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Theory of strong inelastic cotunneling
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We develop a theory of the conductance of a quantum dot connected to two leads by single-mode
quantum point contacts. If the contacts are in the regime of perfect transmission, the conductance
shows no Coulomb blockade oscillations as a function of the gate voltage. In the presence of small
re6ection in both contacts, the conductance develops small Coulomb blockade oscillations. As the
temperature of the system is lowered, the amplitude of the oscillations grows, and eventually sharp
periodic peaks in conductance are formed. Away from the centers of the peaks the conductance
vanishes at low temperatures as T, in agreement with the theory of inelastic cotunneling developed
for the weak-tunneling case. Conductance near the center of a peak can be studied using an analogy
with the multichannel Kondo problem. In the case of symmetric barriers, the peak conductance at
T ~ 0 is of the order of e /h, . In the asymmetric case, the peak conductance vanishes linearly in
temperature.

I. INTRODUCTION

Electronic transport in mesoscopic systems is usually
affected by the Coulomb interactions between the elec-
trons. The interactions manifest themselves most dra-
matically in small tunnel junctions. If a small metallic
grain is connected to a lead by a tunnel junction, an
electron tunneling into such a grain charges it by the
elementary charge e and increases the energy of the sys-
tem by e /2C. For a small grain, the typical capaci-
tance of the system can be very small, so that the charg-
ing energy e /2C can significantly exceed the tempera-
ture of the system T. In this regime one observes the
Coulomb blockade: strong suppression of the tunneling
into the grain at low temperatures. Various aspects of
the Coulomb blockade have been intensively studied in
recent years, both experimentally and theoretically. '

Recently it has become possible to observe the
Coulomb blockade in semiconductor heterostructures.
Instead of a metallic grain, in such experiments one cre-
ates a small region of the two-dimensional electron gas
(2DEG)—a quantum dot—separated &om the rest of the
2DEG by potential barriers created by applying negative
voltage to the gates, Fig. 1. Experimentally, one mea-
sures the linear conductance through the quantum dot as
a function of the voltage Vg applied to the central gates.
The role of the gate voltage is to change the electrostatic
energy of the system,

system corresponds to some integer value of charge, and
the states with difFerent values of Q are separated from
it by the electrostatic gap A e2/2C. It is important to
note that at the values of the gate voltage correspond-
ing to half-integer values of N the gap vanishes; i.e. , the
ground state is degenerate in charge Q. For example, at
N =

2 the ground state can have charge either Q = 0 or
e. Therefore at half-integer N the tunneling of an elec-
tron into or out of the quantum dot does not lead to the
increase of the electrostatic energy of the system, and
the Coulomb blockade is lifted. As a result the conduc-
tance of the structure in Fig. 1 shows periodic peaks as
a function of ¹ The Coulomb blockade peaks in linear
conductance as a function of the gate voltage are readily
observed in the experiments (see, e.g. , Ref. 3).

The shapes and heights of the peaks in conductance

(Q —eN)
2C

where Q is the charge of the quantum dot, and N is a di-
mensionless parameter proportional to the gate voltage
and the capacitance Cg between the dot and the gate,
N = CgV~/e. If the potential barriers separating the
quantum dot from the lead. s are high, the charge Q is
an integer in units of e. Thus, the ground state of the

FIG. 1. Schematic view of a quantum dot connected to two
bulk 2D electrodes. The dot is formed by applying negative
voltage to the gates (shaded). Solid line shows the boundary
of the 2D electron gas (2DEG). Electrostatic conditions in the
dot are controlled by the voltage applied to the central gates.
Voltage VL„~ applied to the auxiliary gates controls the trans-
mission probability through the left and right constrictions.
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are usually described within the &amework of the ortho-
dox theory of the Coulomb blockade. i In this approach
the conductance is found from the balance of the rates
of tunneling of electrons between the leads and the dot,
with the rates being calculated in the lowest-order per-
turbation theory in the tunneling matrix elements. The
resulting linear conductance has the form

1 GL, G~ 4/T e2

2 GL, + GR sinh(A/T) ' C (2)

Here GI, and GR are the conductances of the left and
right barriers, bNis 'the deviation of N from the near-
est half-integer value. Away &om the center of the
peak, the tunneling of an electron into the quantum
dot is suppressed, because only a small fraction of elec-
trons has the energy sufBcient to overcome the electro-
static gap A. Thus the conductance (2) decays expo-
nentially at T —+ 0. At very low temperatures, how-
ever, another mechanism —usually referred to as inelas-
tic cotunneling —dominates the conductance. Instead of
a real process of tunneling &om a lead to the dot, an elec-
tron tunnels &om the left lead to a virtual state in the
dot, and then another electron tunnels from the dot to
the right lead. As a result of such a two-step process, one
electron is transferred &om the left lead to the right one,
and the charge of the quantum dot is unchanged. The
corresponding conductance has only a power-law depen-
dence on temperature,

In this paper we develop a theory of the Coulomb
blockade oscillations of conductance in the regime of
strong tunneling. It was shown in Ref. 15 that the av-
erage charge of a quantum dot connected to a lead by a
single-mode quantum point contact shows small periodic
oscillations as a function of the gate voltage as long as
the transmission coefBcient 7 is below unity. Similarly,
we will show that the conductance through a quantum
dot shows small periodic oscillations at 7 ( 1. One
should note, however, that unlike the average charge,
the amp1itude of the oscillations of conductance depends
on temperature and grows as T is lowered. In the limit
T ~ 0, small oscillations develop into sharp periodic
peaks, and the o8'-peak conductance vanishes as T, thus
reproducing the characteristic quadratic temperature de-
pendence for inelastic cotunneling (3).

In Sec. II we use the analogy ' between the Coulomb
blockade and multichannel Kondo problem to discuss the
peak value of conductance at T ~ 0. This discussion is
done for the weak-tunneling case, but the conclusion that
the peak conductance is of the order of e /h, is valid for
the strong tunneling as well. The theory of conductance
oscillations in the strong-tunneling regime is developed in
Secs. III and IV. In Sec. V we discuss the scaling prop-
erties of our problem. In particular, we show that the
quadratic temperature dependence of the ofF-peak con-
ductance at T ~ 0 is universal and holds for arbitrary
transmission coeKcients.

vrhGL, GR (T ) I'I. CONDUCTANCE PEAKS IN THE
WEAK- TUNNELING CASE

In the case of weak tunneling, GI„G~ && e /5, the re-
sults (2) and (3) give the full description of the Coulomb
blockade peaks in linear conductance. Near the center of
the peak the conductance is given by Eq. (2), whereas
the tails of the peaks are dominated by the cotunneling
contribution (3).

In a number of recent experiments the tunneling
through quantum dots was studied in the regime where
one or more quantum point contacts were tuned to the
regime of strong tunneling, corresponding to conduc-
tance G -+ e2/vrh. In particular, it was demonstrated
by van der Vaart et al. that the Coulomb blockade os-
cillations of linear conductance persist as long as the
conductances of both barriers are below the conduc-
tance quantum e2/vrh. Most of the existing theoretical
works on the strong-tunneling regime of the Coulomb
blockade discuss the case of metallic systems, where
one can achieve large conductance of a tunnel junction
between the grain and a lead by increasing the number of
transverse modes while keeping the transmission coefFi-
cient 7 small. Such theories cannot be applied to the ex-
periments in semiconductor heterostructures, where the
point contacts typically allow only a single transverse
mode, but the transmission coeKcient can be tuned to
7 ~ 1. The theoretical works for this case either do
not concentrate on the Coulomb blockade oscillations
or study the oscillations of equilibrium properties of the
system, rather than its conductance.

II = ) eI, avatar, + ) epata + E~(n —N)
A: p

+).("~aya + "s a ak).
A:p

(4)

Here aA, and ap are the annihilation operators for the
electrons in the lead and in the dot, respectively, and
Ec is the characteristic charging energy, Ec = e /2C;
coupling between the dot and the lead is described by a

Let us first consider the weak-tunneling case. The lin-
ear conductance is given by Eqs. (2) and (3). One should
note that in the derivation of Eqs. (2) and (3) only the
lowest-order terms of the perturbation theory in tunnel-
ing amplitudes were taken into account. This is usually
justified at GI„G~ && e /h. However, it was shown in
Ref. 16 that near a half-integer % and at low tempera-
tures the higher-order corrections lead to large logarith-
mic renormalizations of the tunneling amplitudes. The
nature of these renormalizations can be understood in
terms of the analogy between the Coulomb blockade
and the Kondo problem. We will now discuss this anal-
ogy and correct the results (2) and (3) to take into ac-
count the renormalizations of the tunneling amplitudes.

For simplicity we start with the quantum dot weakly
coupled to a single lead. Such a system can be described
by the following Hamiltonian:
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tunneling Hamiltonian with the matrix element v~. Fi-
nally, n is the operator of the number of electrons in the
dot, counted &om that at the ground state of the system
without tunneling, n = P(ata„—(ata„)o).

Due to the last term in Eq. (4) electrons can tunnel
from the lead to a virtual state in the dot. The energy of
such a virtual state is of the order of E~, and to complete
this scattering process an electron has to tunnel &om the
dot to the lead. It is instructive to calculate the second-
order amplitude of scattering between two states in the
lead, A; and k', near the Fermi level:

Here the second term corresponds to the process in which
first an electron &om the filled state p in the dot tunnels
to the state k' in the lead, and then the electron k fills
the hole in the dot. Clearly, the total amplitude diverges
logarithmically at N ~ +2,

1+2N
Tb b = vdlv, I

l—n
1 —2N'

where vp is the density of states in the dot. The logarith-
mic singularity at N ~ z originates from the degeneracy
of the electrostatic energy for states with n = 0 and n = 1
extra electrons in the dot.

Let us now concentrate on the case of the dimension-
less gate voltage N very close to 2. In this case the
logarithmic renormalizations are large, and to find the
scaling properties of the scattering amplitudes, we can re-
strict our consideration to the energy scales smaller than
Ec. Thus when constructing the perturbation series for
a tunneling amplitude we will neglect all the processes
in which the system visits virtual states with the charge
n diferent &om 0 or 1. Another important property of
the Hamiltonian (4) is that the perturbation the tun-
neling term —always changes the charge of the dot by 1.
Suppose that at the first step of a high-order tunneling
process an electron tunnels &om the lead to the dot thus
changing n &om 0 to 1. Then at the next step an electron
will have to tunnel from the dot to the lead (changing
n = 1 ~ 0), because otherwise a virtual state with n = 2
and correspondingly large energy E~ would have been
created. At the third step an electron tunnels from the
lead to the dot, changing n = 0 + 1, and so on.

One can easily see that exactly the same perturba-
tion series for scattering amplitudes is obtained &om the
Hamiltonian of the anisotropic Kondo model,

H = ) erat„a„+ hS'
kn

in Ref. 17; here we only mention the relations between
the parameters of the Hamiltonians (4) and (7). The
values of the electron spin n = g and $ correspond to
the electron being in the lead and the dot, respectively.
Similarly, the values of the impurity spin S' = $ and
g correspond to the states with the number of particles
in the dot n = 0 and 1. Magnetic field h, is identified
with the energy splitting of the n = 0 and n = 1 states,
h = 2Ec (z —N). Finally, the tunneling matrix element
v~ is mapped to the exchange constant J~.

It is well known that at low temperatures and mag-
netic fields the exchange constant J of the Kondo model
renormalizes logarithmically. As a result J grows, and
the system approaches the strong-coupling fixed point.
In the context of the Coulomb blockade problem, this
means that at N + 2 and T ~ 0 the tunneling ampli-
tudes grow until the conductance of the barrier becomes
of order e /h.

Using the analogy with the Kondo problem, one can
actually find the renormalizations of the tunneling ampli-
tudes. In the leading logarithm approximation one can
use the poor man's scaling technique. The result can
be written down in terms of the renormalization of the
transmission coefficient 7 of the barrier between the lead
and the dot,

0 ( l
c

cos2 (
—~7q()

' max(T, 4) ' (8)

7, without spins,
Gb —— X

2m/ 27, with spins.

It is worth mentioning that within the leading logarithm
approximation the transmission coefFicients of two barri-
ers renormalize independently, so one can use Eq. (8) for
both left and right barriers.

Let us find the temperature dependence of the peak
value of the conductance in the case of symmetric barri-
ers, i.e. , assume 2V =

z and Gl, = G~ = Gb = (e /mh)7 .
According to Eq. (2), the peak conductance is 4Gb. Tak-
ing into account the renormalization (8) of the transmis-
sion coeKcient, we find

Here 7o is the bare value of the transmission coefficient,
and 4 = E~

I
1 —2%I. When 7 becomes of the order of

unity, the leading logarithm approximation fails. Thus
the result (8) is valid as long as the renormalized trans-
mission coeKcient is small, 7 &( 1.

In this regime one can still use the weak-tunneling re-
sults (2) and (3) for the conductance through a dot con-
nected to two leads, taking into account the renormal-
izations of the conductances of the barriers. This can be
done by noting the relation between the conductance of
a barrier Gb and its transmission coeKcient,

+J ) ( +,S +,S)
kk'nn'

e 7o
4~h cos2 [—'~70 ln(E~/T)]

(10)

where o are the linear combinations of Pauli matrices,
o.+ = o + o.", and S is the impurity spin, S+ = S
S". A formal discussion of this mapping can be found

As expected, when the temperature is lowered, the con-
ductance grows. This result is valid only at temperatures
exceeding the characteristic Kondo temperature of this
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problem, Tic Ec exp( —n /2~7O). At too low temper-
atures, T & TR. , the conductance is of the order of e2/5,
transmission coefficient 7 1, and the result of the lead-
ing logarithm approximation (10) is no longer applicable.

It is also interesting to study the tails of the conduc-
tance peaks. If the gate voltage % is not precisely half-
integer, then at low temperatures, T « A = 2Ec IK —

2 I,
one can still use the inelastic cotunneling result (3) with
the values of conductances of the barriers renormalized
according to Eqs. (8) and (9). The resulting conductance
has the form:

71.7R T2

3~A 42cos2, ~+7L, ln cos2 —+7Rln ~~

based on the fact that if the boundaries of the channel are
very smooth, the transport though it can be described in
terms of adiabatic wave functions having essentially a
1D form.

Another simplification of the problem is due to the fact
that the typical energies involved in the Coulomb block-
ade phenomenon are of the order of the charging energy
E~, which is much smaller than the Fermi energy. This
allows us to linearize the spectra of the 1D electrons near
the Fermi points and to formulate the model in terms of
the left- and right-moving fermions:

X' (*)&@ (*)—&'.(*)7@ ( )

Similarly to Eq. (10), the result (ll) is valid only as long
as 7 (( 1. In this case the condition allows only the
values of the gate voltage not too close to the resonance,
4 )) T~.

As we have seen, if one starts with the weak-tunneling
case, in the vicinity of the resonances in G(V~) the tun-
neling amplitude grows, and the system approaches the
strong-coupling regime. Therefore one can use the re-
sults of the weak-tunneling approach to Gnd the univer-
sal features of the peaks in conductance, which should
also persist in the strong-tunneling case. Such features
are (i) the T m 0 value of the peak conductance (10)
for symmetric barriers is of the order of e /h, and (ii)
away &om the centers of peaks the temperature depen-
dence of the conductance at T ~ 0 is G oc T . It is
worth noting that unlike the temperature dependence of
the cotunneling conductance (3), its 1/4 dependence of
the gate voltage is not universal; see Eq. (11).

III. STRONG COTUNNELING
OF SPINLESS ELECTRONS

We will start our treatment of the strong-tunneling
case with a simplified model of spinless electrons. As
we will see, in this case a complete solution of the prob-
lem is possible. Experimentally, the spinless case can
be achieved by applying an in-plane magnetic field, suK-
ciently strong to polarize the electron gas in the constric-
tions.

A. Theoretical model

We assume that each of the quantum point contacts
in Fig. 1 allows the transmission of electrons in only one
mode. The transmission coeKcients of the two contacts
71. and 7R are assumed to be close to unity. This en-
ables us to start with the Hamiltonian corresponding to
perfect transmission, 7r, = 7R = 1, and then construct
the perturbation theory in small reQection amplitudes, rI,
and rR. Following Ref. 14, we will describe each of the
quantum point contacts by a system of one-dimensional
(1D) electrons. The formal derivation of this model~s is

+&R1(~)+&» (~) &R2—(~)+@»(*)i«( 2)

Here @L,q and @L,2 are the annihilation operators for the
electrons of the left contact moving to the left and right,
respectively; @Rz and vPR2 describe the left- and right-
moving electrons of the right contact; V' =— . We asso-
ciate the centers of the constrictions with points x = 0,
meaning that electrons in the dot are described by @Iql21
at x ) 0 and by @R&~21 at x & 0. Thus the charging en-
ergy can be presented as

Ha = Ec(~ —~)', (13)

where

Here: X: denotes the normal-ordered operator X. Fi-
nally, the presence of weak backscattering in the contacts,
described by small reffection amplitudes Iri, I, IMARI « 1,
gives rise to the term mixing the left- and right-moving
particles,

H' = hvp. IIri. I@~t,(0)QL,, (0)

+ Ir RIOR'(0) &R2(0) + H c l. (14)

The Hamiltonian H = Ho+H~+H' gives the complete
description of the transport through a quantum dot con-
nected to two leads. In our model the two contacts are de-
scribed by two independent 1D systems. Thus we neglect
the possibility of coherent transport of electrons &om one
quantum point contact to the other. Such processes lead
to the additional mechanism of transport through the dot
called elastic cotunneling. It is known, however, that at
temperatures exceeding the level spacing e in the dot the
elastic cotunneling contribution to the total conductance
is much smaller than that of inelastic cotunneling. Thus
we will concentrate on the case T && c, which is easy to
satisfy in the experiments, and in the following calcula-
tions we will assume e = 0. At T & e the conductance
becomes temperature independent and can be estimated
by replacing T by e in our results.

The solution of the problem with the Hamiltonian
given by Eqs. (12)—(14) is not trivial because the inter-
action term Hc is not quadratic in fermion operators.
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To overcome this difBculty, we will use the bosonization
technique, which enables one to treat the interaction
in 1D systems exactly. Following Ref. 20, we present the
fermion operators as

~-(*) = (.....)'
1/2

~-(*) = (....) ~(@1(a}'/Li

ei(P~2 (m)'/L2

(15)

Here D is the bandwidth, and the two independent
bosonic fields yLz and pL2 satisfy the following commu-
tation relations:

[VL1(*) VL1(u)] = —[PL2(*) VL2(~)]
= —im sgn(x —y). (16)

1 1
PL = (PL2 —PL—i), IIL = — V(PLi + PL2). (17)2 '

27'

Given (16), the operators (15) satisfy usual anticommu-
tation relations. To ensure proper anticommutation re-
lations for fermions at diferent branches, we have added
the local Majorana fermions gLi and gL2.

The electrons of the right contact are bosonized in a
siinilar way. One can then rewrite the Hamiltonian (12)—
(14) in terms of rpL and yR. It will be more convenient,
however, to present the Hamiltonian in terms of slightly
di8'erent bosonic fields:

In Eq. (21) we neglected the products of Majorana
fermions gL&gL2 and g&&g&2, as they commute with each
other. Unlike the first two terms, Hp and H~, the
backscattering term is not quadratic in bosonic variables
and cannot be treated exactly. Below we assume weak
backscattering and develop the perturbation theory in
~m~ll p~ram~te~s I«l and I»l.

B. Perturbation theory for the conductance

In this paper we are only interested in the linear con-
ductance through the quantum dot. To find it, we will
use a Kubo formula, which in the zero-&equency limit
can be written as

(22)

where I is the operator of current through the dot.
We define I as the average of the current IL How-

ing into the dot through the left contact and the cur-
rent I~ Howing out of the dot through the right contact.
Clearly, the current IL is proportional to the time deriva-
tive of the displacement of the effective elastic medium
describing the left contact, IL ePL, and, similarly,
IR ~ ePR. From the equations of motion correspond-
ing to the Hamiltonian Hp + H~ + H', one concludes
that I ~ en~(IIL + IIR). A careful calculation gives

The new variables satisfy the commutation relations typ-
ical for the displacement of a 1D elastic medium and its
momentum density,

1I = -eve (IIL+ IIR)l. , (23)

[4L(*) IIL(&)] = i~(~ —~).

The form of the &ee-electron Hamiltoiuan (12) supports
this observation,

hv~ 1

As the first step, we will find the conductance in the
absence of the barriers. Since the current operator (23)
commutes with H~, one should expect the conductance
to be insensitive to the charging energy. Clearly, at E~ ——

0 the system is equivalent to two resistances 2vrhje2 of
the two quantum point contacts, connected in series. One
then expects the conductance to be

+—(VP~(x)]~ + vcII2~(T) j dx.
e

Gp ——
4~h (24)

H~ = [QR(0) —QL(0) —7rN] (20)

It is important to stress that the interaction term (20)
is now quadratic in PL and PR. Therefore the bosoniza-
tion approach enables one to treat the charging energy
exactly.

Finally, the backscattering term (14) takes the form

This qualitative interpretation allows one to predict
the correct bosonized form of the charging energy (13).
One should expect that the charge of the dot is pro-
portional to the difFerence of the charge QL epL(0)
brought into the dot through the left contact and the
charge QR ePR(0) carried away through the right con-
tact. Explicit calculation gives

This result is easily derived &om the Kubo formula (22),
because with H' = 0 the current-current correlator must
be found for a quadratic Hamiltonian. As a result, one
finds ([I(t),I(0)]) = i(e2/27r)b'(t), and after the substi-
tution into (22) one reproduces (24).

The result (24) is independent of temperature. Since
we used the Hamiltonian (12) with linearized spectra
of electrons, the temperature was assumed to be much
smaller than the Fermi energy, but could still be of the or-
der of the charging energy. In the presence of the barriers
the conductance must acquire some temperature depen-
dence, which is obvious &om the limit of very high bar-
riers (3). Indeed, the lowest nonvanishing (second-order)
correction in rL and r~ to the conductance is already
temperature dependent. At low temperatures T « E~,
we get

H' = cos[2$L(0)] + cos[2$R(0)].
D]rR! e' f ~r, y))G= 1—

!4mb ( 4T (25)
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where I"0 is defined as follows:

I'o(~) =, I«l'+ I~BI'+ 21«llr~l cos(2~~) .

(26)

C. Nonperturbative calculation

At low temperatures T & I'0 the second-order correc-
tion becomes large, and the perturbation theory fails. To
find the conductance in this case, one has to sum up an
infinite number of terms of the perturbation theory. To
perform such a summation, we will use the technique de-
veloped in Ref. 15.

At the first step we perform a linear transformation of
the bosonic fields,

4r —4c dr+Pc
v2

(27)

and similarly for IIL, and II~. The ad.vantage of using
these new variables is that the Coulomb energy (20) is
now expressed in terms of the charging mode Pc only,

2Ec
ZIc =, jc(0)—

2
(28)

Here p = e, with C = 0.5772, . . . being the Euler's
constant. In Eq. (25) we have neglected the terms small
in T/Ec. The result (25) and (26) is analogous to that
for the conductance of a 1D wire with two defects
and can be obtained in a similar way, see Appendix A 1.

As expected, the presence of weak scattering in the
contacts gives rise to a small periodic correction to the
conductance. The same behavior was predicted for the
average charge of the dot. However, unlike the average
charge, the correction to conductance strongly depends
on temperature. As the temperature is lowered, the con-
ductance decreases. The only case when conductance is
temperature independent is when the barriers are sym-
metric, lrr, l

=— leal, and the dimensionless gate voltage
N is half-integer, which corresponds to the center of a
peak in the high-barrier case. In this regime we expect
the conductance to be of the order of e2/5, cf. Sec. II,
which is confirmed by the perturbation theory (25) and
(26).

where the dependence on the gate voltage is incorporated
into the complex parameter r = l« le

' + lrrrle'
The Hamiltonian (29) and (30) can be transformed to

that of an impurity in a y =
2 Luttinger liquid by a

simple transformation P = ~2$r and II = IIr/~2. The
latter can be solved exactly using the technique devel-
oped in Ref. 24. For our purposes it will be more conve-
nient to use an alternative exact solution. 5 The idea is
to interpret e'~2&z as a bosonized form of some fermion
annihilation operator. 2 This can be done by rewriting
the Hamiltonian in terms of two decoupled chiral bosonic
fields defined as

In these variables the Hamiltonian takes the form

2 + Q ~ 2

'v+(o) + ' —'v+(o)
2)r

One can easily check that the fields p+ and p commute.
Thus the p part of the Hamiltonian completely decou-
ples. Since the field p+(x) satisfies the same commuta-
tion relations (16) as yr, i, one can in complete analogy
with Eq. (15) interpret e'~+ as a fermion operator, 2s

e~~+ (&)—
1/2

n+@+( ). (34)

The resulting Hamiltonian is quadratic in fermion op-
erators,

H=ihvy +t x V' + xdx

fphvr;Ec') '/'
+

7l2 j rrI+g+(0) + r'Q+t(0)rI+, (35)

and can be easily diagonalized. This greatly simplifies
the calculation of the conductance. One can again use
the Kubo formula (22), with the properly transformed
current operator (23). In the new fermionic variables the
current operator has the form

Z = —evr; ..vp+g+.. (36)

4 (*)+ & (- ) II ( ') + ll (-*')
p~(x) = + ~r dx'.

2 0 2

(31)

The charging energy (28) suppresses the fiuctuations of
(tc(0) at energy scales below Ec. Thus at T (( Ec one
can integrate out the fluctuations of the charging mode
by replacing the scattering term (21) with its value av-
eraged over the fiuctuations of Pc. The resulting Hamil-
tonian is expressed in terms of the field Pr only and has
the form

The actual calculation of the linear conductance is
rather long, but straight forward. First we find the
current-current correlation function to be

([z(t) z(0)]) = „~'(t)—
I e sin[(E + E ) t/A]dede

(e + I' )(e'/2'+ ].)(e"/ + ].)Ho = —[Vpr( )] +mIIr~(T)T) 2ch
2 7r

(29)

(37)(pEcD ))
'/'

2' s )
i ~2gz (0) + * —i ~2@z (0)

) The substitution of Eq. (37) into the Kubo formula (22)
(80)
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gives the following expression f th 1or e inear conductance:

e OO 1 I'p(N)
4 h 4T o h', E'+I'(K)

Equation (38) is the central result of this section. It
is valid for any temperature b 1 E, ,

' thee e ow c, and, unlike the
perturbative result (25) it is~„ i is not restricted to only suK-
ciently high temperatures T &) I'0. Of cours

esu
& ~ is reproduced.

In the opposite limit, T &( I' h
quadratic in temperature,

~ ~
0, t e conductance is

Ãe T
12h I'p (K)

It is important to note that tha e same temperature de-
pendence was found for th 1e ine astic cotunnelin ~3~ in
the weak-tunneling regime. A
em erature depen ence is a universal t
ic cotunneling and is not limited to the w a — ling

In the special case of symm t '
bme ric arriers, lrl, l

= ]rR
rp, the low-temperature limit i39~ '

mi ~&~&is never achieved on
resonance. Indeed, we have I'0 ——~&8 E 'vr2'&l'~ )ro cos sr¹

0 vanishes at half-integer values of %.
the low-tern e

ues o . Therefore in
- emperature limit the resonant valu f

tance is e ~4vrh wherea
n va ue o conduc-

weak-tunneling case (3), the tails of the peak at N =—

coincides with t
F', ' '

o ing that the conductance (38)Finally, it is worth notin
d h that of a weak impurity in the

Luttinger liquid. 3 Th'q . This is not surprising, considerin the

wit t e one for the quantum impurity problem In the

latter problem the condition g = — re uires s

n our case the condition g = — ' t'=
2 is sa is e automatically

when we integrate out one of th t b, .. ....;, .d,.-
IV. CQTUNNELING OF ELECTRONS

%PITH SPINS

In the re
le

previous section we cons'd d thre i ere e case of s in-
ess electrons, which can b 1'n ereaize ya 1 in

p

- 1 t Geld I the absence of the Geld, h
o t e contacts has two identical mod

' a mo es, corresponding
o wo possible values of electron The ec ron spin. The number

Th
mo es is an im ortantp parameter in our problem
is can be easil see

'
y seen &om the analogy to the Kondo

problem discussed in Sec. II. In the w

c' annel Kon
e mo e of spin ess electrons maps to th t

h ndo problem, because the ficti
o e wo-

the im urit —'
e c itious spin of

puri y—i.e., the charge of the dot —can b h
by tunnelin of

o —can e changed
g o an electron in two independ t h

corres ondin
en en c annels,

spon ing to the left and right contacts. In the
ence of real s

ac s. n t e pres-
pins of electrons, the numb f h 1m er o c annels in

e effective Kondo problem is 4 It '
lls . is we known that

ec s i s properties. Thus one should expect that the

tra
ve a ramatic e ect upon the

ransport through a quantum dot.

A. Streng-tunneling case

We will start with the discussion of the stron-t, , ~ . o n the conductance,
one can use the same technique as in Sec. III. The H
tonian of the ro

ec . . e amil-
e problem can be written in the bosonized

form, analogous to (19)—(21),

hvar 1
[V4,.(*)]'+~11,'.(~)

0.5

1+ —]vt)a {x)] + vrII~ {T))dT, (40)

0.4
Q)

0.3

~ 0.2

0.1

0.0—1 0 1

Dimensionless gate voltage N

FIG. 2. Connductance (38) as a function of the di

e two curves are calculated for R jT =
In this calculation we included the correction ro o

T»Ec
ce = I. R Gl. +GR~ in the high-temperature limit,

Ec ).[~ -(o) -4.-(0)j- ~
CX

D
H = —).(1«l cos[24~-(0)1+lr~l cos[24~-(0)j) (42)

(41)

1I = —exp ) (III, +II~ ) a=o

In the absence of barriers, l« —— r = 0
culation is trivial

rs, rl, l
——lr~ ——0, the cal-

is rivial, as the Hamiltonian (40) and (41) is

Here the Fields with n = t and d ban ' escribe the electrons
wi spins up and down, respectively.

One can again Gnd the linK" e linear conductance using the
u" o formula 22 b, but the current operator (23) must

be modified to account for the spins
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quadratic. Due to the doubling of the number of modes
in each contact, in the presence of spins the conductance
doubles compared to Eq. (24),

e2
Gp ——

2~h (44)

Weak backscattering, ~rl, ~, ~r~~ && 1, can be treated in
perturbation theory in H', see Appendix A 2. Up to the
second order we get

(45)

It is instructive to compare this result with its analog for
the spinless case, namely, Eq. (25). In both cases the
small correction to the conductance has the tendency to
grow as the temperature is decreased. An important dif-
ference is that the second-order correction in (45) does
not depend on the gate voltage N, and as a result it
grows even at half-integer N, i.e., on resonance. Thus,
in contrast to the spinless case, one should expect the
resonance value to be smaller than the unperturbed con-
ductance Go ——e2/2vrh.

This difFerence has a natural interpretation in terms of
the analogy with the Kondo model. As we already men-
tioned, the spinless case corresponds to the two-channel
Kondo model. In the two-channel case the strong-
coupling fixed point is stable at zero magnetic field, or, in
terms of the Coulomb blockade problem, at half-integer
N. Therefore, precisely on resonance a weak reHection
must be an irrelevant perturbation, and the peak value
of the conductance should be given by Eq. (24). On the
contrary, the four-channel Kondo problem correspond-
ing to the case with spins has a stable fixed point at
an intermediate value of coupling, and both weak- and
strong-coupling fixed points are unstable. 27 Thus even
on resonance the conductance is not given by its value
in the strong-tunneling limit (44), as confirmed by the
perturbation theory (45).

In this section we study the limit of very asymmetric
barriers, namely, we assume that one of the barriers is
very high, whereas the other one is low. In terms of the
transmission coefficients of the barriers this limit corre-
sponds to 7L, « 1 and 1 —7~ && 1. Such a regime can
be easily realized in an experiment by proper tuning of
the gate voltages VL, and V~. In addition, we will see in
Sec. V that at T —+ 0 arbitrarily weak asymmetry grows
and the system scales towards the strongly asymmetric
limit. Therefore at low temperatures the results of this
section can be applied to any asymmetric system.

In Sec. II we described the contact in the regime of
weak tunneling by the tunnel Hamiltonian (4) written
in terms of the original electrons. On the other hand, in
Sec. III it was more convenient to use the bosonized form
of the Hamiltonian for the electron gas in the contact
with transmission coefFicient close to unity. Therefore
when considering the asymmetric case 7L, ~ 0 and 7~ -+
1 we shall bosonize only the electrons in the right contact.
Then the unperturbed fixed-point Hamiltonian Hp+ H~
is given by

ac = &c n+ —):ya (o) —m (47)

Here the operators aA, and ap correspond to the left-
contact electrons in the lead and in the dot, respectively;
the bosonic fields P~ and II~ model the electrons in
the right contact. An integer-valued operator n describes
the number of electrons transferred to the dot through
the left barrier.

The perturbation consists of two parts: weak tunneling
through the high barrier in the left contact;, and weak
scattering on the small barrier in the right contact,

tHo —) el, a„a„+) cpa„a„
kcx pa

+ ) f( fv4tR .(R)l +R+R (R))t4R (44)

B. Conductance in the case of asymmetric barriers

H~ = ) (v,a„'.a„S'+ ,*v.at„.aS'),
A:pcs

H& —— DirRi ) cos[2—$~ (0)].

(48)

(49)
Unfortunately, it is not easy to calculate the conduc-

tance near the intermediate-coupling fixed point. Some
conclusions about it can be drawn on the basis of the
scaling approach, Sec. V. One should note, however,
that this fixed point is stable only if the coupling in all
four channels is identical. In the case of the Coulomb
blockade problem, the coupling in the pairs of channels
corresponding to diferent spin orientations in the same
contact must be identical (in the absence of magnetic
field). On the other hand, the coupling constants for the
modes in difFerent contacts are determined by the corre-
sponding conductances and are not necessarily equal. In
fact, in the structure shown in Fig. 1, the two conduc-
tances are controlled separately by the gate voltages Vl.
and VR. Therefore in experiments the coupling constants
corresponding to the left and right modes are not equal,
unless a special attempt to make them equal is made.

We have chosen not to write the operator n of the number
of electrons transferred into the dot through the barrier
in terms of the fermionic operators as n = Pat a„
but to treat it as an independent variable. Thus the
tunneling Hamiltonian (48) acquires the charge-lowering
and raising operators F and E~ defined as

[P, n] = I'.

One possible representation of these operators is given
by E = e' and n = i&, where x has the meaning of a
phase operator conjugated to n.

Our goal in this section is to find the conductance of
the system, assuming that the perturbations H& and H&
are small. At the first step we will utilize the smallness
of the amplitude v, of tunneling through the left barrier,
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~T' tK(t)dt„.. h'[ T(t- ~)/~]
(52)

Here we have introduced the conductance of the left tun-
nel barrier, GL, = (4ire /5) P&„]vi~ b(eg)b(e„), and the
correlator

K(t) = (+(t)+'(0)) = (+'(t)+(0)) (53)

The equality of the two correlators in Eq. (53) follows
&om the fact that the symmetry transformation n

n, P~ —+ P~— , and —N ~ %does n—ot afFect the
Hamiltonian (46), (47), and (49), but changes I" t ++ I".

It is instructive to apply the formula (52) to the nomn-
teracting case, E~ ——0. In this limit the operators F and
Iit commute with the Hamiltonian (46) and (49). Thus
the correlator (53) is unity, and we get G = Gl, . This is
the expected result, since we assumed GI, M 0, and the
conductance of the system must be determined by that
of the weakest link.

I et us now find the conductance at nonzero charging
energy E~, but in the absence of the scattering in the
right contact, rR = 0. In this case the correlator (53)
is no longer trivial, because the operators E and Et do
not commute with the interaction term (47). When an
electron tunnels into the dot, n ~ n+ 1, the system is
shifted &om its equilibrium state. To accommodate the
additional electron brought by the tunneling process and
to return the system to the equilibrium state, one elec-
tron must leave the dot through the right contact. Thus
the time evolution of the operators E and Et becomes
nontrivial.

To find the correlator K(t), we will perform the fol-
lowing unitary transformation of the Hamiltonian:

U cinO (54)

[ll~~(~) + &R4 (~)] d~
2

(55)

This transformation shifts the bosonic fields P~ and
adds a phase factor to the charge-lowering operator P,

and find the expression for the current in the second order
in v~. The current can be defined as the time derivative of
the number of electrons that have tunneled through the
barrier, I = —e

&
——'& [n, H]. Using the commutation

relation (50), we get

I = i —) (v~' taaa 5't —vtata a I") .
"k.-

To find the conductance through the dot, we will sub-
stitute the above current operator into the Kubo for-
mula (22). This requires the calculation of the correla-
tor ([I(t),I(0)]). Since I oc ~vi], up to the second order
in tuniieling matrix elements we can average [I(t), I(0)]
over the equilibrium thermal distribution of the system
without tunneling, HL ——0. Then the averaging over the
fermionic degrees of keedom is straightforward, and we
get

7r
pR (x) m p~ (x) — n-,

EmEe'
(56)

(57)

One can easily see that the kinetic-energy term (46)
is invariant under the transformation (54), whereas the
charging term (47) transforms to an n-independent form,

- 2

II~ = UtH U = E~ —) y„.(0) —m
7r

(58)

Upon this transformation, the operators F and Ft com-
mute with the Hamiltonian (46) and (58), but they ac-
quire nontrivial phase factors; see Eq. (57). This enables
us to find K(t) as the correlator of the phase factors,
K(t) = Ko(t) = (e' ~ le 'e~ l). Since the phase 8 is
linear in bosonic variables, the calculation of the correla-
tor Ko is straightforward:

Ko-(t) = p( —([o-(0) —o-(t)]O(0))}
~'T 1

2ipEc sinh[irT(t —iS)/~]
(59)

The last equality is valid asymptotically at low energies,
T, h/t (( Ec The su. bstitution of K = K~ into the ex-
pression for the conductance (52) leads to a linear tem-
perature dependence of the conductance:

7r3T
G=GL,

8pE~ (60)

Physically the origin of the linear suppression of the
conductance at low temperatures (60) is the orthogonal-
ity catastrophe. Unlike the noninteracting case E~ ——0
discussed above, the charge fluctuations in the dot are
now suppressed at energies below E~. Electively one can
interpret the eKect of the charging energy as a hard-wall
boundary condition for the wave functions of the right-
contact electrons with energies within the band of width
W Ec near the Fermi level. When an electron tunnels
through the left barrier, the system must lower its charg-
ing energy by moving one electron through the right con-
tact. Since the two spin channels are completely symmet-
ric, each mode transfers the charge q = 2. According to
the Friedel sum rule, this leads to a change in the bound-
ary condition corresponding to an additional scattering
phase shift b = +~ = +2. A sudden change of the
boundary conditions creates a state with a large number
of electron-hole excitations, which is nearly orthogonal
to the ground state of the system. This orthogonality
leads to a power-law suppression of the tunneling den-
sity of states v(s) oc sx, with the exponent s2 deter-
mined by the phase shifts in all the electronic channels,
y = P(b/ir) . In our system, each spin mode gives two
channels —in the dot and in the right lead —leading to
the total of four channels. Thus the exponent y is unity,
and the density of states v(s) oc s. The linear suppression
of the tunneling density of states results in the T-linear
conductance (60).

The linear temperature dependence of conductance
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(60) appears to contradict the T law for the inelastic
cotunneling, Eqs. (3), (11), and (39). The reason is the
absence of the barrier in the right junction assumed in
the derivation of Eq. (60). We will now show that the
presence of arbitrarily weak barrier in the right contact is
crucial (see also Appendix A 3) and leads to the quadratic
temperature dependence of the conductance at T ~ 0.

The weak backscattering in the right contact is de-
scribed by the term (49) in the Hamiltonian. As follows
froxn Eq. (56), under the unitary transformation (54) the
scattering term (49) acquires an additional sign:

II~ = (—1)"—Dl~xxl ).cos[24R-(0)l. (61)

The operators E and Et no longer commute with the
Hamiltonian: they commute with Ho+ H~ and anticom-
xnute with H&. Therefore the correlator (53) is no longer
equal to Ko, but rather K(t) = Ko(t)K+(t), where

K~(t) = (F(t)zt(o) ).

)&O'R (*)I*+~&'—.(*))~~
2 7r

Here the averaging () is over the equilibrium thermal
distribution of the transformed Hamiltonian, H = Ho +
He+ H

In the absence of the backscattering in the right con-
tact, Ko is given by Eq. (59), and Kx-(t) = 1. When
a weak backscattering is added, both correlators are af-
fected. It is clear, however, that Ke is not modified sig-
ni6cantly. Indeed, it follows from the above-mentioned
analogy with the orthogonality catastrophe that the time
dependence (59) is determined solely by the charge trans-
ferred through the right junction, which in our case is al-
ways e—the charge of the electron brought into the dot
through the left barrier —and is not a8'ected by the pres-
ence of the right barrier. Therefore the only change in
Ko(t) caused by the weak barrier can be a small modi-
fication of the prefactor in Eq. (59). On the other hand,
we will show that K~(t) is modified significantly, which
leads to the quadratic temperature dependence of the
conductance.

To find K~(t) we first note that the Hamiltonian
H = Ho + H~ + H& is identical to the one considered
in Sec. III and in Ref. 15. The difFerence with the prob-
lem considered in Sec. III is that instead of two modes
corresponding to two di8'erent contacts we now have two
spin modes in the same (right) contact. Thus the two
scattering amplitudes are equal and given by ~rJx~ As we.
have seen in Sec. III, the presence of the backscattering
shows up at low-energy scales e ~rrx~ Ec (( Ec, where
one can electively integrate out the mode related to the
charge fiuctuations in the dot, Pxxg + PRg. The result-
ing Hamiltonian is expressed in terms of the spin field
Pxx, = (&Pxxg

—Pxxg)/~2 and has the form

We can now fermionize the Hamiltonian using a represen-
tation of the operators e+'~2~"' in terms of the fermion
creation and annihilation operators in a way identical to
the one leading &om the Hamiltonian (29) and (30) to
Eq. (35). The final Hamiltonian is again quadratic in
fermion operators, but also depends on the operator n
of the number of particles transferred through the left
barrier,

H =iS~„ t ~ V

-2
+( 1) )t/'y~&FEC ~xR~ cos 7rN

x(c+ c )[@(0)- @'(0)]. (64)

Here we presented a Majorana fermion operator similar
to g+ in Eq. (35) as a sum of fermion creation and an-
nihilation operators, g = c + ct. This representation is
more convenient, because we can now replace the oper-
ators I' and I" t in the definition (62) of the correlator
Kp by E, = Et = 1 —2ctc. Indeed, these new operators
commute with the first term in the Hamiltonian (64), an-
ticommute with the second one, and possess the property
E,Et = EEt = 1. Therefore one can 6nd the correlator
Kp- as33

K (t) = ([1-2"(t) (t)l[1-2"(0) (0)]) (65)

The actual calculation of the correlator (65) is now
straightforward, as the Hamiltonian (64) is quadratic in
the fermion operators. The result for the correlator K~
has the form

21'xx c dE
(E& +. I &

) (e&/T + 1)
(66)

Here we have introduced the low-energy scale

I'R = Ec)rR) cos v—rN,
sp 2 2
7r2

(67)

originating from the presence of a weak scatterer in the
right contact. In the weak-scattering limit, I'~ ~ 0,
Eq. (66) reproduces the result K~(t) = 1 mentioned
above. However, in the opposite limit T, h/t &( I'R, the
correlator K~ has the same nontrivial time dependence
as the correlator Ke(t) given by Eq. (59),

2T 1
Kp(t) = .il xx sinh[vrT(t —ih)/h]

This additional time-dependent contribution to K(t)
leads to the quadratic temperature dependence of the
linear conductance at T (& I'~.

To find the conductance at temperatures T I'~, we
can now substitute the correlator K(t) = Ke(t)K~(t)
into Eq. (52), which leads to the following expression:

8&EeD+(—1)" ~rR~ cos7rNcos v 2/xx, (0) . (63)
7r

TGx, I xx sr~ + (E/T)
8pEc E + I'xx cosh (E/2T)

(68)



16 686 A. FURUSAKI AND K. A. MATVEEV 52

0.2
O
C5

O
D
D
O

0.1

6$
E
O
Z:

0 0
—1 0

Dimensionless gate voltage N

tonian (19)—(21) in the spinless case and (40)—(42) in the
presence of spins. In the absence of the backscattering
the Hamiltonian is quadratic, i.e
a 6xed point of our Hamiltonian. In analogy with the
Kondo problem we will call it the strong-coupling 6xed
point. To investigate the stability of this Gxed point, one
should 6nd the scaling dimension of the backscattering
term (21) or (42).

We shall start with the spinless case, where at T = 0
and t )) h/Ec a simple calculation gives

FIG. 3. Conductance (68) as a function of the dimension-
less gate voltage N for the asymmetric case, lrnl = 0.4. The
three curves are calculated for Eo/T = (a) 10, (b) 40, and
(c) 160.

Equation (68) is the central result of this section. It
is valid for any T/I'It, if both temperature and I'~ are
much smaller than the charging energy E~. The condi-
tion I'~ &( Ec means lr~l && 1, i.e. , the scattering in the
right contact must indeed be weak.

In the limit T )) I'~, Eq. (68) reproduces the pre-
viously obtained linear temperature dependence (60) in
the absence of the scattering in the right contact. It is
important to note, however, that the linear temperature
dependence is obtained not only at r~ ——0, but also in
the presence of the barrier if N is half-integer, i.e., at the
centers of conductance peaks.

Away &om the centers of the peaks, the conductance
has a stronger temperature dependence, G (x: T . Indeed,
at T &( I'R the expression (68) reduces to

(H()H()) = """'
2mit
~&'(I«l'+ lr~l' —21«llr~l cos 2~N)+

4vriE~t3

with I'o(N) defined by Eq. (26). The long-time asyinp-
totics of the correlator (H'(t)H'(0)) is given by the first
term, which is proportional to t, unless I'0 ——0. Thus
the dimension of the perturbation H' is 2 & 1, and the
strong-coupling 6xed point is unstable. At a half-integer
N and in a perfectly symmetric case, lrl.

l

= lrRl, the
parameter I'0 vanishes, and the dimension of the opera-
tor H' becomes 2 ) 1. In this case the strong-coupling
fixed point is stable. In the language of the corresponding
two-channel Kondo problem this means that the strong-
coupling 6xed point is stable only in the absence of mag-
netic field and channel anisotropy. The leading irrelevant
operator with dimension 2 gives rise to the weak temper-
ature dependence of the peak heights in the symmetric
spinless case; see Appendix A 1.

A similar analysis can be performed in the case of elec-
trons with spins, described by the Hamiltoiiian (40)—(42) .
The correlator of the perturbation operators now has the
form2' T'

Q~
3p EcI'a (69) 4E(H'(t)H'(0)) = (l«l'+ lr„l')

Thus the quadratic temperature dependence of the lin-
ear conductance is restored for the oK-peak values of the
gate voltage. The evolution of the conductance peaks is
illustrated in Fig. 3.

V. SCALING APPROACH
TO INELASTIC COTUNNELING

In Secs. II—IV we have considered several cases when
the inelastic cotunneling can be studied analytically even
though one or both contacts are in the strong-tunneling
regime. A common property of all these results is that
at T ~ 0 the conductance behaves as T away from
the resonance values of the gate voltage, i.e. , at N
+2, +2, . . . . The same temperature dependence was ob-
tained earlier5 for the ofF-resonance conductance in the
weak-tunneling case; see Eq. (3). In this section we study
the general scaling properties of our system and argue
that the quadratic temperature dependence of linear con-
ductance is universal and should hold for arbitrary bar-
riers.

Vile will describe our system by the bosonized Hamil-

meaning that H' has dimension 4 ( 1 at any N and any
barrier strengths. Thus as expected the strong-coupling
Gxed point in the four-channel case is unstable. At a
half-integer N this statement has a well-known analog in
the theory2 of the multichannel Kondo problem, where
the strong-coupling fixed point is unstable even in the
absence of the magnetic Geld.

The fact that the strong-coupling Gxed point is unsta-
ble means that as the temperature is lowered, the weak
backscattering in the contacts becomes stronger. It is
natural to assume that the e6'ective barriers grow in-
definitely, and the system approaches the weak-coupling
Gxed point. To test this hypothesis we will consider a
system where the two contacts are in the weak-tunneling
regime and study the stability of the corresponding Gxed
point.

As we saw in Secs. II and IV, in the weak-tunneling
case it is convenient to describe the system in terms of
the original fermionic variables. Generalizing the Hamil-
tonian of Sec. IVB to the case of both barriers beigg in
the weak-tunneling regime, we introduce the Hamiltonian
H = H0 + H~ + HL + H~, where
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II, = ) e&a„a„+) e„ai, au
A:cx pc%

qa

SCAN

II~ = Zc(nl. +nR —N)',
= ) (~l, ai, a„ I'I. + ~L,a„at +i~)

kpa

IIR ) (vRa aq +R + R q
qsa

(7O)

(71)

(72)

(73)

Here aI, and a, describe the electrons in the left and
right leads, respectively; ap and aq correspond to the
electrons in the dot coupled to the left and right contacts.
Similarly to the formalism of Sec. IVB, we have intro-
duced the operators nl. and n~ of the number of electrons
tunneled through the left and right contacts and the cor-
responding raising and lowering operators Fl, Fl, FR,
and I'R in the tunnel Hamiltonians (72) and (73).

Away from the resonance values of the gate voltage,
2, . . ., the states with difFerent nL, and nR

have different energies because of the Coulomb term (71).
Since the tunnel Hamiltonian given by (72) and (73)
changes nI, or n~, it does not describe the transitions
between the low-energy states of the Hamiltonian. Thus
when considering the low-energy properties of the sys-
tem, one should use the tunneling terms (72) and (73) to
construct the perturbation that is not accompanied by
the change of the total charge of the dot. In the simplest
case, this can be done by selecting the terms containing
an equal number of operators F, and F~ in the second-
order perturbation

1 1

Ec (1 —2N) E~(1 +. 2N)
txFLFR p GI ~ Q 'Gq

qsn'
(75)

The terms included in Eq. (75) correspond to the pro-
cesses where one electron tunnels into the dot through
the left junction and another one escapes from the dot
through the right junction. Depending on which of the
two tunneling events is executed first, we get different
energies of the virtual states, corresponding to the two
denominators in Eq. (75).

To find out whether or not the weak-coupling fixed
point is stable, one should evaluate the scaling dimension
of operator A and other similar contributions in Eq. (74).
A straightforward calculation gives

~2 = (III. +IIR) H H (~I. +~R).
Eo 0 C'

Here the denominator accounts for the energy of the vir-
tual state created by adding (or removing) an electron to
the dot. At very low energies the only important contri-
bution to the denominator is the change of the electro-
static energy of the system.

At N in the interval (—2, z) a typical representative
of the variety of terms contained in Eq. (74) has the form

h, GI.G~ 1 1

(2+e2) 2 Ec (1 —2N) Ec (1 + 2N)

(
4

X
sinh[m T(t —ih)/h]

(76)

I = ——(A —At).
h

(77)

We now substitute this current operator into the Kubo
formula (22), and use (76) to find the following expression
for the conductance:

~hGL, G~
3c

1 1
E~(1 —2N) E~(1+2N)

+ T'. (78)

This expression for the conductance in the weak-
tunneling limit coincides with the well-known result for
the inelastic cotunneling, s and reproduces Eq. (3) near
the resonances, 2 + N « 1.

It is important to note that in the derivation of Eq. (78)
we neglected all the contributions to the current opera-
tor with dimensions d ) 2. Such terms would lead to the
additional terms in the correlator (76), which are propor-
tional to (AT/ sinh[mT(t —ib)/5]) with m ) 4. Clearly,
the corresponding corrections to the conductance would
behave as bG oc T « T . Thus at T + 0 the tem-
perature dependence of the conductance is given by the
leading irrelevant perturbation. As we have seen, the uni-
versal scaling dimension d = 2 of this perturbation trans-
lates into the universal temperature dependence of the
conductance G oc T . Therefore this temperature depen-
dence is specific not only for the cases of weak or strong
tunneling, but should hold for any barrier strengths.

The above treatment of the stability of the weak-
coupling fixed point was limited to the off-resonance val-
ues of the gate voltage. We will now demonstrate that the
properties of the system are completely different at half-
integer A. Consider, for example, the case of N =
Then the states with the dot charge equal to 0 and e
have the same energy. As a result the terms in the tun-
nel Hamiltonians (72) and (73) responsible for the tran-
sitions between these two states no longer lead to the
large increase in the energy of the system and should

At T -+ O the correlator decays as 1/t, and therefore the
dimension of the operator A is 2. One can also check that
the other contributions to Eq. (74) have the same dimen-
sion, whereas the higher-order terms have even higher di-
mensions. Thus the weak-coupling fi~ed point is stable.

So far we have shown that away &om the reso-
nance values of the gate voltage, N g +2, +2, . . ., the
strong-coupling fixed point is unstable whereas the weak-
coupling fixed point is stable. We now conjecture that
there are no fixed points at intermediate coupling. Then
at low energies the system always evolves towards the sta-
ble (weak-coupling) fixed point. One should also expect
that near this fixed point the temperature dependence of
conductance is determined by the dimension of the lead-
ing irrelevant perturbation, which is a universal charac-
teristic of the problem. Indeed, one can easily show that
the leading contribution to the current operator I = enL,
is given by
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not be discounted. It is easy to check that the dimen-
sion of such operators is d = 1; i.e. , the tunnel Hamilto-
nian is a marginal operator. This conclusion is actually
obvious, because the same calculation of scaling dimen-
sion must be valid in the absence of the charging eKects,
E~ ——0, where we do not expect the tunneling ampli-
tudes to be renormalized as the temperature is lowered.
However, the simple calculation of the scaling dimension
is not sufEcient to determine the stability of the weak-
coupling 6xed point. To make such a determination, one
has to study the scaling equations for the tunneling am-
plitudes including the higher-order terms in vL, and v~.
We have performed this analysis in Sec. II, where we saw
&om the mapping to the multichannel Kondo proble~i
that the tunneling amplitude is in fact a marginally rel-
evant perturbation; i.e. , it grows logarithmically at low
temperatures. Therefore on resonance the weak-coupling
Gxed point is unstable.

The on-resonance scaling properties of our system are
strongly affected by the presence of electron spins and by
the symmetry of the two barriers. Let us first consider
the case of symmetric barriers. In the spinless case we
saw that on resonance the strong-coupling Gxed point is
stable if the barriers are symmetric. Thus one should ex-
pect the system to always renormalize towards this fixed
point. Then the conductance must be on the order of
e2/h, . This is confirmed by the explicit calculation in the
strong-tunneling case, Eq. (38).

In the presence of spins, both weak- and strong-
coupling fixed points are unstable on resonance. Thus
one should expect that there must be a stable Axed point
at some intermediate coupling strength. This hypothesis
is also confirmed by the analogy with the four-channel
Kondo problem discussed in Sec. II. Indeed, it is well
known that the low-energy properties of the Kondo prob-
lem with the number of channels exceeding 2 is governed
by an intermediate-coupling fixed point, which gives rise
to a specific non-Fermi-liquid behavior of the suscepti-
bility and specific heat. In Appendix B we show
how one can study the properties of the intermediate-
coupling 6xed point starting &om the vicinity of the
strong-coupling point. We discover that on resonance
the thermodynamics of our problem is indeed identical
to that of the four-channel Kondo problem.

The technique presented in Appendix B, however, does
not enable us to 6nd the low-temperature conductance
G. Nevertheless one can estimate the order of magni-
tude of G at the intermediate-coupling fixed point in the
following way. Prom the fact that the strong-coupling
fixed point is unstable and &om the result (45) of the
perturbation theory near this point we know that the
conductance must be smaller than e2/2vrh. On the other
hand, at G (( e /5 the weak-coupling treatment of Sec. II
is applicable and predicts the growth of conductance at
T —+ 0. Therefore the limiting value of conductance must
be of the order of, but smaller than, e /2vrh. We further
conjecture that the peak conductance is a universal char-
acteristic of the intermediate-coupling fixed point (see
Appendix B), meaning that in the limit T ~ 0 the peak
conductance does not depend on the heights of the bar-
riers.

The scaling analysis in the spirit of Ref. 23 enables us
to make some conclusions about the shape of the peaks
in G(N). In the spinless case we see from Eq. (38) that
at the tails of the peak at N =

2 the conductance de-

cays as G oc I/(N —2) . This result can be interpreted
within the scaling picture as follows. A small deviation
of N kom z is identified as a magnetic field h, in the
appropriate multichannel Kondo problem; see Eq. (7).
Therefore such a deviation is a relevant perturbation with
scaling dimension d = 2/(2+ 0), where Ic is the number of
channels. In the spinless case we have k = 2 and d = 2.
This means that as the temperature is lowered, the mag-
netic field grows as h(T) oc (N —2)T i~2. We now
conjecture that near the fixed point, at T ~ 0, the con-
ductance is a universal function of h only, G = G(h(T)).
As we discussed above, away &om the center of the
peak G oc T at T + 0. Therefore the magnetic
field dependence of the conductance must be given by
G oc I/Q4 oc T2/(N ——), in agreement with Eq. (38).
We can now apply the same argument to the case of elec-
trons with spins, where the number of channels k = 4 and
the scaling dimension of the magnetic Geld is d = 3. The
temperature dependence of the renormalized magnetic
field is consequently h(T) oc (N —2)T 2~s. Therefore

(a)

(b)

FIG. 4. Scaling diagram of the two-barrier system in
the cases of (a) spinless electrons and (b) electrons with
spins. The gate voltage corresponds to a resonance value,
N = +~, + 2, . . .. In the symmetric case, 7z, ——7z, the system
scales to either strong- or intermediate-coupling fixed point,
depending on the number of channels. In an asymmetric case
the system approaches the limit where the weaker barrier dis-
appears, while the stronger one becomes very high.
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near the intermediate-coupling fixed point the condition
G oc Tz at T ~ 0 demands G oc h s oc T2/(N —z}
Thus we expect the tails of the conductance peaks to
decay as 1/(N —2)

So far we discussed the case of symmetric barriers. The
on-resonance behavior of the system is very difI'erent if
the two barriers are not identical. This can be readily
seen &om the analogy to the Kondo problem. From the
theory of the multichannel Kondo model ' it is known
that the asymmetry between the channels is a relevant
perturbation. In terms of the Coulomb blockade problem
this means that on resonance a small asymmetry will
grow and eventually the smaller transmission coefFicient,
say 7g, will scale to zero, whereas the larger one, 7~,
must approach the fixed point of the problem with half
the number of channels of the original one. Thus for
both two- and four-channel cases 7~ ~ 1. For the most
realistic case of electrons with spins, near this asymmetric
fixed point the system is identical to the one considered. in
Sec. IV B. Thus we conclude that for asymmetric systems
(i) the on-resonance conductance vanishes linearly in T,
and (ii) the shape of the resonances in G(N) is universal
and given by Eq. (68).

The on-resonance scaling properties of our problem are
summarized in Fig. 4.

VI. CONCLUSION

In this paper we have studied the transport through a
quantum dot connected to two leads by quantum point
contacts, Fig. 1. Unlike in conventional theories of
Coulomb blockade, ' we concentrate on the regime of
strong tunneling, where one or both contacts are close
to perfect transmission. We find the linear conductance
in a wide interval of temperatures, limited by the level
spacing in the dot from below and by the charging energy
E~ &om above.

We have shown that as long as there is any backscat-
tering in the contacts, i.e. , both transmission coefficients
7g ~ ( 1, the Coulomb blockade peaks in the conduc-
tance as a function of the gate voltage should be ob-
served. Between the Coulomb blockade peaks the tem-
perature dependence of the conductance at T ~ 0 is
determined by the weak-coupling fixed point. As a re-
sult we get the T dependence of the conductance, which
coincides with the known result for the inelastic cotun-
neling mechanism.

Our results show that the behavior of the conductance
near the peaks depends qualitatively on the presence of
electron spins. In the spinless case the strong-tunneling
fixed point is stable if the barriers are symmetric, and
thus the technique developed in this paper allows a com-
plete solution of the problem. The resulting peaks in con-
ductance have the height e /4vrh, with the shape given
by Eq. (38). In the presence of the spins, the strong-
tunneling fixed point is no longer stable, and our tech-
nique does not allow a complete solution of the prob-
lem. Using a useful analogy with the multichannel Kondo
problem, we have conclud. ed that the peak conductance

must still be of the order of e2/h, . In addition, we stud-
ied the peaks in conductance in the case of asymmetric
barriers. The peak conductance in this case is linear in
temperature at T ~ 0, and its shape is given by Eq. (68).

The strong-tunneling regime of Coulomb blockade was
explored to some extent in several recent experiments.
Our results are in qualitative agreement with the
experiment. We believe that our predictions can be eas-
ily tested in similar experiments.
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APPENDIX A: PERTURBATION THEORY
FOR WEAK REFLECTION

In this appendix we derive the leading-order correc-
tion to the conductance due to the weak reQection at the
quantum point contacts. We shall use a path integral
method to calculate the current-current correlation func-
tion at imaginary frequencies and then perform analytic
continuation to the real frequencies.

1. Spinless fermions

In the spinless case our problem is similar to the reso-
nant tunneling problem studied in Ref. 21. Thus we can
apply the method developed in Refs. 21 and 38 to calcu-
late the conductance perturbatively with respect to the
refIection coefficients.

The current operator is given by I
(e/~2vr)Otal(0, t). Then the Kubo formula (22) for

the conductance can be rewritten as

e2T
G = . lim w lim (Pl(—iw„)gl(iu )), (Al)

2Ã XA ~~0 in~ —+w+i 0+

where u = 27rnT/5 and

(A2)

The thermal average OI(iu ) = (Pl( —iu )Pl(iu )) is
calculated as

(A3)

where the generating functional is given by
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vy, (x, ~)
Sg

17&c (x, 7 ) exp ——+ ) 1(—iu )Pl (uu„)

(0 P~)'+vg(B Pc)' +, d~ Pc(0, 7.)—
VF 7r p

h/T 1 2Si = — d7- dx (8 r/il) + v~(B*Pz) +
27r p VF

D h/T

+— &' rI cos 2 I 0& 7 — g 0& 7 + rR cos 2 I 0& v + g 0& w
p

(A4)

Expanding exp( —Si/h) in powers of Irl and perforining Gaussian integrals, we get

@1(i(u„)=
h/T 1

, I«l'+ I»I'+ 21«ll»l cos(2~N)
2 Ld~ T 2Ald sxn 7rT7

It/T 1—
IrL, I

+ I»l —2I«II»I cos(2~N) s
" dr+ Q(l"I ).

p sin (~T~/h)
(A5)

In this calculation we have used the following relations:

T ~
—

I
'I/ D . (~T~l—), (1 —cos ur' 7.) = —ln sin

Ih, -
Ice„'I ~T(h)

n

T . e &I~-IID 1. ( vrD= —lnl
,
- I~„l+ (2E~/~h) ~ ~2&E ~

'

n

(A6a)

(A6b)

T e
—s/cu„' //D

h, lcu„'I + (2Ec/7rh)
n

7r3T2 1

4E~ sin'(~T7-/h) ' (A6c)

where we have neglected higher-order terms in T/Ec. Note that Eqs. (A6a) and (A6c) are correct only for r, hT
~ && h/D.

In calculating the integrals over w in Eq. (A5), we introduce a short-time cutoff v; h/D, which is omitted in
Eqs. (A6a) and (A6c), and modify the contour of integration:

1 —cosset w / c 1 —e'~"
v d~= v d7

sin (mT~/h) sin (vrT7. /h)
i(u„{7;+it)

p sin" [~T(7; + it)/h]

iu)„(—7- +it)
dt.sin" [m T(~, —it)/h]

(A7)

By replacing iur by cu and taking the liznit cu ~ 0, Eq. (A7) is reduced to iud (T, v), where—

v +it h dz
sin [vrT(7, + it)/h] 27rT2 cosh x

f

From Eqs. (Al), (A5), and (AS) we finally obtain

h' ~~r (-;)
27rT2 l'( —" + i) (AS)

2 E - ~ TI«l'+ I»l' + 21«ll»l cos(2~N) — I«l'+ I»l' —2I«ll»l cos(2~N)
4mb 27rT- 16&e- (A9)

The term proportional to T/E~ originates from the weak
Huctuations of the charge of the dot at low frequencies.
At a half-integer N it is related to the leading irrelevant
operator near the fixed point of the two-channel Kondo
problem. The scaling dimension of this operator is d =

2
(see Sec. V), yielding the temperature dependence bG oc
T2d —2 T

2. Electrons arith spins

The calculation proceeds in parallel to the spinless
case. We first define the new sets of phase fields,

1
41.;= ~(4zt+ Pres), A..= (erg —41g),

(A10)
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1 1
O'R = ~(4'Rt + O'Rf) O'R —~(0R$ O'R$)

c T
G = . lim td lim C), (itd„),

271 'LA ~~0 iw~ —+m+i 0+
(A11)

where O)L„and pR, describe the charge-density fluctua-
tions, and O)l„and O)R, correspond to the spin-density
fluctuations. We further de6ne their momentum conju-
gate~ III,~, IIL,„II~~, and II~, in the same way.

The current operator in this basis is I
(e/~2vr)Bt[OL, (O, t) + O)R, (0, t)], and accordingly the
Kubo formula for the conductance is

where C', (itd ) is given by

&2Z(2)
C, (icd ) =

/f l d J( itd„—)bJ(itd„) J=p

with the generating functional,

(A12)

(0 O'I.,) + vF(0 O)1.,)'+ (8 Oil..)'+ vF(B*OiL,.)
Vy Vp

ZJ DO Is„(z, r) DOPls, (z, r) 'DQR, (z, r) 'DER, (z, r) exp ——(Sz + SJ)(2) 1

h/T
S2 ——— d~ dx

27r

(A13)

(8 OR ) + vF(B O)R. )
Vp

+ (~ OR.)'+ vF(~*OR.)'+
Vp

2E h/T
dr OR, (0, 7-) —O)L„(0,r)—

0

h/T
d~ rl, cos 2 Lc 0, 'T cos 2 1.8 Oy

0

+ ~co~cos 2' s(s,0)cess sC2)R(0, c) ), ,
SJ —5) J( Ztdn) [O)Lc(&tdn) + 'OR(c&t~)]'

(A14)

Up to the order ~)r) the correlation function 4, (itd„) is obtained as

]. — os' w
e„.(t~„) = —,QpT@c(~rr. ~'+ lrR~')

id~ T Rd~ p sins/'(srTr/5)
(A15)

where higher-order terms in T/Ec; are neglected. Note
that there is no term proportional to ~rL,

~
~rR

~

in Eq. (A15)
because (cosO)L„(0)) = (cos QR, (0)) = 0. This is an im-
portant difference between the two-channel case and four-
channel case, implying that the strong-tunneling limit
is unstable even on resonance in the latter case. Prom
Eqs. (A7), (A8), (All), and (A15) we can readily obtain
Eq. (45).

3. Asymmetric limit

We have discussed the case of asymmetric barriers in
Sec. IVB, where the conductance is calculated in lowest
order in v, but in all orders in ]rR) by efFectively summing
up all the most divergent terms in perturbation series.
Here we shall calculate the leading term in the series,
which diverges at low temperatures.

We will calculate the conductance in a way slightly

diBerent from the one used in Sec. IV B. We first
note that since the left barrier is very high, the left
phase fields are pinned at the minima of the potential
cos(v 2/1„) cos(~2PL„), i e , (PI,„O)L„.) .= (~2vr(m +
2), ~2vrn) or (~2am, ~2vr(n + —)), where m and n are
integers. 2~ Thus the tunneling of an electron through
the left barrier corresponds to a sudden change in the
phase fields, say, (PI.„O)L„)= (m/~2, 0) ~ (~27t, 7r/v 2).
The probability for this tunneling process is then given
by

OO
Ivtl / iH;t/h —iHtt/hg ieVt/hdtv+ ) (A16)

where v, is a constant proportional to vq, V is a
voltage across the left barrier, and Hi and Hy are
the bosonized Hamiltonian (40)—(42) with the condition

(OLc(0), OL„(0)) = (vr/v 2, 0) and (~2m, vr/~2), respec-
tively. The thermal average (); is taken for the Hamil-



I6 692 A. FURUSAKI AND K. A. MATVEEV 52

i H; t/s i H—t t/s
)h2T

K, (t) dt
h2T

(A17)

tonian H;. It is clear that the probability for the inverse
tunneling process is given by P = e / P+. Since the
current is I = 2e(P+ —P ) with the factor 2 coming from
electron spins, the linear conductance is given by

It will soon become clear that the correlator Kp(t) is re-
lated to K(t) in Eq. (52) as Kp(t) = (7rT/iD sinh[~T(t-
ib)/h]) K(t). For the imaginary time 7 = it we can cal-
culate the correlator using the path integral. To get the
conductance we then need to perform the analytic con-
tinuation, w —+ it + 8, and calculate the integral (A17).

The partition function of the system Z& lg p is given
by Eq. (A13). Since both the charging energy and the
cosine potential depend on the phase fields at the point
x = 0 only, we can integrate out the phase fields off the
point to get the following effective action:

S.tr = —).l~-I 14'L.(i~-) I'+ l0'I- (i~-) I' + I&a.(i~-) I'+ i&it (i~-) I'

A/T

+ «PRO(7) —WI.C(&)—

h/T

+ L,c + cos 2 L,s 7 + 7 R cos 2 pc 7 cos 2 ~s
0

(A18)

With this effective action we can readily calculate Kp( —i~) as

where

I&4'& I&O'R exp( —
r, S tr 01„41„NIL tt'a )(~) (~)

- (o) (o)J DOBRO f DO'R8 exp( s Sefr O'L, & QL, & QRO& O'B8 )

(P~~,~(~'), P~~,~(~')) = (vr/~2, 0), 0 & ~' & h/T,

(~{ii( p) ~{ii ( I)) (~27l, 7l/~2), 0 & 7 & 7r,

(~/i/2, O), «r' & h/T.

(A19)

(A20a)

(A20b)

We shall first consider the noninteracting case, Ec = 0, to find the coeKcient in Eq. (A17). In this case we may
ignore the fields P~, and P~, . Thus the correlator is given by

exp( —-„S, P{,l, ${,l, o, o )
7rT

D sin(7rT7- jh)
(A21)

where we have used Eq. (A6a). Since we know that in this case the conductance is G = GL„we rewrite Eq. (A17) as

GL,D2

2' hT
K, (t)dt. (A22)

With nonzero charging energy, Kp( —iw) is calculated up to the order ~r~I as

vr4T3 I'~T
Kp(-i~) = 1 dv]p@cD' sin'(vr T7./h) h'

p

1
d72 .

sin[sr T(~2 —7.i) /h]
(A23)

where I'R is defined in Eq. (67). In this calculation we have neglected terms that are smaller in T/Er. such as
T P sin(u 7&.)[lu I

+ (2E~/mh)] For 0 & v & 2. T the double integral I2(w) is calculated as

T d~p ih/h t0
I2(T) = 2 d7p —27 = —

I

—T
I
+ 2 . dtp.

sin(~T ~p/h) sin(m T7p/h) T q2T j p sin[vrT(w + itp)/h]

To get the conductance we need the following integral:

(A24)

OO OO OO
y h

. s «=2I
I

d* dy s =
I I

[7((3) —2]
sin (ivrTt/h) (vrT J p cosh +cosh(x+ y)

(A25)
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From Eqs. (A22), (A23), and (A25) we get

7r3T
G = Gc 1 — ]7j]3)—2]) .

8pEa sr3T (A26)

of lrRl is well behaved for the spinless case, in striking
contrast with the case with spins. A similar difFerence
between the two cases was found for the charge of a quan-
tum dot with a single contact.

2' 4T2
2 [1 —PlrRl cos(2~~)],

3p2Ec~
(A27)

where P is a numeric coefficient. There are two impor-
tant difFerences between Eqs. (A26) and (A27). First,
even without the reflection in the right contact, the con-
ductance (A27) is already proportional to T . Second,
the leading correction gives no additional temperature
dependence. Thus the perturbation expansion in powers

The leading correction due to the weak reflection in the
right contact diverges at low temperatures unless N is
a half integer. We note that for T )) I'R Eq. (6S) in fact
reduces to Eq. (A26).

The above result is for the case of electrons with spins.
One can perform the same kind of calculation for the
spinless case as well. The result has the form

APPENDIX B: FOUR-CHANNEL KONDO FIXED
POINT APPROACHED FROM THE STRONG

COUPLING LIMIT

In this appendix we demonstrate that, when N is a half
integer (on resonance), our 1D model is closely related
to the four-channel Kondo model by transforming our
bosonized Hamiltonian to the one that recently appeared
in the study of four-channel Kondo problem.

First we rewrite the Hamiltonian (40)—(42) with the
fields introduced in Eq. (Alo). We then introduce new
fields yL, pL„pR, and pR, defined in the same way as
p+ in Eq. (31), each describing the even modes of $1„,
PL,„PR„and PR, . The Hamiltonian is now given by

(%~i.(z)] + ÃVi. (z)l + [7VR.(z)] + [&V R.(*)] }dzp 4'
Hc =, [PR (0) —&PL, (0) —m. lV]',

(v L ( )] [v I ( )1 + [PR (0)] coslv R (0)1
2DlrRl

(B1)

(B2)

(B3)

With these new fields the current operator is written as

&[~L,(z) + v R.(z)1

Next we fermionize the bosonic fields as in (34) to get

HP = xkvF Lc + + Lc + + Ls + + Ls + + Rc + + Rc + + Rs + + Rs X dz)

2

H~ ——E~ g x L, x L, x —
R x R x dx —N'

H~ = &~Fl«lni. ~i. —Oi. (0) —&i.(0) @~.(o) —&~.(0)

~+F lrR I IR.nR. @R.(0) —@R.(0) @R.(o) —@R.(o)

I = —e»: @L,.(O)@,.(O) + yR'. (O)@R.(O):,

(B6)

(B7)

(BS)

where the g's are Majorana fermions, the @'s chiral fermions, and K' = %+const. Since the products of the Majorana
fermions, rl& g& and rlR gR, commute with each other, and (rII,&1,) = (pR pR ) = —1, we can replace them by—i. We then introduce another set of fermions:

1
vji, (z) = @I, (z) +ieger (z)

2

@I, (*)+'@R (*)
1

2
1 t - t@,(z) =
2

QI„(z) —@1., (z) + z@R,(z) —i@R (z)

(Bga)

(Bgb)

(BQc)
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(Bod)

In terms of these fermions the Hamiltonian and the current operator are written as

a, =in~ it. ~V,.~+ 2t. ~V 2. ~+ t~V .~+ t~V . ~

2

Ha Ea sgn x it- x i- x — 2t. x 2- x dx —Nl

a = '
n

I , I y,.(0) —@,'.(0) —@,.(0) + y,'.(0) q. (o) —q. (0)
2

+ ~
I I ~,.(0) + ~,'.(0) -~..(0) - &.'.(0) &.(0) + &.'(0) ,

2

4'1.(0)42.(0) + @ .(0)@.(o) .

(B10)

(B11)

(B12)

(B13)

The fermion field g, is decoupled from the other fields,
and thus we neglect it in the following. We bosonize the
remaining three fermions again:

( D ) i/2

i.(~) =
I 2 q„)
( D q'i'

i(P1(~}
1G

i(p (x}
2U

(B14a)

(B14b)

(814c)

where the y's are bosonic fields and the g's are Majorana
fermions. Equations (Blo)—(B13) are then rewritten as

&c (
Hc = p, (0) —p, (o) —~

I

m ——
I2j (B16)

a, = '
V~, X '+ V~2 ~ '+ V~. ~ ' d~,

(B15)

~2
Dlr~l [ni »n v i(o) —»»n ~2(o)]»n ~.(o)

+ D
I

rR I [gi cos &pi (0) —» cos pz (0)] cos y, (0),

(B17)
.eDI = —z '9i» sin[I'i(0) + 'p2(0)], (B18)

where qi ——i@i,g, and» ——i»,g, . In Eq. (B16) the
parameter N is shifted by 2 so that the Hamiltonian
(B15)—(B17) yields the same perturbation series for the
partition function in powers of lrl as the original Hamil-
tonian (Bl)—(B3).

I et us consider the case where %is a half int'eger (on
resonance) and IrL, I

= Ir~l = rp (symmetric barriers). At
low temperatures the difference p2(0) —pi(0) is almost
fixed to be m(N —2) due to the charging energy. In
the strong-tunneling limit (rp (( 1), we can thus take
an average of the Hamiltonian over p2 —pi to get an
effective Hamiltonian for p, and P = (pi + p2)/~2:

(~p+ ~v) = 1[&v(&)l'+ [&v.(~)]') "&+ —
I

I
Drp(» —») cosl + v'. (o)»v~ 2, 2 (pEc1 '~ (g(0)

4~ 2
(B19)

.eDI = i gi» sin ~2g(0)— (B20)

Introducing new bosonic Gelds, y
current as

(p and pb y„we rewrite the Hamiltonian and the

(~P+ ~v) = (TV.(~)]'+ ÃVb(*)]') ~*+'Up 2~2 (,Z~)"
4' vr q AD ~b(0) (B21)

eD . 2I= a., sin p (0)+ji ~b(0) (B22)
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where o = (rlq
—rl2)/v 2 and o = irlzrlz are au i ma

trices. The Hamiltonian (B21) is the same as that of a
single impurity in the g = —Luttinger liquid. Since this

g =
4 problem is related to the four-channel Kondo prob-

lem in the Toulouse limit, the above transformations
show that in the strong-tunneling limit our bosonized
Hamiltonian is indeed equivalent to the four-channel
Kondo problem. The infrared stable fixed point of the
four-channel Kondo problem corresponds to the case with
ro —+ oo in Eq. (B21). At this point cr cos[(3/2)iI p&]
takes —1 so that the field pz(0) is pinned at either

p&(0) = +2n(2/3) I 7r (for o = —1) or p&(0) —vr

+2m, (2/3)iI ir (for o = 1), where m and n are integers.

Thus in calculating the dimension of the current opera-
tor (B22) we may neglect pz(0). We then immediately
see that the dimension is d = 1 because the operator
exp[i(4/3) I p (0)] has dimension 2/3 and the dimen-
sion of o, is 1/3. This means that the leading term of
the conductance is temperature-independent at T ~ 0.
To calculate the conductance we need to know the co-
efficient A of the correlator ([I(t),I(0)]) = Ae —/t at
T ~ 0, which is a diKcult problem. We expect, how-
ever, that A should be universal, implying that at T = 0
the linear conductance G has a universal value vrAe2/2h
independent of the initial value of ro.
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