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Bragg-confining structures with canventianal and efFective-mass superlattices
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The electronic structure of perturbed superlattices is discussed within the effective-mass approx-
imation. Expressions for bound state energies and wave functions in these structures are derived
in general form, valid for any symmetric form of the potential and effective-mass modulation. The
special case of rectangular superlattices with a perturbation layer is considered in more detail. The
inHuence of the structure parameters on properties of Bragg-con6ned states is analyzed for both the
conventional structures, and those relying on the efFective-mass modulation only, the latter being
6rst proposed in this work. It is found that the fulfillment of Bragg conditions does not neces-
sarily lead to optimally localized Bragg-confined states in conventional structures, but it does in
effective-mass modulation ones. Peculiarities of bound states crossing the zero energy gaps are also
discussed.

I. INTRODUCTION

Ever since the first proposal of semiconductor super-
lattices (SL), these structures keep on raising a con-
siderable interest in research of both their fundamental
properties and of their possible applications. It is well
known that the electronic structure of perfect SL's is
miniband like, i.e., it has a series of allowed minibands
of continuum states separated by minigaps (e.g. , Ref. 2).
Deviations of the structure from strict periodicity intro-
duce bound (discrete) states, as is known from the early
studies of surface terminated bulk crystal by Tamm.
However, Tamm states in semiconductor crystals, lying
in the band-gap region, proved very diFicult for exper-
imental observation, because real surfaces have a more
complicated structure than was initially assumed. On
the other hand, the Tamm-like states in the superlat-
tice/bulk interface (the analogue of bulk/vacuum inter-
face) have been experimentally observed, 4 following the
theoretical studies of their electronic and optical
properties. Other related structures have also been stud-
ied, among them the SL with an "artificial" defect, which
is a SL with one of its layers (the perturbation layer) in-
tentionally made different from the others. These were
first studied by Combescot and Benoit a la Guillaume~6
and Bastard, and the existence of bound states in
them was predicted (however, such states were consid-
ered to be very difficult for experimental observation).
Physically, the occurrence of such states is explained. by
considering the perturbation layer as a separate quan-
tum well or barrier, possessing its own resonance and
(in the case of well only) bound states. Waves pene-
trating the SL portions of structure get reHected on SL
periods, and if the rejections from all the periods hap-
pen to interfere constructively in the perturbation layer
region, then one gets a localized wave function, corre-
sponding to a bound state. This is a quantum-mechanical
analogue to the well-known optical phenomenon appear-
ing in Fabry-Perot resonators with Bragg mirrors, and

in the field of semiconductor SL's it has first been dis-
cussed in Ref. 19. The effect has recently been exper-
imentally confirmed by Capasso et al. , by measuring
the absorption in (A1In)As/(GaIn)As structure in the
in&ared. This structure, also known as Bragg-confined
structure (BCS), has further been studied theoretically
and experimentally. Bound states appearing in them
are quite interesting in that they resemble to the so-
called "bound states in continuum" that occur in some
specially tailored. potentials in quantum mechanics,
though there is a significant difference between the two:
the Bragg-confined states are isolated by finite gaps &om
the neighboring continuum regions.

In this paper we present the theoretical considerations
of bound states in perturbed SL's, taking the general case
of the potential and effective-mass modulation described
by arbitrary symmetric functions. Expressions are ob-
tained for bound-state energies and their other prop-
erties, which are valid beyond the rectangular Kronig-
Penney —type structures. We then specialize to Kronig-
Penney —type structures, with the rectangular modula-
tion of the potential and the effective mass, i.e., to BCS's
mostly studied at present. Two types of these are con-
sidered in more detail: the conventional BCS's, where
both the potential and the effective mass are modu-
lated, and "effective-mass BCS," where only the effec-
tive mass is modulated while the potential is Hat. We
explore the bound. -state properties as they depend on
the structure parameters, and also the relation between
the Bragg reHection conditions and degree of bound-state
wave- functions localization.

II. THEORETICAL CONSIDER. ATION

A. Perturbed periodic potential, general
consideration

Consider a one-dimensional SL structure, symmetric
about the origin, with both the potential and. the effec-
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tive mass having the periodicity d, and with a pertur-
bation 2b' wide, centered at the origin (Fig. 1). Within
the envelope function eBective-mass approximation the
electron motion is described by
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FIG. 1. A schematic representation of a periodic structure
with a symmetric perturbation layer centered at the coordi-
nate origin.

where 4' is the envelope function, kq the transverse wave
vector, and U(z) and m(z) the position-dependent poten-
tial and the efFective mass. There is a double degeneracy
of electron states here, with two linearly independent so-
lutions of the Schrodinger equation corresponding to any
energy E lying within the allowed minibands of the SL.
Out of the perturbation region their wave functions may
be written in terms of scattering states

uk (z)e*"*'+ Ru A, (z) e *"*, z & —8
TuA, (z)e'"*' z ) 8,

Tu A, (z)e '"", z & —b

u A, (z)e '""+ RuI, (z)e*"*, z ) b,

where ug(z) is the periodic part of the Bloch function,
and k, is the z component of the wave vector.

To get purely real wave functions we write the trans-
mission and reflection coefficients as2P T = e' cosP
and R = ie' sing, and make simple linear combina-
tions of scattering states as 4', (z) = 4'q(z) + @2(z)
and 4 (z) = 4'2(z) —4'q(z). Since uy( —z) = ui*, (z),
Re[up( —z)] = Re[uw, .(z)], and Im[uA, , (—z)] = —Im[uj, (z)],
it is straightforward to show that these two wave func-
tions have definite parity, i.e., @,(—z) = @,(z) and
@ (—z) = —@ (z). That such wave functions could be
constructed also follows &om the structure symmetry.
Their existence enables one to consider only half of the
structure, z ) b. Upon the wave-function normalization
to 8(k, —k,') (given in the Appendix) we get

Re[uA, (z)e'~""+ l]C.(z) = z&b,
m. Ug

Im [up (z)e'&""+~l]
+-() = z)b,

mUg

where n = (w + p)/2, p = (w —p)/2, and Uq

& j& ~ui, (z)~2dz. The wave function in one period of
the SL, say that closest to the origin, may be written as
a linear combination of the fundamental solutions of the
Schrodinger equation '"'

~( ) = .( )"""= &[f.( ) +»-( )]

Here f, (z) and f (z) denote the functions that are even
and odd with respect to the midpoint of that period, z =
bp ——b+d/2, due to the symmetry of the potential. These
two are obtained by solving the Schrodinger equation,
within a SL period, using the fundamental boundary con-
ditions f, (bp) = 1, f,'(b'p) = 0 and f (bp) = 0, f'(bp) = 1.
Furthermore, 0 is an imaginary constant determined by
using Bloch condition u~(bp —d/2) = uA,, (bp + d/2), as

f, (bp + 2) (k,di
f.(bp+ -", ) E 2 )

where the term k d is found &om the miniband dispersion
E(k, ), with both the potential and the efFective-mass
modulation taken into account. In the case we consider,
Fig. 1, it reads

, [f.(z)f.'(z) + f.'(z)f-(z)l. =a.+,msL(bp + 2)
—= I' (E)

cos(k, d) =

where msr, (z) is the position-dependent efFective mass.
Using Eqs. (4), (5), and (6), the real wave functions of
the miniband spectrum inside the lth period [b+(l—1)d &
z & b + ld] may be written as

14', (z) = ([f,(z) cos n —OI f (z) sin n] cos[(l —1)k,d]
Ug
—[f,(z) sinn+ OIf (z) cosn] sin[(l —1)k,d]), b & z & b + d,

(z) = ([f,(z) cos P —OI f (z) sinP] sin[(l —1)k,d]
1

Ug

+[f,(z) sin p + OIf (z) cos p] cos[(l —1)k d]), b & z & b + d, (10)
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where Ud =
d f& f, (z) +OIf (z) dz and z = z —(1—

l)d .
Inside the symmetric perturbation layer the wave func-

tions also have definite parity, and may be written as

4. (z) =A. y. (z), -b(z(b,
where y, (z) are found by using the fundamental bound-
ary conditions y, (0) = 1, y,'(0) = 0 and y (0) = 0,
y'(0) = 1. The constants o:, P, A„and A in Eqs. (9)—
(11) are determined by using the conventional bound-

ary conditions [the continuity of 4(z) and
( )

d(')] at
z = b, and for even states are given by

f (z)y.'(z) — „'(".) f.'(z) y. (z)
tano. =—

f-( )y!( ) —,'„'(".
) f.'( )y. ( )

The wave function of a bound state belonging to the nth
minigap therefore has the following form in the lth period
of a SL.

( ) ~ ( 1)n.(l—1) (1—1)kid

x[f,(z) + Ob„df (z)], b ( z ( h + d (16)

and inside the perturbation layer it is given by

4'b„d,, (z) =B, y, (z), —h(z(b. (17)

Imposing the boundary conditions at z = h to the wave
functions (16) (with t = 1) and (17) results in a homoge-
neous linear system for (, and B, (C and B ) for even
(odd) bound states. Nontrivial solutions of those require
the corresponding determinants to equal zero, which re-
sults in for even bound states,

f, (h) —OI f~(b) tan n

Ud (1+ tann) ~2 y, (h)

f.(b)y.'(b) — ' , f.'(b)y. (b)

and those for odd states have the same form as Eq. (12)
upon substitution tann ~ cot P, OI ~ —OI, y, ~ y,
and y,

' ~ y'. Here mg(z) denotes the electron effective
mass in the perturbation layer. This completes the con-
struction of even and odd wave functions corresponding
to any particular energy lying in the allowed minibands.
For the miniband index to appear explicitly in these ex-
pression, the k, d term obtained &om Eq. (8) should be
written in the extended-zone representation

+Ob„d f~(b)y,'(b) — f'(h)y, (b) = 0 (18)
ms+

and similarly for odd bound states upon the substitu-
tion y' —+ y' and y ~ y . Upon the wave-function

normalization to unity, i.e. , I I@~d(z)I dz = 1/2, the
constants C, are found to be (see Appendix for more
details)

k, d = (—1) arccos[E(E)] + 2vr[n —IWT(n/2)]
1 Q f f, (h) +Ob„df (b)l

e —2A:id ( y (b) )

1
2

f.( o+ -', ) tanhf.(bo+ -", ) (, 2 )

and, from Eq. (8)

cosh(k, d) = (—1)"Z(E). (15)

where n = 0, 1, 2, 3, ... denotes the index of the minigap
just below the miniband to which the particular energy
belongs.

Next we consider localized, discrete states lying within
minigaps of the SI, which appear due to the perturba-
tion. Using the fact that the wave vector k, is complex
valued in minigaps, given by k = "& + ikI in the nth
minigap, ~ s it follows from Eq. (7) that

(19)

where Q = j& f2(z) +Ob„df2(z) dz and B,
I y, (z)dz, and the values of B, are then simply ob-
tained kom the wave-function continuity. This com-
pletes the construction of bound-state wave functions,
expressed in terms of the fundamental solutions of the
Schrodinger equation. These wave functions decay ofF

the perturbation layer with the decay constant given by
Fq. (15).

The electron density in this structure includes contri-
butions from bound and continuum (miniband) states.
YVith each state within the miniband part of the spec-
trum being double degenerate, the electron density on
any single minibands reads

1 +~ kz max

n'--( ) =, d(k~) (I&.l'+ I+-I')fFD(E E~)dk. ,
7C O &» min

(2o)

where fFD is the Fermi-Dirac distribution function and E~ the Fermi level. The sum of wave-function moduli squared
in (20) may, using Eqs. (4), (5), (6), (9), and (10), be written as
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]ti, ]~ y]@,]~ = ]u&(z)~ + (]f, ]z] —elf, (zj]sin]++ @+2(/ —1)k,d]
Ug

0I—f, (z)fo(z) cos[n+ P+ 2(l —1)k,d]

= i&I (z) I' —l&uI (z) I' b(z&b+d (21)

in the SL par of the structure, and the electron density in the ith miniband then takes the form n;, „(z)= n~D „(z)—
An, , „(z)for z ) h. Here n~D „(z)is the electron density in the ith miniband of the ideal (unperturbed) SL, and
the excess density An;, „(z),occurring due to the presence of perturbation, the latter one decaying away from the
perturbation layer as 1/]td. The electron density on a bound state is found from

+oo
~j bnd l@~~-~(z E~ kt')I'f»(E~ E~) d(kt)

27( p
(22)

Certainly, the presence of a single perturbation layer in infinite SL does not shift the Fermi level &om the position
that it takes in the ideal SL, itself determined &om the global neutrality.

B. Application to the Kronig-Penney type superlattices: Bragg-con6ned structures

While the considerations given above apply to SL s with any symmetric potential in their periods, most calculations
would have to be done numerically. The special case of rectangular (Kronig-Penney type) SL's, however, allows one
to obtain analytic, closed-form expressions. Rectangular modulation of the potential and the effective mass is a
good approximation to many real structures of that type, at least for not too large doping levels N, so that the
self-consistency effects can be neglected. The potential in perturbed Kronig-Penney SL, with the perturbation layer
made of the quantum-well-type material, is given in Fig. 2.

The even-parity particular solution of the Schrodinger equation in first period of the SL (bt] —
2 ( z ( bo + z) is

cos [k~ (z —bo) ],~ ek~ (z —bp ) + g e
—k~ (z —bp ) .

f, (z) = ( K,' cos[k~(z —bo)] + K~ sin[k~(z —bo));
ek~ (z —bp) + g e—k~ (z —bp) .

K~ cos[k& (z —hp)] —K2 sin[k& (z —hp)];

8&Up
E&Uoe,
E & Uo.e,

E & Up e,

o 2 &z&bo+2)
ho+2 &z&b +2,

bp —-&z&bp ——d a
2

(28)

where k~ —— (E EtW) kB s (U0 E+ EtB) kg st (E Uo EtB) and UO ff = UO + EtB
h kwith Etvt ~ =

2
' . The integration constants are found &om the continuity of f, (z) and I l f,'(z) at z = ho+ 2

as

%~a
Kq 2———e+ ~ COS

l + (sin
j ]

cos ~k&a~ ~k~a), sin (k&a~ . t k~a~
,
cosI sin

j & )
(24)

where ( = &~ ~ and (' = &~ ~. The even-parity fundamental solution in the perturbation layer y, (z) has same

form as given in Eqs. (23) and (24) upon the substitution a ~ c, d ~ 2b, and h'0 -+ 0. The corresponding odd-parity
solutions f (z) and y (z) are determined in the same manner, and have analogous forms. Here we have msL(ho) = m~
and ms', (bo + —") = m~, and the miniband spectrum, Eq. (8), reduces to the well-known form

cos(k, d) = cos(kit a) cos(k&b) + 2((' —(') sin(k~a) sin(k&b), E ) Up ff,

while in the case E ( Uo, ff one substitutes sin(k&b) ~
i sinh(kgb), cos(k&b) ~ cosh(k~b), with k~ = ik&. Also,
using mg(b) = msz, (b) = m~, the normalization constant
U~ and phase factors a and P, as well the wave functions

(9) and (10) may be straightforwardly calculated. Fur-
thermore, the transcendent equation (18) and the corre-
sponding one for odd states, which give the energies of
bound states in minigaps, are satisfied when
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from resonances embedded in continuum, are more sen-
sitive than those below the barrier.

III. NUMERICAL RESULTS AND DISCUSSION

0 8 h0 6+d

FIG. 2. The conduction-band edge diagram of the Kro-
nig-Penney-type superlattice with the central layer of differ-
ent width than other corresponding layers.

kwc=q~, E & Up e'

(27)

k~b= (r+ 2)~, E) Up ,s

The theory displayed in Sec. II was used for nu-
merical calculations of two types of BCS with Kronig-
Penney SL's. The first type is the one based on the
Alp 4sInp s2As/Gap 47Inp 53As system, used in theoretical
and experimental studies by Capasso et al. The sec-
ond type is based on Gap 3$1np spAs/InP system, having
a Hat conduction-band edge but discontinuous effective-
mass. It is thus derived from the effective mass SL's
proposed some time ago and is interesting because
it bears the full analogy to the corresponding optical
systems. In either case we have taken the band non-
parabolicity into account. This is implemented through
the frequently used concept of energy-dependent effec-
tive mass, based on the two-band Kane model (the de-
tails of the scheme are described by Nelson, Miller, and
Kleinman ). Following this approach the well and bar-
rier effective masses depend on energy as

k~b = (r + 2)vr, E ( Up, g,

kwa = (s+ 2)vr,

(29)

(3o)

(
mw(Z) = mwp

I
1+

gwJ
(31)

where (q —1),t, r, s = 0, 1, 2, 3, . . . .
Equation (26) actually corresponds to the expression

for resonant states above the barrier in a quantum-well
structure, and Eq. (27) is the familiar transcendent equa-
tion for quantum-well bound states. The next three equa-
tions I(28) and (30) for energies above the barrier, and
(29) and (30) for energies below the barrier] correspond
to quantum-mechanical Bragg re8ection conditions. By
a suitable choice of SL parameters, therefore, bound and
resonant states of the perturbation layer (considered as a
quantum well) all become bound states of this structure,
with their energies preserved. The most interesting eÃect
here certainly is the localization of resonant states above
the barrier, i.e. , the appearance of Bragg-con6ned states.
Structures where conditions (26), (28), and (30) are sat-
is6ed are also known as Bragg-con6ned structures.
They are analogous to the optical Fabry-Perot resonators
with A/4-stack Bragg mirrors. Physically the localiza-
tion is brought about by constructive interference in the
perturbation layer of waves reBected quantum mechani-
cally on the array of well-barrier interfaces, similarly as in
optics. The analogy is limited, however, with two param-
eters (the potential and the effective mass) being mod-
ulated in BCS, in contrast to just one parameter (the
refractive index) in optics.

From Eq. (16) it follows that the degree of localization
is determined by the imaginary wave vector kl, which is
largest for energies in the middle of minigaps. Above
the barriers this is best ful6lled for the same energies
where Bragg conditions are met. Deviation from the ex-
act Bragg conditions shifts the bound-state energy from
its optimal position in the minigap, and reduces the de-
gree of localization. States above the barrier, stemming

( Up —E)
mph'(E) = m~p

~

1—
&g~

where m~p and m~p are the conduction-band edge ef-
fective masses, E~~ and Eg~ the band gaps, and Up the
conduction-band offset at interfaces.

In calculations for the (A1In)As/(GaIn)As SL's the
material parameters were taken as m~p = 0.043mp,
Eg~ ——0.87 eV for the "well" material Gap 47Inp 53As,
with the corresponding nonparabolicity parameter p~ ——

1.01 x 10 m being in good agreement with the data
of Ref. 38 and with the values used in Refs. 20—22, and
m~p = 0.073mp Eg~ = 1.49 eV for the "barrier" mate-
rial Alp 48Inp 52As. The conduction-band offset between
the two is Up ——0.5 eV. The thickness of the well lay-
ers was a = 16 A, and of the barriers b = 39 A. , while
the perturbation layer, made of the well-type semicon-
ductor, was c = 2a = 32 A wide. This system is found
to have one below-the-barrier miniband. extending from
306.8 to 387.2 meV, and one above-the-barrier miniband
from 640.5 to 880 meV, in the range of energies from
the well conduction-band bottom (reference zero) to 1
eV. Due to the perturbation layer there also exist bound
states: one even-parity state below the first miniband. ,
at Ep ——203.2 meV, and two odd-parity states in the
two minigaps, at Ei ——562.7 meV and E2 ——890.3
meV, both above the barrier top. The energy differ-
ence Ei —Ep ——359.5 meV is in excellent agreement
with the experimentally measured absorption peak in this
structure, ' and also with the results of the transfer-
matrix-based. calculation. The structure was designed
to provide Bragg confinement of the first state above
the barrier, i.e., at E = Ei, and. the localization fac-
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FIG. 3. The miniband structure of (AIIn)As/(GaIn)As su-

perlattice with a perturbation layer, as it depends on the
width of well-type layers a, for a couple of values of perturba-
tion layer width c, and for the barrier layers width b = 39
A (at ki ——0). The allowed minibands are shaded, the
even-parity bound states are represented by solid lines, and
odd-parity ones by dashed lines. Dotted lines denote the po-
sition of bound states which would be optimal in respect to
the degree of their localization.

tors of the three bound states are krd = 2.36 at E = E0,
krd = 1.12 at E = E», and krd = 0.209 at E = E2. Upon
finding the wave functions, the localization coefIicients,
defined as rl(E~) = Jo ~4~b„~~ dz/ jo+ ~ill~b„g~ dz, for
the three states are calculated to be i7(Eo) = 97.5%,
iI(Ei) = 79.1Fo, and iI(Eq) = 17.4'Fp. While the lowest
bound state is well localized simply because it is deep be-
low the barrier top, it is precisely the Bragg confinement
that makes the second state also quite well localized. In-
terestingly, however, this second state is not optimally
positioned (it is not in the middle of minigap) in respect
to the degree of localization, although the Bragg condi-
tions are exactly met at E = E». These conditions are
far &om being fulfilled at E = E2, which is the real rea-
son (and not simply its high energy) that this state is
poorly localized.

The properties of bound states in this structure have
been explored as they depend on the structure param-
eters. In this set of calculations the barrier width was
fixed at 6 = 39 A. , and the well width varied from 16 to
65 A. , with a couple of difFerent values of the perturbation
layer width c. All these calculations were performed at
zero transverse wave vector kq.. due to a large band ofF-

set U0, changing kq did not have a significant inhuence on
the results. The results are displayed in Fig. 3. The posi-
tion of even (odd) parity bound states is denoted by solid
(dashed) lines, while dotted lines give the optimuin po-
sition of these states in respect to the degree of localiza-
tion. Shaded regions correspond to allowed minibands.

One can see that properties of bound states, when deeply
below the barrier top, do not depend very strongly on the
SL parameters. These states, derived kom the "leaky"
bound states of the perturbation layer quantum well, are
essentially determined from its width c and the barrier
height Uo. When a state comes close to the barrier top,
it becomes more sensitive to the SL parameter variation,
especially if an allowed miniband is nearby. On the other
hand, bound states above the barrier, derived &om the
perturbation layer resonances, are very sensitive to the
SL parameters, especially at higher energies.

Also interesting is the behavior of bound states when
the structure parameters vary so that zero energy gaps
(ZEG) appear (exactly or nearly so). No matter how

narrow a minigap is, at least one bound state occurs,
with its (their) parity conserved upon crossing the ZEG.
Such states bear most resemblance to bound states in
continuum discussed in Refs. 26—28. However, the de-

gree of localization, proportional to krd, diminishes as
the minigap gets smaller, and at the exact ZEG condi-
tion these states become essentially delocalized. In the
example given in Fig. 3 the ZEG condition occurs for
a = 24 A in the second minigap, and the bound state
crossing it is derived from the first resonant state of the
perturbation layer, its width being c = 2a = 48 A. , for
which we find from Eqs. (26) and (30) with q = 1 and
8 = 0 that one of Bragg conditions is fulfilled. As a final
note, one can see from Fig. 3 that bound states all dis-

appear in case a = c, i.e., when the structure reduces to
a perfect SL.

Another set of calculations for this type of structure
was performed in the following way. The width of the
perturbation layer c was varied in the range 20 —80 A,
the position of its first resonance state was determined
according to k~c = m, and then the well and barrier layer
widths of the SL, a and 6, were fitted to meet the first-
order Bragg-confinement conditions k&b = kiowa = vr/2

(therefore a = c/2). When the width c increased so that
the resonant state sank below the barrier top, its energy
was determined from the transcendent equation (27), i.e.,

cot(k~c/2) = —(. The results of these calculations are
given in Fig. 4. As c increases the corresponding values
of 6, given parametrically in the bottom horizontal axis,
increase at first slowly, then rather rapidly when the reso-
nance approaches U0, and finally, when it sinks below U0

the value of 6 decreases slowly. Throughout this variation
of structure parameters, the energy of the Bragg-confined
state coincides with the position of the single quantum-
well resonance or bound state (depending on its width

c),2 which simply confirms that the conditions (26)—(30)
satisfy Eq. (18) for the Kronig-Penney SL. Along with
the position of the Bragg-confined state obtained as de-
scribed, Fig. 4 also gives its optimal position with respect
to the degree of wave function localization. There clearly
is some difFerence between the two, becoming very large
when the Bragg-confined state comes close to the barrier
top. The reason that any difFerence appears is, as noted
in Sec. II, that both the efFective mass and the potential
are modulated. Finally, one can again notice from Fig. 4
that the parity of the Bragg-confined state is conserved
in crossing the ZEG point induced by variation of the
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FIG. 4. The miuiband structure of (A1In)As/(GaIn)As
Bragg-confined structure, as it depends on the perturbation
layer width c. The width of barrier layers 6 was fitted to meet
Bragg conditions for the odd-parity bound state in the first
minigap (BC state) and is given on the bottom horizontal
axis. The shaded areas denote the allowed minibands.

FIG. 5. The miniband structure of (InGa)As/Inp effective
mass Bragg-confined structure, as it depends on the perturba-
tion layer width c. The width of barrier layers 6 was fitted to
meet Bragg conditions for the even-parity bound state in the
first minigap (BC state) and is given on the bottom horizontal
axis. The shaded areas denote the allowed minibands.

structure geometrical parameters.
The second type of structure analyzed in this work

is the one having the effective-mass mod. ulation only, the
potential (i.e. , the conduction-band edge) being kept con-
stant. By comparing the time-independent Schrodinger
and Helmholtz equation for electromagnetic waves in lay-
ered. media, ' such a structure is seen to be fully anal-
ogous to the optical layered structure, where the effec-
tive mass corresponds to the re&active index squared.
The BCS of that type is actually an efFective-mass SL
(EMSL) (Refs. 34 and 35) with just one of its lay-
ers made wider than the others, constituting thus an
effective mass BCS. Calculations were performed for
Gap silnp spAs/InP-based system. ' The material pa-
rameters used for the two semiconductors are m~p ——

0.073mp, mgyp ——0.043mp) Eggs ——1.26 eV, and Egg ——

0.69 eV, where the well-barrier notation was kept and as-
signed to individual materials according to the efFective-
mass ratio rthe semiconductor with the lower efFective
mass becomes the effective barrier for nonzero kq (Ref.
36)]. The perturbation layer width c was varied in the
range 30—80 A. , and the SL layers widths a and b were fit-
ted to meet Bragg conditions for the first resonant state.
The results are displayed in Fig. 5. Here we Gnd an even-
parity bound state lying in the middle of the minigap
throughout the range of structure parameters explored. ,
having thus the optimal position for the wave-function
localization (as is the case in the corresponding opti-
cal systems). Previous considerations of perfect EMSL
indicated the existence of ZEG conditions for all even-

numbered minigaps at kq ——0 in case m~6 = m~a2,
provided the nonparabolicity effects are ignored. One
can see from Fig. 5 that taking the nonparabolicity into
account induces a very narrow minigap. There is an even-
parity bound state embedded in it, caused by the pertur-
bation layer.

Analysis of the EMSL (Ref. 35) also pointed to a strong
dependence of their miniband structure on kq, so we have
here also explored the efFects of kq variation on perturbed
SL's. Results of an example calculation, with c = 70 A,
a = 35 A. , b = 50 A, and ki in the range 0 —0.1 A
are given in Fig. 6. As kq varies and ZEG conditions
appear at one value or another (regardless of whether
induced by nonparabolicity or not), the Bragg-confined
states change their parity upon crossing the ZEG. This
is in contrast to what happens to them in the case of the
structure parameters variation induced ZEG points, the
situation discussed above. The effect of parity flipping
is quite interesting, in that it would make pairs of states
active in optical intersubband transitions only in limited
ranges of the transverse wave vector kq.

Finally, we have made calculations of electron den-
sity distribution in (A1In)As/(GaIn)As and (GaIn)As/
InP BCS's, taking the doping density N, = 3 x 10
cm (this is the volume density integrated in one pe-
riod of the SL), at T = 300 K. The Fermi level in
(AlIn)As/(GaIn)As structure as considered by Capasso
et aL '2 (c=32k, a=16k, b=39A.) isE~ =232
meV. Electron densities on the lowest two bound states
(n p b g arid n j b s) and on the lowest two minibands
(ni, „andn2, „)are given in Fig. 7, together with the
difFerence densities (Ani, „and An2, „)referenced to
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the unperturbed SL case. Calculations for the effective-
mass BCS (c = 70 A, a = 35 A. , b = 50 A.) give E~ = —7
meV at T = 300 K, and the corresponding electron den-
sities are displayed in Fig. 8. As one can see from Fig. 7,
the electron density on the lowest bound state exceeds

FIG. 8. The electron density profiles for the low-
est two minibands (ni, „,n2, „)and the lowest two
bound states (no i,„s,ni i,„g)in (InGa)As/InP efFective-mass
Bragg-confined structure. Also given (dashed lines) are the
difFerence densities (Ani, „,An2, „),referenced to the per-
fect superlattice case. The structure parameters are c = 70
A, n = 35 A, b = 5O A.
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c/2 8+2d the density in minibands by two orders of magnitude
at z = 0, but the two become comparable at z = b.
The perturbation layer significantly influences the elec-
tron density in minibands, as compared to the unper-
turbed SL case: the difference densities in Fig. 7 show a
rather slow decay towards zero. We may also note that a
low population of above-the-barrier Bragg-confined state,
accompanied by its good localization, should give rise to
significant absorption on Eo ~ Eq transitions. Simi-
lar conclusions apply to the efFective-mass BCS (Fig. 8),
except that the bound-state density overshoot is not so
remarkable here.
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FIG. 7. The electron density profiles for the lowest two
minibands (ni o„,ns, ) and the lowest two bound states
(nQ bnd nl bnd) in (AIIn)As/(GaIn)As Bragg-confined struc-
ture. Also given (dashed lines) are the difference densities
(b,ni o„,Dns, „),referenced to the perfect superlattice case.
The structure parameters are c = 32 A, a = 16 A, b = 39 A.

IV. CONCLUSION

The theory of electronic structure of perturbed SL's
was presented, within the framework of the effective-mass
approximation. The expressions for bound-state energies
in these structures were derived in general form, in terms
of the fundamental solutions of the Schrodinger equation.
The special case of rectangular SL's with a perturbation
layer was then considered in more detail. The influence of
the structure parameters on properties of Bragg-confined
states was explored for both the conventional BCS and
the one based on the effective-mass modulation only, pro-
posed in this work. The latter are found to be fully anal-
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ogous to optical BCS's, in the sense that the fulfillment of
Bragg conditions gives maximally localized bound states,
which is not the case in conventional BCS's. Peculiari-
ties of states crossing the kq-induced ZEG points were
also discussed.

The methods presented are also applicable, directly or
upon generalization, to analysis of related structure like
a quantum well embedded between two diferent SL's, or
between the bulk semiconductor and SL, etc. Calcula-
tions of optical properties of BCS's, based on the meth-
ods described here, are under way and will be presented
in due course.

+OO

4& @'„,dz = b(k, —k,'), (Al)

+OO h

2 4& 0'„,dz+2 0& 4„',dz = b(k, —k,'). (A2)
h 0

which, due to definite parity of wave functions, may also
be written as

APPENDIX

The continuum (ininiband) spectrum wave functions
are normalized according to

The second term in (A2) has a finite value, and may be
neglected with respect to the 6rst term. For even-parity
states, using Eq. (4), the first term takes the form

I = 4., I, z 0,*„,z dz

=K,K,' Rent, z cos k, z+o, —Imuj, z sin k z+o,
x (Re[u& (z)] cos(k,'z + a') + Im[uk, (z)] sin(k,'z + n')) dz. (A3)

In the limit k' ~ k„i.e. , Ak, = k, —k,' ~ 0, one has n' -+ a, uq (z) -+ uf, (z), so Re[uf*, , (z)] = Re[uf, (z)] and
Im[u&, (z)] = —Im[uf, (z)] and using the periodicity of uA, (z) the integration in (A3) reduces to explicit integration in
a single period of the SL. By further expanding of obtained expression through the use of asympthotic forms of
individual terms in it, after some algebra Eq. (A3) becomes

8+d

8

1
~ug(z)

~

vr b(Ak, ) + 2 Re[uf, (z)] Im[uf, (z)]'p
~ ~

cos(2k, z + 2(x)
(, 2k, )

—((Re[up(z)]) —(1m[up(z)]) ) P
~ ~

cos(2k, z + 2n) dz,
2 f 1

q2k, ) (A4)

where z = z —(/ —l)d(b ( z ( b + d) and 'P(2& ) denotes the principal value. The last two terms in (A4) give finite
values upon integration and may be neglected in comparison. to the first term with b(k —k, ). From this first term
and Eq. (A2) we find the normalization constant of even-parity continuum states, and normalized wave functions,
Eq. (4). The normalized wave functions of odd-parity continuum states (5) are obtained in the same manner.

For bound-state wave functions, using Eqs. (16) and (17), and the normalization condition j [4),„q(z)[ dz = 1/2,
we have

b

B, y, (z)dz +I2 = —, (A5)

where

+oo 8+id
I, = C.'.) (f, [z —(l —1)d]+8b„qf[z —(I —1)d]} e "'"i dz

+(t—i)d

+OO b+d
~2 y —2A:y d(l —1)

e,o~
l=1 8

h+d b+d
f(z) z+f)8z z j , f (z)dz+ 2Hz„z f(z)f (z)dz,
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&.',.f/+ (6'( z) + lib.d &.'(z) 1dz

1 —e 2I ld (A7)

The continuity of 4b„d(z) at z = h, using Eqs. (16) and
(17) gives

The last term in (A6), integrating an odd function over
full period, equals zero. Equation (A6) is actually a ge-
ometrical series, evaluation of which gives

(AS)

Substituting Eqs. (A7) and (A8) into (A5) we find the
normalization constant of bound-states wave functions,
Eq. (19).

In the special case of Kronig-Penney potential the nor-
malization constants for both the continuum and bound
states are straightforwardly derived using the fundamen-
tal solutions (23) and (24).
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