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A family of stable elongated silicon clusters built from a simple stacking scheme has been discov-
ered through local density approximation (LDA) molecular cluster calculations. These surprisingly
well-bound structures were constructed by layering triangles of atoms with a common axis and
adding one or two caps. For small clusters, one cap is significantly more stable than two, and for a
few cases we have replaced the caps with other atoms (Be,B,N), which further increased the stability
by closing the electronic shells. These clusters show distinct structural features for odd and even
numbers of triangles, with a transition to greater stability for an odd number of triangles at n=29.
For n=20 we used the quantum Monte Carlo method in order to assess the accuracy of LDA for the

energy ordering of various isomers.

Small silicon clusters have recently been the source of
numerous experimental and theoretical studies.!~11 Sev-
eral interesting experimental results,?® such as reactivity
data and the observation of a structural transition, have
also sparked much recent activity. In addition, silicon
is of great importance in the microelectronics industry,
where it is estimated that the minimum structure size
will approach the scale of these small clusters within a
decade or two. Elongated structures are of particular in-
terest for their role in the fabrication of nanoscale wires,
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a possibility which is already being intensely explored for
carbon tubules.

We present here a class of “stacked” Si clusters that
are more stable than elongated clusters previously pro-
posed, which may provide insight into some of the impor-
tant questions regarding reactivities and structural tran-
sitions. Our structures are calculated for the size range
n=10-50 atoms (see Fig. 1) and are built from the fol-
lowing simple rules: triangles (1) are equilateral, (2) are
always in the z-y plane, (3) have a common z axis, and
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FIG. 1. Class of elongated structures calculated for n=10-50 formed by stacking threefold triangles about a common axis

and adding one or two caps.
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(4) are rotated by 60° with respect to neighboring trian-
gles. Also, (5) one or two caps are added along the z axis.
The n=27 cube and the n=28 fullerene were calculated
for comparison, as well as the n=20,26 ring structures
proposed previously® (see Fig. 2).

Clusters with one cap have closed electronic shells and
are found to be more stable than those with two caps, al-
though this effect diminishes rapidly as n increases. We
distinguish between an odd and an even number of to-
tal triangles in the cluster, and we show that there is
a fundamental difference in bonding character between
these two cases. In particular, the even case stacks six-
fold puckered rings, whereas the odd case has no repeat-
ing pattern and undergoes a structural transition from
n=23 to n=29 atoms. Furthermore, we were able to en-
hance the stability for several cases by doping the caps
in order to saturate dangling bonds and close the shell.

As has been shown in previous work,'? the local den-
sity approximation (LDA) provides an accurate picture
of the energetic ordering of silicon clusters. We therefore
use LDA to calculate binding energies of all the clusters
studied, and geometries have been optimized in LDA,
which is known to predict bond lengths and angles for
silicon systems to within a few percent of experiment.!3
Both total energy and atomic force calculations were per-
formed using the DMOL molecular cluster package.'* A
detailed investigation of Si, (n<20) clusters within the
quantum Monte Carlo (QMC), LDA, and Hartree-Fock
(HF) methods can be found in Ref. 12. In the present
work, we apply the QMC approach to several cases in
order to ensure an accurate description. The quantum
Monte Carlo approach, namely the variational and dif-
fusion Monte Carlo (VMC and DMC) methods, are de-
scribed in detail elsewhere.!®>—17

The minimum-energy structures for Si;o and Si;3 are
typically referred to as tetracapped trigonal prism and
capped trigonal antiprism, respectively. From a more
basic perspective, however, they can also be described as
stacked triangles with a common axis and one cap. In
order to illustrate this point, Fig. 3(a) shows a typical
view of the ground-state structure for Si;3, discovered by
Rothlisberger and co-workers;2 Fig. 3(b) shows the same
molecule, but in such a way as to emphasize its three-fold
symmetry. We use the labels A and B to denote the two
possible orientations for the triangles (each a 60° rotation

(a)

FIG. 2. Structures calculated for comparison. (a) The
26-atom structure of Kaxiras and Jackson Ref. [8]; (b) the
27-atom cube; (c) the 28-atom distorted fullerene.
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(a) (b)

FIG. 3. Two different views of the ground-state structure of
Siis, (a) showing the bonding character, and (b) emphasizing
the stacked triangles.

of the other). Using this description, one can build a
new class of larger clusters by adding successive layers of
triangles while following the rule that the orientations of
the triangles must alternate.

As an example of the procedure employed to build
these clusters, in order to make Siz¢ we begin with the
configuration A; By A2 By A3 Bs and put one atom at
each end as caps. In this case we would have 13 pa-
rameters to optimize: the sizes of the triangles (6), the
triangle-triangle distances (5), and the triangle-cap dis-
tances (2). It is clear from symmetry, however, that six
of these parameters are duplicates (i.e., the size of A; is
equal to that of B3, etc.), and so we are left with seven
independent quantities.

Optimization within the symmetry constraints was
performed using several minimization methods as well as
experience from the small cases. We tried several differ-
ent starting configurations for each cluster, usually build-
ing on the geometry of well-converged smaller clusters.
One trend of the clusters is that they have alternating
triangle sizes, so that, for example, if 4; is smaller than
B; then all A are smaller than all B. The triangles next
to caps are generally the largest in the cluster since they
must accomodate a central-axis atom. In most cases,
about 10-15 optimization iterations were sufficient in or-
der to find the equilibrium structures, in which all forces
are less than 0.003 a.u. LDA binding energies and gaps
for all of these clusters are listed in Table 1.

Clusters where the total number of triangles ma is
even differ from those with ma=odd in several funda-
mental ways. The most important difference lies in the
fact that when there is an even number of total trian-
gles |m4 — mp|=0, and for an odd number of triangles
I[ma — mp|=1. Therefore, in the odd case there is al-
ways one “extra” triangle of a given orientation that can
naturally be considered to be the central triangle.

A. Even number of triangles

For clusters with ma=even (i.e., for n=14, 20, 26, 32,
38, and 50), there is a pronounced trend toward six-
fold puckered rings, as can be seen in Fig. 1. All of
these clusters have similar physical features; in partic-
ular, the sixfold ring?® is a stable unit of atoms which can
be repeatedly stacked along an axis without changing the
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TABLE I. Calculated LDA binding energies (eV/atom),
ma /number of caps and HOMO-LUMO (where LUMO is
lowest unoccupied molecular orbital) gaps (eV) for elongated
Si, clusters for n=10-50, as well as other structures for com-
parison.

n ma /number of caps Binding energy Gap
10 odd/1 4232 2.13
11 odd/2 4.136

13 even/1 4.187 1.65
14 even/2 4.166

16 odd/1 4.192 1.76
17 odd/2 4.130

19 even/1 4.192 1.13
20 even/2 4.194

22 odd/1 4.126 0.98
23 odd/2 4.147

25 even/1 4.207 0.84
26 even/2 4.219

29 odd/2 4.236

32 even/2 4.229 0.35
35 odd/2 4.225 0.69
38 even/2 4.248 0.53
41 odd/2 4.214

50 even/2 4.262 0.34
20* 4.015

20° even/2 4.093 0.345
26° even/2 4.096 0.023
27¢ 4.1446

28¢ 4.278 0.140
2Dodecahedron.

PReference 8.

“Cube.

dDistorted fullerene.

bonding character. The ring structures of Kaxiras and
Jackson® are also based on sixfold units, but they are ro-
tated by 30° with respect to each other when compared
with ours, resulting in overall threefold coordination. By
contrast, our ma =even clusters have all fourfold coordi-
nated atoms except for the caps which are usually sixfold
coordinated. This is consistent with the Si surface and
bulk tendencies toward fourfold coordination, and with
recent theoretical work on Sigs by Rothlisberger and co-
workers. 8

Another interesting fact is also that, aside from small
variations due to shell-filling effects, the binding energy
(BE)/atom exhibits a general slowly decreasing function
with increasing number of atoms. Evidently larger clus-
ters have more structural degrees of freedom that can
be relaxed with resulting small energy gains. This con-
trasts with previously proposed sequences of elongated
structures that have essentially constant BE/atom. For
n=20, our stacking scheme forms a cluster which is 2 eV
lower in total energy than the stacked ring structure of
Kaxiras and Jackson, and 4 eV lower in energy than the
dodecahedron. In Table IT we show energy differences be-
tween these three Siz clusters, and for this case we have
used QMC in order to check the accuracy of LDA. These
QMC calculations confirm our previous observation for
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TABLE II. Energy differences (eV) between Sizo isomers
as calculated by the HF, LDA, and DMC methods.

HF LDA DMC
Sizo (new structure) 0.00 0.00 0.00
Size (Kaxiras+Jackson) —4.43 1.9 1.4(4)
Sizo (dodecahedron) —-1.07 3.6 4.0(6)

smaller clusters'? that LDA is able to predict very accu-
rately the energy differences between various isomers and
we expect that this will also hold for larger cases. This is
in contrast to our recent calculations on carbon clusters
where LDA and its variant are much less predictive.!®

B. Odd number of triangles

Although there is a similar trend toward larger
BE/atom as n increases, clusters with ma=odd (i.e., for
n=11, 17, 23, 29, 35, and 41) differ considerably from
their even counterparts. In these clusters the triangles no
longer pair together; thus there is no tendency to form
six-fold rings. Furthermore, the bonding and coordina-
tion vary greatly as a function of cluster size (in contrast
to the even case).

We note that there is a sharp increase in stability from
n=23 to n=29, which can be understood from the signif-
icant difference in the geometry of these two clusters,
namely, that the central triangle for n=29 is ~ 40%
smaller than that of the n=23 cluster. In both Si,3 and
Sizg, the atoms of the central triangle are sixfold coor-
dinated; in the latter case, however, these atoms bond
to each other. This has the effect of pushing the second
triangle from the center on each side further away in or-
der to avoid eightfold coordination. The n=29 bonding
is more favorable, as it allows for a more even distribu-
tion of valence charge across the molecule. Clearly these
clusters do not have the same stable repetition of bond-
ing characteristics as in the even case, but for n>29 the
structures with an odd number of triangles have a signif-
icantly larger BE/atom.

C. Open-shell character

For n<29, all of the clusters with two caps have a
doubly degenerate highest occupied molecular orbital
(HOMO). We have therefore investigated possible Jahn-
Teller distortions by reducing symmetry constraints and
further relaxing the atoms. In all these cases we found
that the triangles rotate slightly about the = or y axis,
leading to a C5, symmetric structure and a closed shell.
The geometric as well as energetic changes in these re-
laxed structures are minimal (~ 0.10 eV).

In addition to symmetry lowering, each of the open
shell Cj3,, structures can be made closed shell by remov-
ing one of the caps, effectively reducing the valency of
the molecule by 4. Removal of a cap eliminates a six-
fold coordinated atom (unfavorable for silicon) from the
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TABLE III. Total binding energy (eV) and HOMO-LUMO
gaps (eV) for doped clusters

Cluster Binding energy Gap
Sizo (new structure) 83.88

SiisBez 83.18 0.933
Si1sB2 86.05 0.644
Si1gN2 84.65 0.389

cluster, leaving the last triangle with threefold coordi-
nated atoms. In the case of an even number of triangles,
this appears to compensate for the two “extra” bonds at
the other end of the cluster. As can be seen in Table
I, the resulting molecules are all closed shell with rather
large LDA gaps. For the smaller clusters (n<20) the
effect of removing a cap also significantly increases the
BE/atom, furthering the notion that the saturation of
dangling bonds and closed shell character of the clusters
are key features that lead to stability.

D. Doped caps

The second way in which one can repair possible over-
coordination is by doping the caps. There are two extra
bonds at each cap, so we replaced the Si atoms with ones
which have fewer electrons in the valence. For n=20 the
HOMO is a degenerate spin triplet, and the next high-
est molecular orbital is a singlet. Therefore, removing
either two or four total valence electrons will result in a
closed shell molecule. Thus, good first choices for substi-
tute cap atoms are boron and beryllium. Total binding
energies and gaps for these doped clusters (see Table III)
show that they are rather stable when compared to the
undoped case. The presence of a gap is clearly impor-
tant for stability, and in light of this we also attempted
to dope with N, which provides the molecule with two
additional valence electrons, the amount needed to close
the outer shell. In Table III we can see that Si;gN, is
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indeed closed shell and the BE is comparable with that
of the other cases.

As one would expect, the position of the doped atom
depends largely on its size. Beryllium “feels” almost no
energy barrier when passing through the top triangle,
and actually prefers to stay between the last two triangles
rather than outside. Boron and nitrogen are most stable
when they are essentially exactly inside the last triangle.

In conclusion, we have discovered a class of elongated
clusters that can be created by following simple rules of
stacking triangles of atoms on a common threefold axis
and adding one or two caps. The main difference from
previous work, which presented prolate clusters with pre-
dominantly threefold coordination,® is a strong tendency
toward fourfold coordination, which results in a signifi-
cant energy gain in most cases. Many of these structures
appear to be excellent candidates for ground state geome-
tries in the size range n=10-29, below the experimentally
observed structural transition from elongated to more
spherical clusters by Jarrold and co-workers.® We used
the LDA DMOL method to calculate binding energies
and find local energy minima by structural relaxation.
For Sizo isomers we have checked, by the highly accu-
rate quantum Monte Carlo method, that LDA appears
to be predictive for energy differences for these systems.
The clusters proved to be well bounded up to at least 50
atoms, and for n=20 further stabilization was obtained
by replacing the Si caps with other atoms such as B, Be,
and N.
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