EAM results of Nelson et al.,” I find for-
mation energies of 0.46 and 0.47 eV per edge atom for
(111)- and (100)-type steps on Pt(111). This conflicts with
the STM data, which implies that to form a (111)-type
step costs 1312 % less energy per unit length than to
create a (100)-type step. The LDA thus fails to account
for a small but significant energy difference; using 0.47
eV/edge atom for the formation energy, the difference
should be about 0.06 eV per step-edge atom. Much of the
discussion presented below is aimed at determining the
source of this discrepancy. I consider numerical accura-
cy, use of the LDA itself, the importance of the relatively
high temperature at which the MC’s islands were equili-
brated and then frozen in, and the possibility of atomic
scale step reconstruction.

That the step-formation energy difference is small is
not a surprise. In the only published first-principles com-
parison of step energies on a metal, Al(111), Stumpf and
Scheffler (SS)X4)~2f) explain that it should be, because at
both (111)- and (100)-type steps, the step-edge atoms are
sevenfold coordinated.!® The fact that step-bottom atoms
have 11 nearest neighbors for (111) steps and only 10 for
the (100) steps is barely significant—the curve of binding
energy vs number of neighbors is expected to saturate
when the number of neighbors is large.!!

For (111)- as against (100)-type steps on Al(111), SS
predict a formation-energy difference of only —17
meV/atom. To compute such a small difference accu-
rately, it is essential to minimize numerical error. For
this reason, SS do not use vicinal surface calculations to
obtain step energies. Concerned that different sampling
of the surface Brillouin zone (SBZ) for different vicinal
surfaces might lead to unacceptably large errors, they re-
strict their focus to (111)-oriented slabs on which they ei-
ther carve grooves or add islands. Using such slab
geometries, they find it necessary to perform calculations
involving as many as 245 Al atoms per unit cell.

This is the reason that SS confine their attention to Al,
even though the available measurements (MC’s) concern
steps on Pt. Al’s soft pseudopotential and relatively low
valence corresponds to minimal computational cost. Ap-
plication of the same methods to Pt would be incon-
venient, if not unfeasible. On the other hand, although
studying steps and other surface features of Al is certain-
ly instructive, even highly accurate calculations of Al
step energies are not a substitute for reasonably accurate
calculations of Pt, if one wants to compare to Pt data,
and ultimately to simulate the growth of a Pt crystal.

SS emphasize the qualitative agreement of their
Al(111) step-energy ratio with MC’s for Pt(111). Their
calculation yields a 7.1% smaller formation energy for
(111)-type steps than for (100) type; for Pt(111), MC find
that the (111)-step-formation energy is 13+2 % smaller.
MC analyze STM images of hexagonal islands equilibrat-
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ed at about 700 K, and deduce the Pt(111) step-energy ra-
tio from the fact that (111)-type island edges of the equili-
brated islands are 1.5 times as long as (100) edges. SS
predict that an Al(111) the ratio would be 1.2

More recently, Tsong reported that equilibrated islands
on Ir(111) are perfectly regular hexagons.!> On Ir(111),
then, experiment implies equal formation energies for
(111)- and (100)-type steps. Does this result mean that the
Al calculations fail qualitatively to describe step energies
on Ir? Not at all. The zeroth-order result, with which
theory agrees, is that the step energies are close. As SS
note, the small formation-energy difference for the two
step types is likely a covalent effect. Calculating it for a
representative sample of materials is important to obtain
a basis for understanding its source. The analysis, how-
ever, is likely to be as challenging as explaining
differences in the heats of adsorption at fcc and hcp
threefold hollow sites on (111) surfaces.

It is worth noting, finally, that the present surface ener-
gy computations for vicinal surfaces, although they do
not involve a hundred-atom unit cells, still require a rath-
er large-scale calculational effort: For terraces that are A
atomic rows wide, the two dimensionally repeated cell
contains A atoms per (111) layer of slab thickness. To
eliminate interference between the two sides of a slab, as
well as to have an internal region that is bulklike to a
good approximation, one wants to consider slabs that are
several (111) layers thick. I study slabs that are seven or
nine (111) layers across, corresponding to 21 or 27 Pt
atoms per cell for the (331) and (211) cases, and 28 or 36
atoms per cell for the (221) and (533) surfaces. Calcula-
tions for unit cells of this size are facilitated by massively
parallel computation. The work reported here is based
on the use of the parallel implementation of a first-
principles, localized basis, LDA computer code (called
“QUEST”’) by Sears, Schultz, and Feibelman,'> and was
done on an 1824-processor Intel Paragon.

The remainder of this paper is organized as follows: In
Sec. II, I provide details of the computational approach.
In Sec. III, I present the results of the various vicinal-
surface calculations, i.e., geometries, work functions and
surface energies, as well as the extrapolation to isolated-
step formation energies. Finally, in Sec. IV, I discuss the
results, and particular, the possible sources of the out-
standing disagreement with experiment.

II. COMPUTATIONAL APPROACH

The step energies and geometries that I report here
emerge from self-consistent, local-density approximation
calculations,’ in a basis of contracted Gaussian orbitals.
The only physical and systematic approximations in the
method are the assumptions that the effects of electron
exchange and correlation (XC) are faithfully represented
by the Ceperley-Alder local XC potential,’* and that
electron-nuclear interactions are adequately described via
Hamann’s semirelativistic, generalized norm-conserving
pseudopotential.'®

Since the focus of the present study is a small observed
energy difference between Pt(111)- and (100)-type steps,
numerical accuracy is a key issue. Considerable care
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must be taken to choose an adequate set of basis orbitals
and to assure convergence of the various necessary real-
and momentum-space integrals. One must maximize er-
ror cancellation in extracting surface energies for vicinal
surfaces from thin vicinal slab calculations. Finally, one
needs an accurate way to obtain isolated step formation
energies from vicinal surface results. I address these vari-
ous issues in the following subsections.

A. Choice of basis orbitals

Although plane-wave-based electronic structure calcu-
lations have the enormous advantage that they can be
systematically improved by increasing the plane-wave
cutoff, for systems of strong-pseudopotential atoms, the
number of plane waves required per atom can be large.
This is a serious drawback when one wants to study unit
cells containing many atoms, and it is the reason I adopt
a basis of localized orbitals, no more than 15 per Pt atom,
to compute the energetics of vicinal slabs.

The disadvantage of a localized orbital basis is that it is
hard to establish how well converged it may be. My ap-
proach is to assure that for a representative slab with a
relatively small unit cell, the energy bands using the lo-
calized orbital set (contracted Gaussians) are in excellent
agreement with the bands that emerge from a well-
converged linearized augmented plane-wave (LAPW) cal-
culations.!® Since the LAPW method is systematically
improvable, this is an incisive comparison.

In the present case, I begin with the basis set developed
in Ref. 17 for a Pt(111) slab. It includes two s functions,
as well as the p- and one d-like radial function centered
on each Pt nucleus, and in addition, a p-like “floating”
(i.e., not nucleus-centered) orbital atop each surface-layer
Pt nucleus and an s function above each surface hollow.
With this basis, a total-energy optimization yields a Pt
lattice parameter of 7.36 bohr, in agreement with the
LAPW result, and for a five-layer ideal Pt(111) slab, the
occupied linear combination of atomic orbitals (LCAO)
energy bands disagree with the LAPW bands by no more
than 0.11 eV across the surface Brillouin zone (SBZ).

Of course there are no steps on a Pt(111) slab. So suc-
cess in comparing LCAO and LAPW results for (111)
slabs is not a guarantee that a similar comparison would
succeed for vicinal ones. On the other hand, previous
Al(111) and AIl(331) calculations have shown that if an
atom-centered orbital set is adequate to describe the (111)
surface, then adding more floating Gaussian orbitals in
the neighborhood of step edges provides the additional
variational flexibility needed to describe the steps.?® To
describe vicinal Pt surfaces, I follow the recipe that
worked well for Al(331), adding a second layer of s func-
tions above the (111) terraces’ hollows, and making no
distinction between the centers of floating orbitals and Pt
nuclear positions when it comes to moving orbital centers
to optimize vicinal slab geometry. In the (111) case, I
place the first layer of hollow site orbitals 4 bohr above
the outer plane of Pt nuclei. For the vicinal surfaces, I
start the second layer of hollow orbitals 6 bohr above the
outer Pt(111) terraces. This permits considerable elec-
tron polarization to occur near the step edges. [The ideal
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inter-(111)-layer spacing is 4.25 bohr.]

As a rule one finds that relaxed steps are flatter than
ideal. This is a simple bond-order bond-length correla-
tion: the few bonds of low-coordination surface atoms are
shorter than the many bonds of better-coordinated
atoms. Since the bonds between step-edge Pt’s and their
nearest neighbors are expected to be considerably shorter
than the bond length in bulk Pt, it is important to choose
an orbital basis flexible enough to permit near-step bond
compression. With this in mind, I add an extra (‘“2nd §)
d-like Gaussian orbital centered on each Pt atom that is
exposed to the vacuum, and also on the step-edge nearest
neighbor that does not contact the vacuum. I choose the
attenuation constant of this orbital to equal 0.15 bohr 2.
A recalculation of bulk Pt with the extra d orbital yields
a Pt bulk modulus only 1% larger than the value of 3.09
Mbar that one obtains in the LAPW approach. Leaving
it out results in cohesion for compressed bulk Pt that is
too weak, and thus a bulk modulus that is 9% higher
than the LAPW value.

B. Surface energy calculations

To compute the energies of the (111)- and (100)-type
steps on Pt(111), as explained in detail in Sec. II C and
Appendix A, I extrapolate surface energy results for vici-
nal surfaces with rather narrow terraces. A surface ener-
gy, E*, is typically extracted from an N-layer slab calcula-
tion, by applying the formula

E*=[Egu(N)—NEpy ]/2 . (M

In Eq. (1), Eg,,(N) is the slab total energy per two dimen-
sionally repeated unit cell and Ey;, is the energy per cell
for a ‘“bulk” layer in the interior. N is assumed to be
sufficiently large that quantum size effects are negligible.
The factor 2 accounts for the fact that a slab has two
symmetry-equivalent surfaces.

There are several ways that one might choose to com-
pute E, - In the case of vicinal surface calculations this
choice can make an important difference, because N is a
rather large number. For example, for a slab whose ter-
races are four-atom rows wide by seven (111) layers thick,
N=28. Thus, a difference of 0.01 eV in the value used
for E,,y corresponds to a difference of 0.14 eV in the re-
sulting surface energy. Since the formation-energy
difference observed for Pt(111)- and (100)-type steps is on
the order of only 0.06 eV, care is obviously required in
deciding what to use. The main idea, as emphasized by
Stumpf and Scheffler,¥~2® j5 to minimize errors associ-
ated with finite slab thickness and with sampling the Bril-
louin zone via a finite number of k vectors.

A straightforward way to avoid a finite-thickness error
in computing Ey, is to evaluate it directly for a three di-
mensionally periodic bulk crystal. This is in contrast to
the usual approach, comparing total energies of slabs of a
different number of layers. It also differs from single slab
methods in which each layer’s contribution to the total
energy of a slab is evaluated separately.!® Small, finite-
thickness errors are unavoidable in a value of E;, calcu-
lated by these methods, because the effect of the surfaces
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is not completely screened out in the center of a reason-
able thickness slab. Small errors, to reiterate, are
dangerous when they are multiplied by a substantial N /2
to obtain the desired result.

The advantage of computing E , directly from slab
total energies is the cancellation of errors associated with
the use of a finite k-vector sample in evaluating
Brillouin-zone integrals numerically. Since losing this
cancellation is undesirable, it is clear that evaluating
E, . directly for a three dimensionally periodic bulk
crystal only make sense if this is done differently for each
slab orientation, so that the same BZ sample can be used
for slab and bulk in each case.

The bulk energy results quoted in Table I, which differ
by as much as 0.001 Ry for different vicinal planes, show
that this is important, though less so if one uses a finer k-
vector sample. For each orientation listed, I compute
E, , by repeating a several-layer supercell of that orien-
tation to form bulk fcc Pt. For simplicity, I choose the
number of layers in the repeated cell, so that the transla-
tion vector corresponding to the repeat is perpendicular
to the plane in question. For example, I use a 19-layer
supercell in the (331) orientation, because if there is an
atom at (x,y)=(0,0) in the vth (331) plane, then the next
(331) plane with an atom at (x,y)=(0,0) is plane number
v+19. With this supercell, I sample the k,-k, plane
identically in the (331) surface and bulk total-energy cal-
culations; similar supercell constructions work for the
other slab orientations.

I illustrate the convergence of k, -k, sampling, in Table
I, by comparing the surface energies I obtain in (221)-slab
calculations, using 3 as against 12 k,-k, points in the ir-
reducible quarter of the SBZ. The effect of halving the
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spacing of the k, -k, sample points is less than 1 meV/AZ
Using formulas derived in the next subsection to extrapo-
late from the computed surface energy to an isolated
(111)-type step energy, I find that halving the k, -k, spac-
ing changes the predicted (111)-step energy by only 1
meV, or about 1.1% of the total step-formation energy
per edge atom. The excellent convergence of surface and
step energies, using only a 3 k-vector ISBZ sample, is a
consequence of the flatness of Pt’s d bands.

C. Extrapolation to infinitely wide terraces

In this subsection, I set forth the asymptotic expres-
sions I use to extrapolate to the formation energies of iso-
lated, unkinked steps, from surface energies computed for
periodic vicinal surfaces with relatively narrow (111) ter-
races. I provide a detailed derivation of these expressions
in Appendix A (see also, Ref. 7).

Suppose that the terraces on a periodic vicinal surface
are A atom rows wide. [By definition, I count the step-
bottom row as a terrace row.!°] If the energy to create a
step were zero, then the surface energy per vicinal surface
unit cell would be AEZ_, corresponding to A exposed
atoms and a surface energy per surface atom, E3,,, for
the infinitely wide terrace. Since the step-formation ener-
gy is not zero, let the energy per unit cell of the vicinal
surface by AE o, + Cgep(A).

With this definition, one can prove (see Appendix A),
for surfaces with wide (111) terraces, that the formation
energies per step-edge atom are

Elll-step—’[cm-step(“’)+2E3111/3]/d111 ’ 2

and

TABLE 1. Pt vicinal slab energetics. Summary of calculated vicinal slab energetics. In the first
column, the orientation of the slab surface, and A, the number of rows across a terrace. Second column:
Thickness of the slab in (111) layers. Third column: Number of equally spaced k vectors used to sam-
ple 1 of the surface Brillouin zone. Fourth column: Total slab energy, in Ry. Fifth column: Energy per
layer of a bulk Pt, calculated using a supercell of this orientation [e.g., of (331) layers in the row corre-
sponding to a (331) slab). Sixth column: Surface energy of the vicinal slab per surface area. Seventh
column: The excess energy C(A), as defined in Sec. I C. Eighth column: the energy of an isolated step
of this type, as obtained from Eq. (2) or (3) for (111)-type or (100)-type steps.

Slab Bulk
Surface No. of energy atom
plane, (111) No. of (Ry/unit energy E surf, Cyep(A) Egep

A layers (ky,k,)s cell) (Ry) (eV/A") (eV) (eV/atom)

(331),3 9 8 —1428.3408 —52.914 89 0.149 —0.084 0.481
(331),3 7 8 —1110.8484 —52.91489 0.150 —0.064 0.501
(221),4 7 12 —1481.1310 —52.91482 0.145 —0.096 0.469
(221),4 9 12 —1904.4503 —52.91482 0.144 —0.102 0.463
(221),4 9 3 —1904.4029 —52.91348 0.144 —0.107 0.458
(211),3 9 10 —1428.3030 —52.91499 0.147 0.192 0.474
(211),3 7 10 —1110.8103 —52.91499 0.148 0.210 0.492
(533),4 7 3 —1481.0538 —52.91355 0.144 0.188 0.470
(533),4 9 3 —1904.3619 —52.91355 0.144 0.188 0.470
(111),1 9 19 —476.11099 —52.91506 0.129
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E 100-step— [ C100-step( )+ E {11 /31/d 111 3)

for the two kinds of unkinked steps. In these equations,
d1; is the nearest-neighbor distance of the fcc crystal,
E{,, is the value of Ej,, appropriate to a (111) terrace.
The terms involving E 1;;, in these formulas, represent the
fact that step-edge atoms overlap the underlying terraces,
reducing the total area exposed to the vacuum per sur-
face atom. The reason that the area-correction terms are
different in Eqgs. (2) and (3) is that the (111)-type step rises
at a steeper angle from the (111)-type step rises at a
steeper angle from the (111) terrace than does the (100)-

type step.

III. RESULTS
OF THE VICINAL-SURFACE CALCULATIONS

Here, I present the results of optimizing the geometries
of the Pt(331), (221), (211), and (533) slabs, including step
geometries, work functions, and surface energies. I extra-
polate the surface energy results to vicinal surfaces with
infinitely wide terraces, via Egs. (2) and (3), obtaining for-
mation energies for (111)- and (100)-type steps on Pt(111).

A. Step geometries

I relax the various films to their optimal unit-cell
geometries via a modified Broyden iteration-relaxation
method,? fixing the atomic positions of the central (111)
layer in each case. Thus, for the (331) and (211) films, I
hold the unit-cell’s central three atoms fixed in relative
position, while for the (221) and (533) slabs I fix the cen-
tral four Pt nuclei. I relax the remaining atomic posi-
tions until no orbital center is subject to a force greater
than 2 mRy/bohr. For the thinner slabs [seven (111) lay-
ers across], this procedure leaves the central (111) layer
under some stress. Allowing it to relax as well, for the
(331) slab, reduces the calculated surface energy by only 4
meV/atom. For the thicker slabs [nine (111) layers
across], the forces on the central-layer atoms are less than
2 mRy/bohr, even though they have not been allowed to
relax. Thus, the surface energies obtained for the slabs
that are nine (111) layers across the representative of
what one would find for still thicker ones.

In general, relaxed steps are expected to be flatter than
ideal. Step-edge atoms share their valence electrons with
fewer neighbors and, therefore, have shorter, stronger
bonds than atoms that are more highly coordinated.
These effects have been documented for close-packed
steps on Al vicinal surfaces, and, as seen in Tables II and
II1, also occur on the vicinal surfaces of Pt(111). In Table
11, for the various vicinal slabs, I show how the lengths of
step-edge atoms’ bonds to their neighbors compared to
the bulk Pt nearest-neighbor spacing. In Table III, I do
the same for the bonds of the step-bottom atoms to their
nearest neighbors. Systematically, one sees that the step-
edge atoms are pulled toward the remainder of the solid.
The bonds that are shortened most are the ones between
step-edge atoms and their nearest neighbors inside the
metal. Table III shows that at the same time, the step-
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TABLE II. Changes in distances to nearest-neighbors of
step-edge atoms. Summary of step-relaxation results for the
edge atoms of the various vicinal slabs. [In all cases, the slabs
are the ones that are nine (111)-layers thick.] Percentages given
represent changes in nearest-neighbor bond lengths of the step-
edge atoms relative to the nearest-neighbor separation, 5.21
bohr, in bulk, LDA Pt. Note that the step-edge atoms move to-
ward the solid and toward the step, so that the step flattens.

Distance  Distance Distance Distance

Neighbor on (331) on (221) on (211)  on (533)
Along step 0.0% 0.0% 0.0% 0.0%
Step bottom —2.5% —2.4% —2.5% —2.4%
Upper terrace —3.7% —3.0% —2.9% —2.5%
Interior —4.4% —4.9% —3.1% —3.2%

bottom atoms move outward and away from the step
edge. The bonds between these atoms and their neigh-
bors on the step side become longer, those to their neigh-
bors away from the step shorten, and finally, their bonds
to the layer below are lengthened. The LDA nearest-
neighbor distance in bulk Pt is 5.21 bohr. Thus, the re-
laxations in Tables IT and III correspond to changes in
Pt-Pt bond lengths of the order of as much as 0.26 bohr.

B. Work functions and step dipole moments

The work function, ®, of a vicinal surface is often?!
lower than @ for the terrace to which it is vicinal.?>?3
This phenomenon is generally attributed to the Smolu-
chowski effect,?* the smoothing of the electron-density
corrugations at a surface driven by electron kinetic-
energy reduction. Smoothing corresponds to a displace-
ment of surface electron density toward the solid and
thus (recalling that this is the same electron displacement
direction as when alkali-metal atoms are adsorbed on a
surface) a negative A®. In Table IV, I give values of A®
calculated for the various vicinal surfaces studied here.
They are negative, as expected. In what follows I extra-
polate these results to surfaces with wider terraces, both
for the sake of comparison to experiment (Ref. 22), and
to obtain values of the dipole associated with each step
type.

As the terrace width of a periodic vicinal surface nar-
rows, the dipole moment associated with each of its steps
changes, for two reasons. One is that the dipoles of the
neighboring steps interact more strongly with each other.
This can increase or decrease the step dipole moments de-
pending on the dipole orientation. The other reason is
that for narrower terraced surfaces, the normal to the vi-
cinal surface tilts farther away from the normal to the
terraces. This tilt reduces the contribution of each step
to the vicinal-surface work function, by a factor of the
cosine of the angle between the normals, even if the
charge-density distribution near each step is unaffected
by the electric fields associated with neighboring steps.

For terraces three and four rows wide, the effect of the
relative orientation of vicinal surface and terrace normals
is no more than a few percent. For example, the cosine
of the angle between the (331) and (111) directions is 0.93,
while between (221) and (111) it is 0.96. If interactions
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TABLE III. Changes in distances to nearest neighbors of step-bottom atoms. Summary of step re-
laxation results for the step-bottom atoms of the various vicinal slabs. [In all cases, the slabs are the
ones that are nine (111) layers thick.] Percentages given represent changes in nearest-neighbor bond
lengths of the bottom-edge atoms relative to the nearest-neighbor separation, 5.21 bohr, in the bulk,
LDA Pt. Note that the step bottom atoms move out of the solid and away from the step, so as to allow

the step to flatten.

Distance Distance Distance Distance

Neighbor on (331) on (221) on (211) on (533)

Along step 0.0% 0.0% 0.0% 0.0%
Step edge —2.5% —2.4% —2.5% —2.4%
Exposed on terrace —2.9% —2.2% —2.7% —1.7%
Under step on terrace +2.6% +3.5% +0.8% +1.3%
Subterrace away from step +0.4% +0.3% +2.4% +1.5%
Subterrace toward step +3.7% +4.6% +3.0% +3.6%

between neighboring step dipoles is also small, then the
work-function change for vicinal surfaces of a given step
type should be proportional to the dipole moment per
step and inversely to the step-step separation. Table 1V,
shows that this is roughly the case. Thus, one can easily
extract approximate values of the step dipole moment for
each step type.

The dipole associated with the (100)-type step is calcu-
lated to be about 33% smaller in magnitude than that of
the (111) steps. This result is consistent with the Smolu-
chowski smoothing picture.?* (100)-type steps rise less
steeply from the (111) terraces than (111) steps do. The
electron-gas corrugation associated with (100)-type steps
is, thus, weaker than with (111) type. Consequently, one
would expect less electron-density smoothing and a
smaller work-function reduction relative to Pt(111) for vi-
cinal surfaces with (100)-type steps. Interestingly, the
measurement of Pt vicinal-surface work functions by
Besocke, Krahl-Urban, and Wagner (BKW) (Ref. 22)
yields the opposite result. By observing the low-energy
cutoff of the secondary electrons emitted when a 200-eV
electron beam strikes an appropriately oriented, cylindri-
cal Pt crystal, BKW find that A® does indeed vary in-

versely with terrace width. Thus, they extract step dipole
moments of —0.52 and —0.63 D/edge atom for (111)-
and (100)-type steps, from their data. The corresponding
calculated values, —0.21 and —0.14 D/edge atom are
evidently considerably smaller and oppositely ordered.

In attempting to understand the source of this
discrepancy, bear in mind that BKW did not measure
work functions for terraces any narrower than three
times the width of the four-row-wide, (221) and (533) ter-
races studied here. Extrapolating to the step densities
corresponding to Pt(221) and Pt(533), which amounts to
assuming that coupling among the step dipoles can be
neglected even for terraces four atoms wide, one obtains
A®(221)=—0.86 eV and A®P(533)=—0.96 eV from
BKW’s results. The values calculated here are —0.35
and —0.21 eV. It seems unlikely that a work-function
discrepancy as large as 0.75 eV could be the result of a
systematic LDA error.

One possibility worth considering is that the extrapola-
tion is invalid. That is, when there is a step every third
or fourth row of atoms, neighboring dipoles depolarize
each other, analogously to what happens when alkali-
metal coverage is increased on metals. This seems unlike-

TABLE IV. Pt vicinal surface work functions. Calculated work functions ® and step-related dipole
moments . Note that the work-function change, 8P, times the width, w, of the unit cell is roughly a
constant for each step type. The dipole moments are computed in units of D/step-edge atom, using the

Helmholtz formula (cf. Ref. 21).

Surface Number width, w (A)

plane of layers P (eV) 5D (eV) of unit cell w (A)5D (eV) p (D)/step
(331) 9 5.62 —0.49 6.00 —2.94 —0.21
(331) 7 5.69 —0.42 6.00 —2.52 —0.18
(221) 7 5.76 —0.35 8.26 —2.90 —0.21
(221) 9 5.74 —0.37 8.26 —3.03 —0.22
(211 9 5.84 —0.27 6.75 —1.82 —0.13
(211) 7 5.88 —0.23 6.75 —1.58 —0.11
(533) 7 5.90 —0.21 9.03 —1.90 —0.14
(533) 9 5.93 —0.18 9.03 —1.63 —0.12

(111) 9 6.11
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ly, however, given that the calculated values of ug., are
almost equal for terraces three and four rows wide, that
have the same type of step (cf. Table IV).

A stronger possibility is that BK W’s results might have
been influenced by undetected contamination of the Pt
crystal surface,?® and/or by a miscut leading to the pres-
ence of kinks.?® As a first test of the idea that the BK W’s
surfaces were contaminated, I optimized the geometries
of Pt(331) and Pt(211) slabs, on which rows of H atoms
are adsorbed at every step-edge twofold site. The work
functions for these ‘“H-contaminated” slabs, relative to
clean Pt(111), are —0.31 and —0.21 eV. For clean
Pt(331) and Pt(211), the shifts are instead —0.49 and
—0.27 eV. Thus, adsorbed H reduces the magnitude of
the work function changes associated with steps. This
means that had “adventitious H” affected the BKW re-
sults, then on an uncontaminated Pt sample the observed
work-function changes should have been still bigger. The
disagreement with the present calculations would then
have been worse rather than better.

Of course, H is far from the only potential contam-
inant. Mundschau and Vanselow?® point out that S, P,
and Si contamination of Pt surfaces are easy to miss, be-
cause of overlap of Auger lines. In their review of the
literature concerning reconstruction of the “clean”
Pt(100) surface, “not one Auger spectrum could be found
providing unequivocal evidence of surface cleanliness.”
This problem was not widely appreciated prior to
1981.2:28

In view of the cleanliness question, an experimental at-
tempt to reproduce the results of Ref. 22 would be wel-
come. Such a study should not only involve close atten-
tion to surface impurities, but also to crystal orientation.
A slight miscut might lead to a significant kink density.?®
Kinks in themselves can be expected to affect work func-
tions. In addition, kinks are excellent nucleation sites for
the buildup of surface impurities.

C. Surface energies

To compute surface energies for the various vicinal
slabs, I use Eq. (1). As discussed above (see Sec. II B), to
maximize error cancellation associated with BZ sam-
pling, I compute a slightly different value of E . for
each slab orientation by repeating a several-layer super-
cell of the same orientation to form bulk fcc Pt. The re-
sulting surface energies are listed in Table I. As expect-
ed, reflecting the fact that the energy to form a step is
greater than zero, the surface energies of the vicinal slabs,
are greater than that of Pt(111).

The convergence of the computed surface energies with
regard to slab thickness is very good, by the standards of
usual LDA calculations. They differ by only a few
meV/A? i.e., less than 1%, between the calculations for
slabs that are seven and nine (111) layers in cross section.
Convergence with respect to BZ sample is indicated by
the excellent agreement of the surface energies computed
for Pt(221), using 3 or 12 k-vector samples of the irreduc-
ible 1 of the zone. Rapid convergence of the BZ sam-
pling is expected for a d-band metal, because the bands
are relatively flat.
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Comparing slabs with the same number of atom
rows/terrace, one sees that the surface energies of the
slabs with (111)- and (100)-type steps are very close to
each other. This suggests the result to come for isolated-
step energies; they are virtually identical for the two-step

types.

D. Formation energies
for (111)- and (100)-type steps on Pt(111)

To estimate formation energies of isolated (111)- and
(100)-type steps on Pt(111), I use the extrapolation formu-
las Egs. (2) and (3). The weak dependence of the excess
surface energies C g, (A) and Cjgp ep(A) between A =3
and 4 is an expected manifestation of step-step interac-
tion. This effect amounts to a difference in the excess sur-
face energy per vicinal-surface unit cell, or equivalently,
per step of roughly 20 meV. Importantly, however, the
step-step interaction eifect is repulsive for both the (111)-
and (100)-type steps. That is, in both cases, the excess
surface energy per step drops as one goes from terraces
that are three-atom rows wide to four rows wide. Thus,
the error in the calculated step-energy difference associat-
ed with step-step interaction tends to cancel.

The calculated formation energies for (111)- and (100)-
type steps are given in the last column of Table I. The
best values for isolated steps on a semi-infinite Pt crystal
are 0.46 eV/atom for the (111) step and 0.47 eV for the
(100) step, corresponding to the widest (four-atom row
wide) terraced and thickest [nine-(111) layer thick] slabs.
In contrast to the conclusion that is apparent from MC’s
STM images of islands on Pt(111), these energies are
equal to within 10 meV/edge atom. In the concluding
section of this paper, I discuss possible reasons for the
discrepancy.

IV. DISCUSSION

It is not hard to conceive of explanations for the
discrepancy between the relative energies of (111)- and
(100)-type steps extracted from the Michely-Comsa STM
images, and those found here. To begin, it is worth
remembering that the experimental energy difference is
only 13% of the average of the step-formation energies.
Thus, the formation-energy difference that must be ac-
counted for is only 60 meV /per step-edge atom.

The possible explanations for the discrepancy between
the calculated formation energy ratio and the MC data
are as follows.

(1) It stems from a failure of the LDA. Since there ex-
ists no systematic scheme for improving on LDA, it is
hard to refute this idea. There is plenty of evidence that
LDA calculations predict condensed matter structures
accurately. Nevertheless, for two atomic geometries that
are close in energy, the reliability of the local-density ap-
proximation is open to question.

The results of EAM calculations by Nelson et al. do
stand as something of a counter argument. The EAM,
whose parameters are fit to an experimental database, is
not the LDA and generally yields different lattice param-
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eters, surface energies, etc. It is, therefore, of interest
that the EAM formation energies for the two step types’
are virtually equal (though somewhat smaller, 0.36
eV/atom rather than 0.47), just as the LDA’s are.

(2) The discrepancy is a matter of basis-set convergence
or some other convergence issue. The fact that the near
equality of step-formation energies holds for both three-
row-wide and four-row-wide terraces of two different
thicknesses represent a strong argument that the terraces
I used were wide enough, and that the slabs were thick
enough. In a LCAO calculation, one can never prove
that the basis set is converged. I have, however, conduct-
ed numerous tests involving adding floating orbitals,
longer-tailed Gaussians on the surface Pt’s, etc. As is
necessary in a variational calculation, adding extra func-
tions does yield somewhat improved cohesion. The step-
formation-energy results quoted in Table I are thus all
perhaps 30 meV/atom higher than they would be for the
best basis set. But what is at stake in the comparison to
the MC data is the relative energy of the two-step types.
I have found no basis improvement that affects the ener-
gy difference to within an order of magnitude of the 60
meV necessary to account for MC’s island shapes.

(3) The steps in the experiment are locally reconstruct-
ed. In the calculations reported here, I start from an
“ideal” vicinal slab geometry, i.e., Pt positions at the sur-
face that correspond to whichever crystal plane of bulk,
fcc Pt. These positions are allowed to relax, but not to
adopt a lower-symmetry configuration. Nor do I add or
subtract atoms in the unit cell. Under ordinary cir-
cumstances, and certainly in the images of Michely and
Comsa,’ resolution is not adequate to reveal individual Pt
atom positions. Thus, step reconstruction cannot be
ruled out. On the other hand, under certain STM tip
conditions, presumably when there is an atom or cluster
on the tip that is easily deformed,? atomically resolved
STM images can be obtained even for as weakly corrugat-
ed metal surface as Pt(111). By this means (with a Xe
atom on the STM tip), Eigler has obtained atomically
resolved images of unkinked steps on Pt(111) that show
no sign of any local reconstruction.*

(4) The experimental step-energy difference is a finite-
temperature effect. LDA energy and geometry optimiza-
tion is a zero-temperature calculation. The MC islands
were equilibrated and quenched at a temperature T above
700 K.° This temperature, expressed as an energy, is
roughly 60 meV. Thus, kT is of the same order of magni-
tude as the energy difference that needs to be explained.
Nelson et al. show, in the course of their EAM study,
that one can ignore step-wandering (‘“‘configurational en-
tropy”) contributions to the free-energy difference of the
two-step types.’ They do not consider the effects of vibra-
tional entropy, however.

Qualitatively, one would not expect a large vibrational
entropy contribution to the ratio of the step free energies.
Associating small entropy with stiff springs and large en-
tropy with soft ones, the fact that the zero-temperature
formation energies are about the same for the two step
types suggests that their free energies will also be. Never-
theless, if one is interested in formation free-energy
difference of only 60 meV, a calculation is certainly war-
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ranted. Such a calculation, based on the EAM, is in pro-
gress.>!

V. CONCLUSION

The regularity of the hexagonal islands equilibrated at
over 700 K and observed via STM by Michely and Com-
sa on Pt(111),% offers an appealing experimental test of
our ability to simulate the energetics of defects on
transition-metal surfaces. Nevertheless, MC’s island
shapes are the result of a small difference in the free ener-
gies per unit length of the two kinds of step, (111) and
(100) type, that form the island edges, that may, in fact,
be dominated by the entropy contributions. Accounting
for the island shapes accordingly remains a problem, one
that lies at the limits of present-day computation.
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APPENDIX: DERIVATION
OF FORMATION-ENERGY FORMULAS
FOR WIDELY SPACED STEPS

To obtain the asymptotic expressions for the formation
energy of an isolated, unkinked step, Egs. (1) and (2) of
Sec. II C, I compare the surface energies per unit area of
wide-terraced vicinal and perfectly flat surfaces. In order
to extrapolate to arbitrarily wide terraces in the vicinal
case, it is convenient to consider the area per surface
atom and the energy per surface atom separately.

First consider the areas. Suppose that the terraces on a
periodic vicinal surface are A atom rows wide.!® Let d,,,
be the lattice repeat distance along a step edge and let
Wierr De the width of one terrace unit cell. Then within a
single vicinal-surface unit cell, the terrace area exposed
between each step edge and the next step bottom is
(A—1)d s Wyerr» corresponding to A—1 terrace unit cells,
each of area A, =d oy Wier,- On a fce(533) surface, for
example, the (111) terraces are four (011) rows wide and
the (111)-terrace area exposed between each step edge
and the next step bottom, in each (533) unit cell, is 34,
where A,;;=d?,,V3/2 is the area of the (111) surface
unit cell. dy;; is the nearest-neighbor distance in the fcc
crystal, and w,,; =d;V'3/2.

To establish a comparison between the areas of flat and
vicinal surfaces, I define dwg,,(A) via the requirement
that [(A— Dwe, +0wgep(A)]d e, be the area of the
vicinal-surface unit cell. Swg.,(A) is generally greater
than 0. It equals zero only if the steps rise at right angles
from the terraces. Swg,,(A) is also less than wy.,. It
would equal w,,, for a step that lies flat on the terrace,
i.e., a step that does not rise at all.

Now consider the surface energy of the vicinal-surface
unit cell. If the energy to create a step were zero, this
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quantity would be AEj},,, corresponding to A exposed
atoms and a surface energy per surface atom, E¥,,, on the
infinitely wide terrace. The step-formation energy is not
zero, of course, because atoms are coordinated differently
at steps and on terraces. Therefore, let the energy per
unit cell of the vicinal surface be AE,, +Cg,,(A), where
Cgep(A) represents the correction to the surface energy
per unit cell, due to the existence of the step.

One can now write the expression for the surface ener-

1

E*/ AN —E\gr / Apery +({Cop(00)F E oy [ 1 — 8 g0,

terr terr step (

The first term in Eq. (A2) is the surface energy per unit
area of the terraces. In the next, the coefficient of the in-
verse terrace width,

Estep_> { Cstep( @ )+Eterr[ 1 —awstep( ®© )/wterr]} /dterr ’
(A3)

equals the extra energy per unit step length associated
with isolated steps. Notice that E., is the sum of two
contributions. That involving Cy,,( =) is associated with
the altered coordination of the atoms that reside near the
step edges. The other, represents the fact that step-edge
atoms overlap the underlying terraces, reducing the total
area exposed to the vacuum per surface atom.

The first contribution can only be estimated by com-
puting Cg.,(A), for small values of A, and extrapolating
the results to A= . If step-step interactions rapidly ap-
proach zero as a function of A, then the extrapolation is
trivial. The second term is a geometrical factor. It can
be calculated simply and exactly, as follows.

In the case of (111)-type steps on a surface vicinal to
fcc(111), the area of the unit cell is d?[3A2/4—A+1]'72,
where d is the nearest-neighbor distance in the crystal.
A=3 for the (331) surface, 4 for the (221), etc. The width
of the (111)-terrace unit cells is w;;; =dV'3/2. Thus, for
vicinal surfaces with (111)-type steps,

dwi (M)=d{[3A2/4—A+1]"2—(A—1)V3/2}) . (A4
In the limit of wide terraces, i.e., large A, Eq. (A4) yields
5w111(7»~—>00 )——>w1“/3+0(}\,_1) . (AS)

Equation (AS5) says that since the step-edge atom of a
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gy per unit area, A(L), of the vicinal surface,
E*/ AM)Z[AE (g + Cyep (M) 1/[(A— Dwep,
+ 8 e (M e - (A1)

In the limit of wide terraces, i.e., large A, Eq. (A1) can be
expanded in powers of A~'. Assuming that C, (1) and
8w, approach the constants Cg,,( ) and Swg, () in
this limit, one has

)/wterr]}/dterr)/}\’wterr—’_o()\‘_z) . (A2)

(111)-type step lies above the midpoint of an equilateral
triangle, whose base is at the step bottom, only 1 of the
step bottom atoms’ (111) unit cell is exposed to the vacu-
um.

In the case of (100)-type steps, the area of the unit cell
is d*[3A*/4—A/2+3/4]'/2. Here, A=3 for the (211)
surface, 4 for the (533), etc. Thus, for vicinal surfaces
with (100)-type steps,

dwio(A)=d{[3A2/4—A/2+3/4]'2—(A—1)V3/2} .
(A6)
In the limit of large A, Eq. (A6) yields

8w g0 A—> 0 )—2w;;, /3+0(A7Y) . (A7)

According to Eq. (A7), since the step-edge atom of a
(100)-type step lies above the midpoint of an equilateral
triangle, whose apex is at the step bottom, now Z of the
(111) unit cell corresponding to step bottom atoms is ex-
posed to the vacuum.

Substituting Egs. (A5) and (A7) into the general formu-
la, Eq. (A3), one finds the final results,

E11:step— [Ciirstep( ) +2E Yy /3]/d 1y, (A8)

and

E 100-step = [ C100-step( @ )+ E 111 /3]/d 1y - (A9)

The difference between the area-correction terms in these
formulas reflects the fact that the (111)-type step rises at

a steeper angle from the (111) terrace than does the
(100)-type step.
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