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Direct measurement of the free-energy barrier to nucleation from the size distribution
of dendritic crystallites in a-Si thin films
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We introduce a method to determine the free-energy barrier to nucleation of crystallites, indepen-
dent of any model for the nucleation free-energy barrier, and independent of the energy barrier to
the growth. This model-independent method is developed based on the dynamic scaling of the clus-
ter size distribution and other universal kinetics in the early stages of nucleation and growth. The
method is applied to determine the free-energy barrier to nucleation of the amorphous-to-crystalline
transformation in a-Si thin 6lms. After considering the dendritic nature of Si crystallites, we obtain
the free-energy barrier to nucleation W, 2.15—2.18 eV, the enthalpic (i.e., the activation energy)
barrier AH = 1.32 eV, and the entropic barrier AS, = —9.57 x 10 eV K, within the temper-
ature range of T = 863—893 K. The entropic contribution to TV is found to be considerably large.
We also show that the magnitude of the measured W, could not be accounted for by the classical
expression for the free-energy barrier with the previous suggested values for its parameters.

I. INTRODUCTION

Atoms of a disordered amorphous material always at-
tempt to rearrange themselves into small and ordered
clusters, because the &ee energy of the crystalline phase
is lower than that of the amorphous one. Through ran-
dom Huctuations, some clusters eventually become crys-
talline nuclei that initiate the amorphous-to-crystalline
phase transformation. Thus, understanding the &ee-
energy barrier to nucleation of crystallites, W„is a basic
issue in materials physics. There are various classical
and nonclassical models for W„but to our knowledge
none of those models have been tested by a direct and
model-independent experimental determination of W, .
This is not surprising, because conventional methods em-
ploying Arrhenius plots do not measure the &ee-energy
barrier, W„but the apparent activation energies, i.e. ,
enthalpies. Recently a model-independent method for
determining W, was introduced, which determines the
&ee-energy barrier, W„using the ratio of the growth
rate to the quasi-steady-state nucleation rate. ' How-
ever, these rates are not always accessible or they are
sometimes dificult to measure.

We present, in this paper, an alternative independent
method to determine the free-energy barrier to nucleation
of crystallites, directly from their size distributions, in-
dependent of any model for W„and independent of the
energy barrier to the growth. This model-independent
method is developed based on our recent results on the
dynamic scaling of the cluster size distribution and other
universal kinetics in the early stages of nucleation and
growth. ' With the temperature dependence of the di-
rectly measured 0

„

the method also provides the en-

thalpic and the entropic barriers to the nucleation. The
present method is applied to determine the &ee-energy
barrier, the enthalpic, and entropic barriers to the nucle-
ation of the dendritic crystallites observed in the solid-
phase crystallization of amorphous Si thin films. Large-
grain-sized polycrystalline Si films obtained by crystalliz-
ing a-Si Alms have recently attracted attention, because
of their application to the electrical engineering. The
applied method provides an opportunity to test the clas-
sical model for the free-energy barrier to the nucleation
by the directly measured results.

II. METHOD

A. General kinetic basis

Our recent results show that in the early stages of crys-
tallization, the cluster (or crystallite) size distribution
(CSD) for sizes within and beyond the nucleation bound-
ary layer obeys dynamic scaling relations. The dynamic
scaling relations and their asymptotic limits are invari-
ant to any particular model for W, . These results not
only provide the kinetic basis for the method to measure
W„using the ratio of the growth rate to the steady-
state nucleation rate, ' but also the kinetic basis for the
present method based directly on the CSD, as shown in
the following.

A proper kinetic description for nucleation and
growth was put forwarded based on the general results
of the inhomogeneous nonequilibrium processes. Let
f(g, t) be the actual number concentration of the crys-
tallites consisting of g atoms at a time t, then
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Bf(g, t) M(g, t)
Bt Og

J(g, t) = A(g) f(g, t) —D(g)
~f(g t)

A(g) = P(g) —~(g),
D(g) = I&(g) + ~(g)] /2

(1b)

(1)
(1d)

where J(g, t) is the flux of the crystallites in the size
space, P(g) is the addition rate of atoms to a g-sized
crystallite, and o.(g) is the dissociation rate from a g-
sized crystallite. Equation (1) is valid not only for g near
the critical size (i.e. , in the nucleation barrier layer or
the critical region), but also for the observable crystal-
lites much larger than the critical nuclei. Farkas-Becker-
Doring-Zeldovich-Frenkel equation that had been con-
ventionally used for describing the nucleation is a special
limit of Eq. (1) within the critical region.

The systematic approaches based on boundary-layer
theory have been developed for elucidating the dynamic
evolution of the CSD within the critical region ' and
beyond. 4 5 The results for the dynamic scaling of the CSD
beyond the critical region can be transformed into

f (g t) = ~(g)
p(g, t)

P(g, t) = erfc (1+exp

—erfc 1 + exp

t —A~ —tg(g, + 6, g)

A~+tg(g, + h, g)
7

where g, is the critical size, b is the half width of the crit-
ical region, Ar = —f dg/A(g) is the time to establish
the steady state in the subcritical region, v. = h /2P(g, )
is the time for a near-critical cluster to diffuse across the
critical region, and tg(g, + 8, g) = f &

dg'/A(g') is the
time for a stable cluster to grow drifting &om the right
boundary of the critical region to the g-sized crystallite.
The CSD expressed by Eq. (2) is exactly valid as the
solution of Eq. (1), for g ) g, + b and t ) Aw.

For large crystallites of g )) g, + b, the probability
of growth is much higher than that of decay, therefore,
ln(g)/P(g)l -+ 0 or A(g) ~ P(g). Consequently, we
have

where g(g) is the quasi-steady-state distribution, and
P(g, t) is the transient factor. The transient factor in
Eq. (2) is calculated as

which is equivalent to the quasi-steady-state nucleation
rate. ' Here, nq(t) is the number concentration of the
nucleation site available at a time t, W„=W(g, ) is the
Cibbs free-energy of a critical nucleus, which corresponds
to the free-energy barrier to nucleation, k is Boltzmann
constant, T is the temperature, and the half width of the
critical region is calculated by 8 = [—W" (g)/2kT]
Since the crystallites consume the available nucleation
sites as they nucleate and grow, nq (t) decreases with time
as nq(t) = nq(0) [1 —y(t)], where y(t) denotes the crys-
tallized volume &action.

As seen in Eq. (6), W, is originally included in J, (t),
which also includes P(g, ). The addition rate of atoms,
P(g), is generally proportional to both the activation fac-
tor associated with growth and the geometry factor as,

P(g) oc exp ( Eg/k—T) g

where E~ is the activation energy to growth or the energy
barrier to growth, d is the effective dimension control-
ling the geometry of the crystallites, and v is the index
that determines the mode of the addition of atoms into
crystallites. For the addition mechanism of atoms deter-
mined by the chemical reaction at the surface of crystal-
lites, v = 1, while v = 2 for the addition limited by the
diffusion of atoms. Since the net activation factor in J,
1S

J„ocexp [
—(Eg + W, ) /kT],

one cannot separate Eg and W, only by Arrhenius plots
of J, . The recently introduced method ' solved this
problem by using the ratio of the growth rate, U, which
is also thermally activated as U oc P(g) oc exp( —Eg/kT),
to J, . In the present method, using the CSD, the acti-
vation energy to growth, Eg, is automatically canceled
in the quasi-steady-state CSD, q(g), due to the factor of
P(g, ) /P(g) included.

Thus, for the present method, it is important to ex-
tract g(g) from the observed f(g, t), which is achieved
by the dynamic scaling of the observed CSD with Eqs.
(2) and (3). With the value of y(t), the g dependence
of P(g), and the proper estimates of g, and b, one can
obtain W, by Eqs. (5) and (6) &om just one q(g) mea-
sured at one temperature and at one time, independent
of the barrier to growth included in P(g). Moreover, from
the temperature dependence of R; and a basic thermo-
dynamic relationship, the entropic barrier to nucleation,
LS„is obtained by

dg'
tg(g. + b, g) =

g.+h (g
Then the enthalpic barrier to nucleation, LH„is

LH, = W, +TAS, .

with

(5)
B. Nucleation of dendritic crystallites

in solid-phase crystallization of a-Si thin Alms

J.(t)—:J(g. , t) = ng (t) exp l—W. l P(g, )
kT) ~b '

The solid-phase crystallization (SPC) of amorphous
solids progresses by rearranging the disordered atomic
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bonds into the crystalline one, which occurs just at the
interface between the crystallites and the surrounding
amorphous matrices. There is no long-range transport
of atoms that afFects the rearrangement. The displace-
ment of the atoms is no more than the bond length. Thus,
the addition mechanism of atoms into the crystallites is
controlled by the chemical reaction at the interface, and
hence, the addition rate is described by

&(g) = ~S(g) (10)

S3 7 OCR )

where ss(r) is the measured value of the surface area of
the crystallites, whose size is represented by r in a unit of
length, and D is the noninteger e8'ective dimension, with
respect to r. Provided that the surface of the dendritic
crystallites holds a self-similar structure, the surface area
is also scaled as

ss(B) oc R

where A is a characteristic length scale corresponding to
the resolution in the measurement. If r is represented
by the effective radius of the crystallites, defining r(g) —:

(3vig/4vr), with vi being the volume for a single atom,
and if B is represented by the curvature, the measured
value of the area is exactly expressed as

where u denotes the addition rate per unit area that
contains the activation energy to the growth [i.e. , ur oc

exp( —Es/kT)), and S(g) is the surface area of crystal-
lites consisting of g atoms. Since w does not depend on
gandv=l)

S(g) oc g' '~",

is predicted from Eq. (7).
The crystallites, which randomly nucleate and grow

in the SPC of the a-Si films, do not consist of a per-
fect single-crystalline domain, but contain numerous twin
planes inside. The high-resolution TEM (transmission
electron microscope) observation of the annealed films
revealed that the crystallites had been multiply twinned,
since they were as small as a few nm. The multiple twin-
ning and the crystallographic anisotropy of the growth
velocity lead to the dendritic shape of the crystallites. ~

Therefore, the surface area of the dendritic crystallites
should be described by a general scaling geometry, rather
than the Euclidean one. If the surface area of the crys-
tallites growing in the three-dimensional space is scaling,
one may write

s2(r, B) = ss(r, B)2r'

where s2(r, B) is the area of the growing Rank of the
planar crystallites, E is the film thickness, and r is the
efFective radius defined by r(g) = (vig/mE)i~2. By the
same limitation as in Eq. (13), the actual area of the
interface is obtained as

S2(r(g)) = lim s2(r, R)
Rm). (1)

(14)

where o2 = 2(7rvig) ~ .
If the critical nuclei are smaller than the thickness of

the a-Si 61m, the addition rate of atoms into the critical
nuclei is

~(g ) = ~Ss(g*)

and if the large and planar crystallites are mainly sam-
pled in the observation of the CSD, the addition rate of
atoms into those crystallites is

P(g) = ~S2(g) (16)

Substituting Eqs. (13)—(16) into Eq. (5), the quasi-
steady-state CSD is obtained as

g(g) = t g'

where

C = ni(t) exp I—( w. ) ra, ) g.' '"
kT) qa, )' ~h

On the other hand, substituting Eq. (16) into Eqs. (3)
and (4), the transient factors are obtained as

S3(r (g) ) = lim ss (r, B)
a-+~(i)

= 4vrr (3v /4vr) = a g

where as = (36vrvi) ~ . Comparing Eq. (13) with Eq.
(11), the relation of D = 3 —3/d is obtained.

The crystallites growing in thin films eventually reach
either the top surface or the bottom surface of the films.
They cannot grow &eely in the three-dimensional space
any longer, but the growth propagates only in the direc-
tion of the film plane. Finally, they become the planar
dendritic crystallites. Since the origin of a planar crys-
tallites resides within the film, it could be regarded as
a thin piece sliced from the three-dimensional dendrite,
whose gravity center is also within the Blm. Therefore,
the area of the amorphous-to-crystalline interface is ap-
proximately estimated by

s, (r, ~) = 4~.DZ' D. -
(12)

Although the scaling geometry like ss(r, R) never attains
the actual value, atomic resolution would be virtually ad-
equate to represent S(g) in Eqs. (10) and (11). Taking
a limit of B -+ r(l), the actual surface area of the den-
dritic crystallites growing in the three-dimensional space
is estimated as

P(g, t) = erfc 1+(/exp rg ~ "

—erfc 1+ /exp vg ~ "

P(g, oo) = erfc [1] —erfc 1 + ( exp vg ~

where

(19a)

(19b)
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( = exp (—t/7. ),
( = exp(A),

2d

3(d7 Q2

are the dimensionless parameters.
Using Eq. (18), the free-energy barrier to nucleation is

calculated by

1—i/d
= —inC+1n +ln +lnn (t) as g,

'7r Q2
(20)

The value of C can be determined by the dynamic scal-
ing of the observed CSD with Eqs. (2), (17), and (19).
The other terms in the right-hand side of Eq. (20) are

known, except for the last one. However, if ln[g, /8]
is negligible compared to the others, one can obtain

W, =kTln ng(t)as
sr Ca2

(21)

without invoking any model for W, . The above approx-
imation will be verified later with the experimental re-
sults.

III. EXPERIMENT

A. Sample preparation and data analysis

Amorphous Si films were deposited on the substrates
by low-pressure chemical-vapor deposition, using SiH4
gas at a temperature of 823 K, at a pressure of 40 Pa, and
at a rate of 2.8 x 10 @ms . The substrates were crys-
talline Si wafers coated by Si02 films that were formed
as amorphous by thermal oxidation of the wafers. The
thickness of the a-Si films was 8 = 0.1 pm. Since in
situ cross-sectional TEM observation has detected a few
nm-sized crystallites growing stably, the critical nuclei
must be far smaller than the film thickness, and hence,
the condition for Eq. (15) is fulfilled. Si+ ions accel-
erated to 70 keV were implanted into the a-Si films at
room temperature and at the dose of 1 x 10 cm
The implantation of Si+ ions prior to the annealing re-
duces the nucleation rate, so as to make the observa-

p(r, R) = 27rr R = n'og (22)

where po = 2mB (vq/7rE)(~ )~ . Thus, the effective
dimension of the surface area of the dendrites can be
estimated by finding the power-law correlation between

tion easier and more precise. Characterization of these
a-Si films has been reported in detail elsewhere. Since
those amorphous films are as dense as single-crystalline
Si, vi ——2.02 x 10 pm . If all the atoms in the
film provide the nucleation site, the density of the nu-
cleation sites projected onto the film plane is estimated
as nq(0) = 4.96 x 10 pm

Isothermal annealing in nitrogen ambient induced
the spontaneous nucleation of the crystallites and their
growth. Table I summarizes the experimental conditions
for the four kinds of the samples annealed at 863—893 K.
Since the starting amorphous films were crystallite free,
and the crystallization hardly occurs at room temper-
ature, the annealing duration directly corresponds to t
in f(g, t). The annealing durations were chosen so as
to obtain the partially [y(t) 0.1] crystallized films,
in which the coalescence among the adjacent crystallites
had scarcely begun.

The annealed films were observed by TEM from the
direction normal to the film plane. The plan-view TEM
images were analyzed by an image processor to measure
the projected area of each crystallite, az, the projected
perimeter of each crystallite, the maximum length of each
crystallite, and the crystalline area fraction of the image
fields. The resolution in digitizing the plan-view images
was 0.02 pm for both directions in the film plane. A
number of the images taken Rom different parts of the
film were used to sample over one thousand crystallites
from one sample. The effective radii of the dendritic
crystallites were calculated by r = gaz/m. The number
of atoms contained in a crystallite was estimated by g =
n„E/vq The cr.ystalline area fraction was regarded as
equivalent to the crystallized volume fraction, y(t).

The perimeter also scales with the crystallite size, due
to the dendritic shapes of the crystallites. Assuming that
the difference in the effective dimensions between the
surface area of the three-dimensional dendrite and the
perimeter of its cross section is identical to the difference
in their topological dimensions, the measured value of
the perimeter is described as

TABLE I. The experimental conditions of the samples and the results of the analysis.

Label
(a)
(b)
(c)
(d)

T (K)
863
873
881
893

t (s)
1.80 x 10
1.08 x 10
5.40 x 10
360 x10

x(t)
0.120
0.110
0.105
0.115

d'
3.46
3.45
3.47
3.42

C (pm ')
4.30 x 10
5.34 x 10
6.37 x 10
7.73 x 10 '

Fitting parameters
(

0.121 3.55
0.130 3.62
0.133 3.40
0.125 3.50

4.13 x 10
3.78 x 10
4 50 x 10
4.32 x 10

Annealing temperature of the a-Si film.
Annealing duration of the a-Si film.
Crystallized volume fraction directly measured in the image processing.
Effective dimension of the surface area of the crystallites determined by the perimeter.
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g+ag/2
n(g, Ag, t) = J'(g', &)dg' = J'(g, &)&g,

g —ag/2
(23)

if ~Of/Bg~ Ag (( 1. The size-dependent interval was
adopted to keep the accuracy almost constant in the ob-
served range of the size. We considered that the small
crystallites, whose maximum length was shorter than the
film thickness, have not reached. the film surface yet.
They were eliminated &om the CSD to be analyzed, be-
cause they did not satisfy the condition to employ Eq.
(16).

The dynamic scaling of the CSD was performed by nu-
merically fitting Eqs. (2), (17), and (19) to the observed

f(g, t), regarding C, (, (, and v. as the unknown fitting
parameters. The effective dimension predetermined by
the perimeter was substituted into the above equations
in the fitting. The fitted values of C were used to deter-
mine W, by Eq. (21). With the temperature dependence
of W„the entropic barrier and the enthalpic barrier to
nucleation were measured by applying Eqs. (8) and (9).
As a by-product of the method, the addition rate,
was also determined using the set of d, (, and K. The
activation energy to growth, Eg, was measured by the
Arrhenius plot of ~.

B. Experimental results

the size and the perimeter.
The size distributions were statistically measured by

counting the number concentration of crystallites, whose
sizes are within an interval of Lg around g. The number
concentration directly obtained is related to the actual
f(g, t) by

at 893 K for 3.6 x 10 s. The dendritic crystallites with
distinctive contrast are seen sparsely at random positions
in the gray amorphous background. Their size seems to
be widely distributed. The film is partially crystallized
at y(t) 0.115. The intricate contours of the crystallites
can be also observed.

Figure 2 presents the correlation between the size and
the measured perimeter, which consists of 1585 crystal-
lites observed in the sample shown in Fig. 1. The top
and bottom horizontal axes denote the size represented
by the efFective radius and the size represented by the
number of atoms, respectively. For the tiny crystallites
that have not reached the film surface, g in Fig. 2 is not
equivalent to the actual number of atoms contained in
the crystallites, but only represents their projected size,
because it was calculated by g = 7rr E/vi. However, thus
derived g is effective in finding the correlations, using Eq.
(22). Each small dot in the plot corresponds to a sampled
crystallite. The plot shows an apparent power-law cor-
relation throughout the observed range. The solid line
indicates a power function fitted to the data, which is
expressed as p(g) = 1.69 x 10 sg 5 pm. Comparing
p(g) to Eq. (22), we obtain the efFective dimension by
(D —1)/2 = 1 —3/2d = 0.562. The dashed line repre-
sents the size dependence of the circumference of perfect
circles expressed by 2vrr = 2/vrvig/I, which is appar-
ently different &om the solid one. With the preexponent
of the determined p(g), B = 0.05 pm is estimated by Eq.
(22), which corresponds to the intersection point of the
two lines.

Figure 3 shows the CSD observed in the sample of Figs.
1 and 2. The dots in the plot denote f(g, t) per unit
area normalized by the process of Eq. (23). The CSD

Figure 1 shows a bright-field image of the plan-view
TEM micrographs of the a-Si film that has been annealed

10.0

Effective Radius r (pm)
0.1 1.0

5.00

1.00

g O5O

7
10

8
10

9
10

Crystallite Size g

10
10

3 pm

FIG. l. A bright-field image of the plan-view TEM micro-
graphs of the sample (d) (see Table I). Dendritic crystallites
with distinctive contrast are seen sparsely at random positions
in the gray amorphous background. The size of the crystal-
lites seems to be widely distributed. The crystallized volume
fraction is y(t) = 0.115.

FIG. 2. Correlation between the size and the perimeter ob-
served in the sample (d) (see Table I). The top and bottom
horizontal axes denote the size represented by the efFective
radius, r, and the size represented by the number of atoms,
g, respectively. Each small dot in the plot corresponds to a
sampled crystallite. The solid line indicates the fitted power
function expressed by p(g) printed. The dashed line repre-
sents the size dependence of the circumference of perfect cir-
cles expressed by 2vrr.
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Effective Radius r (pm)
0.1

I

1.0
(d)
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-10
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C

o 10
8

10
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10
Crystallite Size g

10
10

10.0

5.00

1,00

0.S0

0.10

FIG. 3. Crystallite size distribution observed in the sam-
ple (d) (see Table I). The horizontal axes are the same of
those in Fig. 2. The dots in the plot denote f(g, t) per unit
area normalized by the process of Eq. (23). The solid curve
indicates f(g, t) fitted to the data. The fitting parameters de-
termined are listed in Table I. The dashed line represents the
quasi-steady-state CSD extrapolated by q(g) printed. The
asymptotic behavior of f(g, t) to the slope of iI(g) and the
rapid drop at g ) 10 are observed.

7
10 10 10

C~stallite Size g

FIG. 4. Correlations between the size and the perimeter
observed in the samples (a)—(d) that were annealed at the

all dot in thedifFerent temperatures (see Table I). Each sma o in e
plot corresponds to a sampled crystallite. The solid lines in-
dicate the fitted power functions. The results of the fitting
are listed in Table I.

basically exhibits a monotonous decrease with g, though
a rapid drop is also observed in the larger size. The solid
curve indicates f (g, t) of Eqs. (2), (17), and (19) that was
fitted to the data. We obtained C = 7.73 x 10 pm
( = 0.125, ( = 3.50, and K = 4.32 x 10 s by the fitting.
With the value of C, W, = 2.18 eV is determined y
Eq. (21). The dashed line represents the quasi-steady-
state CSD extrapolated by iI(g) of Eq. (17), with the
determined values of d and C. Though the observed CSD
exhibits the asymptotic behavior to the slope of rI(g) as

g decreases, a consi erad, nsiderable difference remains even at t e
smallest sampling size. This fact means that the CSD in
the observed. range of size has still been in the transien
state.

The stacked plots labeled (a)—(d) in Fig. 4 display the
correlations between the size and the perimeter, for the

tively. Figure 5 shows the corresponding stacked p o s o
the CSD's at those temperatures. The plots labeled ( )
are identical with those shown in Figs. 2 and 3. The basic
feature of the plots for the samples (a)—(c) are similar to
that for the sample (d). It is observed in Fig. 5, however,
that the asymptotic limit of f (g, t) slightly increases wit
the temperature, which rejects the increase of C. Their
experimental conditions and the results of the analysis
are listed in Table I.

Figure 6 shows the temperature dependence of the &ee-
energy barrier to nucleation, which was determined from
C listed in Table I. It appears that W, linearly increases
with the temperature, at least within the observed range
of the temperature. Approximating the temperature de-

= 1.32pendence by the linear function, we obtain LH, = 1.3

eV and LS, = —9.57 x 10 eVK
Figure 7 shows the Arrhenius plot of the addition rates

arameters listed in Table I. By the slope of the plot, theparame ers
activation energy to growth was determine a
eV.

(a

-10
10

O 12.~ 10

C

C -14
~ 10

10 10 10

7 8 9 10

Crystallite Size g
FIG. 5. Crystallite size distributions observed in the sam-

ples (a)—(d) that were annealed at the different temperatures
(see Table I). The dots in the plot denote f(g, t) per uiiit
area normalized by the process of Eq. 23 . The solid curves
indicate f(g t) fitted to the data. The results of the fittinggq
are listed in Table I ~
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IV. DISC US SION

A. Method and analysis

As shown in Fig. 2, it is evident that one can never sub-
stitute any simple figures (like a circle) for the dendritic
crystallites in describing their perimeter. The character-
istic length scale in the measurement of the perimeter
originates in various experimental factors, such as the
original resolution of the TEM micrographs, the reduc-
tion of the resolution in digitizing the TEM images, the
rounding effect in extracting the edges of the crystal-
lites, and so on. It is reasonable that the estimate of
B = 0.05 pm is comparable to and greater than the dig-
itizing pixel size of 0.02 pm, which is only one resolution
quantitatively prescribed.

If one only glances at the shapes of the observed CSD's
in Fi0;. 5, it may appear as if there is a power-law range

Temperature T (K)

FIG. 6. Temperature dependence of the free-energy barrier
to nucleation, TV, . The solid line indicates the Btted linear
function expressed by the printed equation. AH = 1.32 eV
and AS = —9.57 x 10 eV K are obtained.

W(g) = —gAp, + 0asg (24)

where Lp, is the difference in the free energy per atom
between the amorphous phase and the crystalline phase,
o. is the interfacial-energy density between the crystallite
and the amorphous matrix. Using Eq. (24), one has

in the smaller size (g ( 10 ). However, as shown in Fig.
2, the comparison with the extrapolated quasi-steady-
state CSD revealed that the steady state had not been
established in the observed range of the crystallite size.
If we mistakenly regarded the pseudo-power-law range as
the quasi-steady-state CSD, and besides, directly Btted
g(g) of Eq. (17) to the selected range without fixing the
value of d, we must have obtained a quite differen set
of d and C. Therefore, without the dynamic scaling by
Eq. (2), no one could extract the correct q(g) from the
transient CSD. It is also important to predetermine the
effective dimension, in order to accomplish the correct
dynamic scaling of the CSD.

For the purpose of determining R, by the present
method, we need only the value of C. However, the other
unknown parameters are also determined in the numeri-
cal Gtting for the dynamic scaling. The addition rates in
Fig. 7 show one of their uses. While more detailed analy-
ses are necessary to fully utilize them, some of the others
provide useful information on the validity of the method.
For instance, from the values of ( and g determined for
the sample (d), we can estimate w = 1.73 x 10 s and
A = 1.25. These values indicate that the steady state
has already been established beyond the critical region
when the CSD was observed at t = 3.6 x 104 s, while
the observed range was still in the transient state. This
situation is common to all the other samples. Thus, the
conditions of t ) Aw and g & g„+b for Eq. (2) were
satisfied.

Now we assess the magnitude of the term g, /6,
1—1/d

which was expected to be negligible. For this purpose,
we may simply use the conventional model,
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C
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~ ~
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1lkT (eV )
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I .
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Lp
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With Lp —0.1 eV obtained by the calorimetric measure-
ment in the solid-phase epitaxy, 2 the magnitude of the
above g, /h is estimated at about 0.8—1.5, for the wide
variation of g, &om a few tens to hundreds, for the deter-
mined. values of d, and for the observed range of the tem-

perature. Therefore, ln[g, /b] = —0.3—0.5 can be ne-X —i/d

glected in Eq. (20), compared to the other terms such as
—ln C+ ln[ni(t)/~sr = 31.2—31.8, and 1n[as/a2] = 5.57.
The derivative of ln[g, /8] to the temperature is es-
timated to be about 10, which can be also neglected
compared with the observed derivative of R",.

FIG. 7. Arrhenius plot of the addition rates of atoms per
unit area, ~. The solid line indicates the 6tted exponential
function expressed by the printed equation. The activation
energy to growth, Eg, is estimated to be 3.42 eV.

B. Nucleation in SPC of a-Si thin films

The free-energy barrier to nucleation in the thermally
induced SPC has been measured also by the alternative



16 760 HIDEYA KUMOMI AND FRANK G. SHI

method using the ratio of U/ J, for the various a-Si thin
films. The values of R' determined in the present work
are close to but slightly greater than that alternative
measurement of R' —2.0—2.1 eV. Since both methods
have the same kinetic basis, the observed difference of
TV, between them could result &om either the difference
in the starting materials or the difference in the data
sources. On the other hand, the present activation en-
ergy to growth measured as 3.42 eV is close to those mea-
sured by the previous methods. ' 2 The fact that TV, is
significantly smaller than Ez shows that the observable
rate of nucleation is controlled mainly by the growth of
the crystallites rather than the nucleation barrier itself.

Although the temperature range is not sufficiently
wide, the directly measured W, exhibits the apparent
temperature dependence. It is remarkable that the en-
tropic contribution (i.e. , TAB,—) to W, is considerably
large. This fact suggests that the conventional Arrhe-
nius method for obtaining W, is not applicable to the
present system, because the Arrhenius method equates
LH, to O', . The large entropic contribution to TV, has
been found also in a recent study on the nucleation of
crystallites in amorphous CoSi2 thin films that uses
the alternative U/J, method. Since the entropic contri-
bution corresponds to the difference in ordering between
the amorphous and the crystalline structures, these re-
sults indicate that the topological rearrangement of the
disordered amorphous structure into the ordered crys-
talline structure is a process essential to the nucleation
event as well as the growth. It is diKcult, however, to
further discuss at the present stage the origin of the ob-
served large entropic contribution to TV„because of lack
of the more detailed atomistic understanding.

It should be emphasized that the present method for
experimentally determining TV, is independent of any
model for TV, . Conversely, the obtained results can be
used to test the various models for W, . As the ini-
tial trial, we compare the magnitude of W, estimated
&om the classical capillary theory with the present re-
sult. Using Eq. (24) with Ap = 0.1 eV and cr

0.310 Jm = 1.93 x 10 eVpm, the classical the-
ory gives TV, = 9.50 eV. This is considerably greater
than the present experimental determination. It is pos-
sible to doubt the use of the above parameters, since
they were measured or theoretically estimated not for
the small clusters, but for the bulk materials. However,
for example, the other reports on 0 measured for the
small Si crystallites, using the classical theory, give much
larger estimates of a, 2 6 which further raise the magni-
tude of TV based on classical model for TV, . Although in

the other systems, the experiments and/or the computer
simulation have partly supported the classical model, ' 7

we mould rather suggest that the classical capillary the-
ory is not applicable to the present system. A recent
theory predicts the lowering the nucleation free-energy
barrier compared to the classical capillary theory, which
is mainly due to the reduction of the interfacial-energy
term in the small clusters. The next challenge will be
to test such nonclassical models by the directly measured
results, including AH, and LS, .

V. CONCLUSION

In conclusion, a method has been introduced to mea-
sure the &ee-energy barrier, R'„to the nucleation of
crystallites directly &om their size distributions, inde-
pendent of any model for R „and independent of the
energy barrier to the growth. This model-independent
method has been developed based on our recent results
on the dynamic scaling of the cluster size distribution
and other universal kinetic laws in the early stages of
nucleation and growth. The method has been applied
to determine TV, of dendritic Si crystallites in a-Si thin
films. Considering the dendritic nature of the crystal-
lites, we have obtained TV, 2.15—2.18 eV, the enthalpic
(i.e. , the activation energy) barrier AII, = 1.32 eV, the
entropic barrier LS, = —9.57 x 10 eV K, within the
temperature range of T = 863—893 K. It is found that
the entropic contribution to TV, is considerably large.
In addition, we have shown that the magnitude of the
measured TV, could not be accounted for by the classical
model for TV, with the previous suggested values for its
parameters. Thus, the results obtained by the present
model-independent method provide an opportunity for
the testing of the various theoretical models for lV, . Fi-
nally, we note that the general concept of the method
can be readily applied to the other systems.
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