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We present a theoretical study of the relative role of localized and propagating intermediate
electronic states in the processes of elastic scattering of light. Only localized excitations lead to
isotropic scattering in lowest-order perturbation theory. Inhomogeneous broadening of the optical
transition affects the scattering efficiency from the ordered and disordered array of localized states in
a qualitatively different way. The propagating electronic excitations may only contribute to elastic
light scattering via higher-order processes. The scattering of excitons by impurities or the interface
roughness potential is suggested as a mechanism for the contribution of propagating excitations. An
analysis of experimental data on elastic scattering of light from quantum-well structures and bulk
semiconductors suggests that the bulk materials, rather than widely investigated quantum wells, are
favorable systems for studying the role of propagating electronic excitations.

I. INTRODUCTION

After the work of Hegarty et al.,! the processes of elas-
tic scattering of light have attracted considerable atten-
tion, especially in the investigations of semiconductor-
based low-dimensional structures.! ® This is mainly be-
cause of the possibility of distinguishing between ho-
mogeneous and inhomogeneous broadening of the elec-
tronic excitations participating in the scattering process.
Progress in time-resolved spectroscopy has recently stim-
ulated theoretical analysis of the time dependence of the
scattering efficiencies.3™"

In semiconductor-based quantum-well (QW) struc-
tures, inhomogeneous broadening is mainly due to the
interface roughness which may result in a considerable
spatial fluctuation in the energy of the size-quantized
electronic states. In light scattering experiments, these
fluctuations are not important when the frequency of
incident light is far from resonance with the electronic
excitations.!'®712 The relatively small difference in energy
of excitations leads then to a small correction to the scat-
tering efficiency of a perfect superlattice (SL). However,
under resonant conditions, the states having the energy
most close to the laser frequency are selectively excited
with dramatic effects even for small fluctuations:8712
and the scattering efficiency acquires features typical of
the disordered systems; the relative strength of the SL
and single QW features provides information on the ho-
mogeneous and inhomogeneous broadening.!8712

The enhancement of the effects of disorder under res-
onant excitation is common to both elastic and inelas-
tic scattering processes. However, while detailed models
have been developed for the analysis of the inelastic light
scattering, a microscopic theory of the resonant Rayleigh
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scattering (RRS) is still missing. In particular, no special
attention has been paid so far to the question of the rel-
evant intermediate electronic states, even if the localized
or propagating character of electronic excitations avail-
able for the scattering process results in an important
difference in the scattering mechanism. In this paper,
we develop a theoretical approach to the RRS, based on
the evaluation of the scattering efficiency via a quantum-
mechanical calculation of the scattering amplitude. This
allows us to demonstrate that only localized electronic
excitations (LEE’s) contribute to the RRS in the lowest-
order perturbation theory (see, also, Ref. 6 ), whereas a
nonzero contribution from propagating electronic excita-
tions (PEE’s) appears in higher-order processes.

A key role in the RRS process is obviously played by
disorder. The disorder enters in two different ways in the
light scattering process: It is responsible for the inhomo-
geneous broadening and spatial disorder of LEE’s, on one
hand, and leads to finite contributions to the RRS effi-
ciency of PEE’s via higher-order processes, on the other.
A number of parameters are, therefore, important for
observing a RRS signal: the inhomogeneous broadening
and/or the spatial disorder as far as the scattering by
localized electronic excitations is concerned, and the con-
centration of defects and/or the strength of the random
potential related to the interface roughness, effective in
the elastic scattering of the PEE’s, in the case of RRS via
propagating states. Furthermore, the coherent character
of the contributions to the scattering amplitude from in-
dividual localized states, along with spatial and energy
fluctuations, leads to a number of qualitatively different
regimes for the RRS, as analyzed in details in the follow-
ing.

It is important to note that the meaning of inhomo-
geneous broadening, in this paper (and in Refs. 1 and
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8-12), is different from that considered, for example, in
a recent publication of Glutsch and Bechstedt.!® In our
approach, the average of the scattering efficiency for a
QW structure is to be taken over different realizations
of the size-quantized energies of individual QW’s. The
inhomogeneous broadening comes from a spatial distribu-
tion of partially or totally localized electronic excitations
with different size-quantized energies. Our approach for
the states delocalized solely in one or two directions is
valid only for large-scale disorder, such as growth islands
in QW structures that was not the subject of Ref. 13.
The inhomogeneous broadening in the sense of Ref. 13
follows from the interaction of propagating electronic ex-
citations with a random potential in a QW and leads,
after the averaging, to broadening in a Green function of
the electronic state. This mechanism can be included in
our calculation through the dressing of electronic propa-
gators. In fact, as long as the Green function of a PEE
of the individual QW preserves its diagonality in wave
vector (see, e.g., Ref. 13), there is no contribution to the
Rayleigh scattering in the lowest-order (see the next sec-
tion) perturbation theory. Being arranged as a multiple
QW structure, such a system is a perfect SL, since all
individual QW’s are indistinguishable.

We also present experimental data on single QW and
bulk semiconductor structures. We find that in a QW,
the RRS mainly occurs via excitons localized at the inter-
face roughness, as indicated by the redshift of the RRS
profile with respect to the fundamental excitonic transi-
tion. In the case of a bulk GaAs, the situation seems to be
more interesting, even if less clear. The RRS signal turns
out to be unshifted, with respect to the exciton transi-
tion, and the resonant contribution from excitons bound
to a domnor is resolved as well. On one side, our find-
ings confirm that RRS is selectively sensitive to localized
states; on the other side, it may suggest that bulk materi-
als, rather than the more widely investigated QW'’s, can
provide the appropriate systems for studying the RRS
via propagating excitonic states. In fact, the interface
roughness, which is the main mechanism producing lo-
calization in QW'’s, is missing in bulk samples.

The paper is organized as follows. A general consider-
ation of the selection rules for wave vector and its con-
sequences for RRS are given in Sec. II. The scattering
by localized and propagating electronic states are consid-
ered in Secs. IIT and IV, respectively. Section V reports
a few experimental observations and the concluding re-
marks are given in Sec. VL.

II. GENERAL CONSIDERATION

The RRS efficiency can be evaluated in the lowest-
order perturbation theory with the help of the diagram
shown in Fig. 1(a). The terms “lowest-" or “higher-order
perturbation theory” refer to the expansion over any kind
of elastic interaction coupling the left and right hand
sides of the diagram for scattering efficiency (not for scat-
tering amplitude). Hence, the diagram in Fig. 1(a) is of
zero order, while those in Fig. 1(b) represent higher-order
contributions. At the same time, all electronic intermedi-
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ate states are assumed to be renormalized by all relevant
interactions. The dashed lines on the left and right hand
side of a diagram correspond to an incident photon and
are labeled by its frequency w; and wave vector K;. The
dashed line in the middle of the diagram represents the
scattered light (s, w,). There are no other excitations
in the final state, because of the elastic character of the
scattering process. The double lines in both parts of the
diagram represent an intermediate electronic excitation,
which is created in the absorption event and recombines
with the emission of a scattered photon. Intermediate
excitation can be either real or virtual, depending on the
energy of the incident light quantum. However, it is as-
sumed that the laser frequency is close to resonance with
the electronic excitation, so that the diagram with cross-
ing photon lines of the incident and scattered light may
be neglected.

The scattering efficiency for the process of Fig. 1(a)
can be written as'4
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FIG. 1. Zero (a) and higher (b) order diagrams for the
Rayleigh scattering efficiency. Double lines correspond to
the relevant type of intermediate electronic excitations and
are labeled by the total set of corresponding quantum num-
bers. Dash-dotted lines represent interaction with defects. All
variables in (b) are taken for scattering from multiple quan-
tum-well structure. (c) Diagrams contributing to the dephas-
ing of a propagating exciton. The double dash line represents
the interaction with a phonon and the dashed line takes ac-
count of radiative broadening.
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I(w) ~ Y G(wi;0)G* (wi; B)§(ws — wi), (1)
of

where the indices o and (3 represent the whole set of
quantum numbers for intermediate electronic states and
G(w; ) is the Green function of the electronic excitation.
In principle, G(w; @) is the solution of a Dyson equation
that takes into account all the relevant interaction mech-
anisms. This leads to broadening and renormalization
of the intermediate states. An example of diagrams con-
tributing to the dressing of electronic excitations is shown
in Fig. 1(c), where the dash-dotted line corresponds to
the scattering by disorder, the double dash line describes
an inelastic scattering by phonons, and the inclusion of
the dashed line for photon accounts for radiative recom-
bination. Such processes are responsible for a dephasing.

The scattering efficiency for processes of Fig. 1(b) can
be written in a similar way. The selection rules for quasi-
momentum follow from the matrix elements of interac-
tion of the electronic subsystem with light (open cir-
cles) and disorder (full circles), respectively, and depend
strongly on the type of relevant electronic states. It is
important to note that the dash-dotted lines for scat-
tering by disorder appear in the diagrams of Fig. 1 in
two different ways: there are internal lines contributing
to dephasing of electronic excitations and external lines
responsible for RRS by PEE’s. All external lines are
crossed by the vertical line f corresponding to the final
state of the system. We emphasize that the dash-dotted
lines connecting left and right parts of the diagram for
scattering efficiency in Fig. 1(b) do not have anything to
do with the dephasing of intermediate electronic states,
but rather determine the type of the scattering process.

The character of electronic excitations plays the key
role in the elastic scattering of light. Let us consider first
the scattering via LEE’s like, e.g., the states of excitons
localized in the interface roughness potential. Because
of the localized character of electronic state, there is no
wave vector conservation in the vertices of interaction
with incident and scattered light. Therefore, even in the
lowest-order process of Fig. 1(a), the scattering may be,
in principle, in any direction, because the information
about the propagation direction of the incident photon
cannot be transmitted into the scattered light through
the LEE’s. The only constraint on the wave vector of
scattered light follows from the energy conservation and
gives |R;| = |Ri|. However, for a macroscopic collection
of LEE’s, the scattering pattern strongly depends on the
spatial and/or energy distribution of the scattering cen-
ters. In fact, a regular lattice of identical LEE’s neces-
sarily leads to momentum conservation &, = &, imply-
ing that a certain degree of disorder is required to obtain
RRS from a collection of LEE’s.

A totally different picture appears for the scattering by
propagating states of excitons or uncorrelated electron-
hole pairs in the process shown in Fig. 1(a). In this case,
the matrix elements of interaction of the electronic sub-
system with light (both incident and scattered) enforce
the wave vector conservation. This leads immediately to
the equation B, = &; and, therefore, there is no elastic
light scattering in directions different from that of the
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incoming photon (i.e., there is no RRS). The process of
Fig. 1(a) for PEE’s only contributes to the dressing of the
photon Green function and is not the subject of our con-
sideration. We, thus, conclude that the PEE’s of a bulk
semiconductor cannot produce the elastic scattering of
light in the lowest-order perturbation theory. It is worth
noting that the inclusion of the broadening of the PEE’s
does not change this picture: as shown in Fig. 1(c), the
dressing of the electronic states is described by internal
lines and does not contribute to the relaxation of the
photon momentum conservation &; = &,.

In Fig. 1(b) we show processes where propagating in-
termediate electronic states are elastically scattered by,
e.g., an impurity or interface roughness potential. We do
not consider here the two-phonon vertices of interaction,”
assuming that the temperature is low enough to neglect
their contribution. However, a certain amount of impu-
rities or other defects is a common feature of any real
sample. The dash-dotted line in the diagram of Fig. 1(b)
corresponds to the elastic interaction of PEE, with some
kind of spatial disorder. The interaction with defects im-
plies the relaxation of the strong constraint of the pho-
ton momentum conservation K; = K, and the light can
be scattered in all directions.

Thus, we have shown in this section that PEE’s do not
contribute to the elastic scattering of light in the lowest-
order perturbation theory (see also Ref. 6 ). However,
such scattering becomes possible via higher-order pro-
cesses when some elastic mechanism is invoked to scatter
intermediate electronic states in the sense of processes
shown in Fig. 1(b). A single LEE leads to the isotropic
Rayleigh scattering in the lowest order perturbation the-
ory.

III. SCATTERING
BY LOCALIZED ELECTRONIC STATES

In this section, we consider the RRS from a macro-
scopic ensemble of LEE’s in the lowest-order perturba-
tion theory [see Fig. 1(a)] and discuss different possible
realizations of the energy and/or spatial LEE distribu- .
tion. In particular, we analyze the case of distribution
in a regular lattice with fluctuations in the position of
localized states (we refer to as ordered array) and the
two limiting cases of a completely random distribution
(we refer to as disordered array) and of a perfect lattice.
The inhomogeneous broadening is introduced by assum-
ing a Gaussian distribution of the energies of individual
localized states. Possible correlation effects in the energy
fluctuations are not taken into account.

We consider the LEE’s, which are homogeneously
broadened by some mechanism of interaction like scatter-
ing by phonons [see Fig. 1(c)]. For the cases under con-
sideration, we assume that all localized states contribute
coherently to the total scattering amplitude. Hence, the
contribution of each individual localized state has to be
multiplied by the phase factor exp [¢(K; — Rs)rm] before
squaring, where r,, is the position vector of localized
state number m. One can see from the diagram on
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Fig. 1(a), that the contribution M () from an individual
localized state to the scattering amplitude is proportional
to the propagator of electronic excitation:

M(Qp,) ~ G(wi; Q) = (w1 — U + iI‘m/Z)"1 , (2)

where Q,, (I'y,) is the excitation energy (homogeneous
broadening) of the state number m.

For an ideal three-dimensional (3D) lattice of identi-
cal LEE’s states, the coherent sum of all contributions
leads to the compensation of scattered waves in all direc-
tions besides that with £, = ;. This process contributes
to the dressing of the photon propagator. There is no
contribution to the Rayleigh scattering.

However, in the limit of disordered array the scattering
efficiency is given by

L) ~ 8(wt — ws) [NIM(Q)IZ
FN(N — 1)ds, 2, |M(n)|2] , (3)

where IV is the number of localized states. In Eq. (3),
the first term describes the isotropic RRS, which comes
out to be equal to the uncorrelated scattering from each
localized state.

To be more general, let us introduce fluctuations in the

|

I (wr) ~ 8(wr — ws>{N<|M(ﬂ>|2>g + N|(M (@) ?

whereas for the totally disordered array of inhomoge-
neously broadened localized states,

L(wi) ~ &(wi —wa) [N (IM(Q)*),
+ N(N - 1)|(M(Q))al*éx, 7] - (6)

In Egs. (5) and (6) ()q represents the average over the
Gaussian distribution of the energies of individual local-
ized state around the energy Qo,

(Q — Q)2

(0a= A [ e (-C 1) )

(7)

where A is the distribution width.

Let us compare the contributions to the RRS (K, # &,
ws = wj) from the ideal lattice and a disordered ar-
ray of inhomogeneously broadened LEE’s. According to
Egs. (5) and (6), they are N[(|M(Q)|*) — (M (2))|’] and
N{|M(€)|?), respectively. In both cases, the behavior of
the scattering efficiency, as a function of the laser fre-
quency wj, depends strongly on the relationship between
homogeneous I' and inhomogeneous A broadenings. The
results of a calculation of the RRS efficiency evaluated
with uncorrelated Gaussian distribution of local resonant
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position of identical LEE’s arranged in a lattice (ordered
array). For the lattice with Gaussian fluctuations, we
found

L (1) ~ (w1 — ws){NlM(Q)lz

fime(- 3 Cummarar)

i=z,y,2
+N26a,,a,|M(m|2} , (4)

where A; is the spatial distribution width. The first term
describes the Rayleigh scattering which is anisotropic be-
cause of the fluctuations. Equation (4) coincides with
Eq. (3) and with the result for ideal lattice in the limit
of A; —» oo and A; — 0, respectively.

A very important difference in scattering from ordered
and disordered arrays of LEE’s appears when the energies
of localized excitations are randomly distributed around
some average value. This leads to inhomogeneous broad-
ening of the resonance that has been observed in many
optical investigations.*®:%:12 We assume a Gaussian form
for these energy fluctuations. The RRS efficiency for the
lattice of localized states with energy and position fluc-
tuations is found to be

3 (k25 — ;si)2A3>]} ’ (5)

i=x,y,z

[ e |

Nég, 7z —exp (—

frequencies are shown in Fig. 2. The calculations have
been performed for a number of values of the parameter
r'2/A% : 1-0.01;2 — 0.04;3 — 0.1;4 — 0.2;5 — 0.5;6 —
2.0;7 — 6.0;8 — 20.0;9 — 100.0, assuming a constant I'.
We do not consider possible dispersion of I' inside the
inhomogeneous band. In the limit of a dominant inho-
mogeneous broadening, A > T', the cases of a perfect
lattice and a disordered array give a very similar result.
The spatial disorder does not play an important role and
the RRS profile reflects the inhomogeneous energy distri-
bution. However, dramatic differences are found in the
opposite limit A < I'. The RRS from totally disordered
array [Fig. 2(a)] corresponds to the uncorrelated scatter-
ing from each localized state; it becomes independent of
A and reflects the homogeneous profile [the dashed curve
in Fig. 1(a) corresponds to the limit A — 0]. The behav-
ior is very much different for the lattice [Fig. 2(b)]: the
amplitude of the resonance acquires mazimum at A ~ T
and goes down for the further decreasing of A. In the
limit A — 0, the scattering intensity is zero as it should
be for an ideal lattice of identical LEE’s.

In order to illustrate the resonant behavior by means
of a simple equation and for the sake of comparison with
other results,1’? we give the scattering efficiency of the
lattice of localized states evaluated with a Lorentzian dis-
tribution of resonant energies:
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(w1 = Q0)? — (0% —T?)/4 + (©/T)[(wi — R0)* + (©% — [*) /4] 1

Lu(wn) ~ 801 = )|

where © is the width of distribution centered at 3. Un-
der resonance conditions with the distribution center,
w; = g, this simplifies to

4 1 1
O+T (F 0+ l") ’ ©)
For I' >> O, the intensity in the maximum is (©/T")(4/I'?)
and the width of the resonant profile is equal to I'. For
I' € ©, the maximum is (®/T')(4/©?) and the profile
width is ©. Note that the first term in the bracket of
both Eq. (8) and Eq. (9) corresponds to the contribution
from a disordered array. As stressed before, the difference
between regular lattice and totally disordered array is
negligible in the limit of I' <« ©. This means that, for
large inhomogeneous broadening, the spatial distribution
of LEE’s is not important.

The dependence on the homogeneous and inhomoge-
neous broadenings in Eq. (9) is similar to that of Egs. (3)
and (4) of Ref. 1. However, its interpretation seems to be
different. In Ref. 1, the contribution of two-dimensional
excitons to the scattering efficiency has been evaluated

Ig((UI = Qo) ~

J

[(w1 — Q0)% + (02 +I'?) /4]%2 — O21'2 /4

@@ F)2/4} » 8

via the dielectric response function. The authors refer to
the paper of Loudon,!® where the dielectric function for
an isotropic dielectric medium (or for a cubic crystal) was
calculated in the classical model for collection of damped,
noninteracting, harmonic oscillators. Therefore, the the-
oretical analysis of Ref. 1 actually corresponds to the
scattering from spatially homogeneous density of local-
ized states with uncorrelated distribution of resonance
energies. This explains why it is similar to our result for
the lattice of localized states. However, the extension of
this approach to the contribution from propagating elec-
tronic excitations, which is, in fact, assumed in Ref. 1, is
not valid: as we have shown in the previous section, prop-
agating states do not contribute to the Rayleigh scatter-
ing in the lowest-order perturbation theory.

We conclude this section by considering the layer semi-
conductor structure with localized electronic states being
totally disordered along the layers that are arranged as
a SL. Allowing for uncorrelated Gaussian fluctuations of
the energy of localized states and the position of layers
along the growth direction, we find

I (wi) ~ 8(wi — wa)(NlNz{(lM(Q)Iz)n — 6,1 7. exp[—(kiz — Rsz)2A§/2]|<M(Q)>n|2} + N12N225a.,»€,|<M(Q))0|2) ,

RRS Intensity (arb. units)
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FIG. 2. The result of calculations of the scattering efficiency from (a) totally disordered and (b) ordered arrays of localized
electronic states with Gaussian fluctuations in the energy of individual scattering centers. Detuning is taken with respect to the
center of distribution. Different curves correspond to the different values of inhomogeneous broadening (see text for details).
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where N; and N, are the number of localized states in
the layer and the total number of layers, respectively.
The first term in the square brackets contributes to the
isotropic Rayleigh scattering. Taking into account the
energy conservation, c|&,| = ¢|Ri|, one sees that the term,
proportional to the 8z, &, , gives a nonzero contribution
only in the reflection and forward directions. The last
term, proportional to the dz, z,, obviously represents the
forward scattering. The model considered above may be
related to multiple QW structures with a strong disor-
der when excitonic states are localized at random in the
plane.

IV. SCATTERING
BY PROPAGATING EXCITATIONS

We discuss in this section RRS by PEE’s. As pre-
viously stated, this is only possible via higher-order pro-
cesses, where intermediate states are elastically scattered
by some kind of defects [see Fig. 1(b)]. From here on,
we treat this scattering as uncorrelated interaction with
impurities. In the case of interface roughness, relevant
for QW structures, this corresponds to a roughness po-
tential with infinitely small correlation length. An aver-
age over impurity positions recovers the translational in-
variance, and the corresponding components of the wave
vector are conserved in the vertices of exciton- (electron,
hole) impurity interaction. This means that the impurity
line can carry out a well defined momentum. The in-
termediate electronic excitations are supposed to be the
ground exciton states renormalized by all relevant inter-
actions through the homogeneous broadening of propa-
gators [Fig. 1(c)]. Models for single quantum well, bulk
semiconductor, and multiple quantum-well structure are
presented.

A. Single quantum well
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lead to the equation k,, = *k;, for the wave vector com-
ponents of the incident and scattered light perpendicular
to the QW plane. Therefore, besides the forward scat-
tering, there is a contribution to reflection. For an ideal
infinite SL, the coherent sum over contributions of in-
dividual QW’s compensates this term and there is only
forward scattering (reflection from the sample surface is
not discussed here).

In order to obtain the finite RRS efficiency for PEE’s
(in 1D, 2D, or 3D systems), one has to take into account
the effect of disorder on the correlator of four current op-
erators corresponding to the light scattering tensor. All
possible diagrams with impurity (or random potential)
external lines connecting electronic Green functions on
the left and right hand sides of diagrams in Fig. 1(b)
have to be added to those responsible for the dressing
of a single-particle Green function considered in Ref. 13.
We take account of all ladder contributions and assume
that the disorder is weak enough to neglect all diagrams
with crossing lines.

First, let us calculate the scattering efficiency from
a single QW, taking the states of QW ground excitons
as intermediate electronic excitations. We consider the
disorder-induced scattering as interaction with 2D point
defects with a potential ven)(r) = ve(n)(2)d(rL — rio)
for electrons and holes, respectively, where r, o describes
the in-plane position of the impurity. The 2z dependence
of the scattering potential is assumed to be the same
for all impurities. The average over in-plane position of
impurities recovers translational invariance. Therefore,
the in-plane components of exciton wave vectors are con-
served in all interaction vertices; for a single QW, the
impurity lines in all diagrams of Fig. 1(b) do not carry
the g, variable. Evaluating the sum of all diagrams in
Fig. 1(b), under the assumption ka < 1, where a is the
exciton Bohr radius, we find

I, (wi) ~ (w1 — wa)|Gug (K11)]?|Gup (K5 1) [*nae®

nqe2M -1

In the lowest order perturbation theory [Fig. 1(a)], the x|1- 72 f(wo, wo) ) (11)

quasi-two-dimensional character of propagating states
(Rs1 = Ki1) and the energy conservation (|R,| = |R;|)  where
|
REL et
k) = |hw — hw — ——= 12 , 1
G, (k) [gﬁw 2M+12] (12)

i+ (2m) " In{[fwy — o’ — o (w1 — w')/2)/[hn = Fw + ipeon(wr = ) /2]}

J(w,0') =

M is the exciton mass, 7iot is the total broadening of the
exciton, ng the areal concentration of defects, e = €. +¢p,
is a sum of matrix elements for electron and hole evalu-
ated with potential v.(x)(2) and size-quantized envelope
wave functions, and fwg is the excitonic gap.

The second term in square brackets in Eq. (11) can be

hw! — hw + i Yiot (Wi — w) + Yeot (Wi — w’)]/2

(13)

written as

2
nge*M Tq |1 1 wp — Wwo
= — | = — t _— <1
7 f(wo,wo) oot [2 + Narc an( —" )] R

(14)
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where we have defined the quantity I’y = nge?M/A?, re-
lated to the broadening 74 of the excitonic state, due to
scattering by defects by the relation

Va4 = T'q®(w; — wo), (15)

where ©(w) is a Heavyside function.

The meaning of the term expressed by Eq. (14) should
be qualitatively clear: it takes account of all contribu-
tions to the scattering efficiency with more than one ex-
ternal impurity line in Fig. 1(b). When the broadening
“Ytot 1S mainly determined by processes other than the
elastic scattering by defects, v4/viot < 1. This means
that the probability of being elastically scattered in the
sense of impurity line, connecting the left and the right
sides of diagrams in Fig. 1(b), is very small compared to
the inverse lifetime of the exciton. Obviously, the pro-
cesses with multiple scattering of exciton by defects give
then a negligible contribution to the RRS. However, in
the case 74 ~ 7iot, the exciton lifetime is determined by
the same interaction as that responsible for RRS and all
contributions in Fig. 1(b) are equally important.

Note that for w; — wo > Ytot, We have f(wg,wo) =~
1/ Vtot and

Ya(wr — wo)

Fdf(u)o,u.)o) ~ m <1. (16)

For wo — wi > 7tot, one finds f(wo,wo) =~ 1/[2m(Awo —
hwy)] and

Taf(wo,wo) ~ La/[2m(Awo — Fwy)] < 1 (17)

is independent of ~y;ot. Thus, even without knowing the
exact dependence of the 7,4 on frequency, we can tell
that the function of Eq. (14) is asymmetric with respect
to the excitation energy w; = wg. As we show below, this
leads to the asymmetry and blueshift of the RRS profile.

Let us discuss the role of exciton dephasing in the RRS
via PEE’s. The dephasing enters the RRS efficiency via
the ~viot in Egs. (12)-(14). In order to analyze the fre-

RRS Intensity (arb. units)

Detuning/y'

FIG. 3. The effects of disorder on the scattering efficiency
via propagating excitonic states. Different curves correspond
to the different values of I'q, while 4’ = 1: (1) 'y = 0.01, (2)
[y =0.03, (3) Ty =0.1, (4) Tqa = 0.3, (5) Ta =1, (6) Ta = 3,
(7) I'q = 10.
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RRS Intensity (arb. units)

Detuning/T',

FIG. 4. The effects of dephasing on the scattering efficiency
via propagating excitonic states. Different curves correspond
to the different values of 4, while I'y = 1: (1) v’ = 0.01, (2)
¥ = 0.03, (3) v = 0.1, (4 v = 0.3, (5) vy =1, (6) v =3.

quency dependence of the RRS intensity we approximate
the total broadening 7ot = ' + I'q of the excitonic state
by a constant, which can be separated into two terms: I'g,
responsible for elastic scattering by defects and v’ which
takes account of all inelastic scattering mechanisms. The
RRS profiles, calculated from Egs. (11)-(14) for differ-
ent values of I'y/v’, while 4/ = 1 in units of detuning,
are reported in Fig. 3. In the limit v’ > T'y, the increase
of disorder enhances the RRS efficiency without varying
its near symmetric line shape. For I'y ~ +'/3 the elas-
tic scattering of light reaches the maximum intensity and
then, for a further increase of disorder, the RRS not only
starts decreasing and broadening but even more relevant
is the pronounced asymmetry of its profile with a blueshift
of the line from the central frequency w; = wo. Therefore,
RRS via PEE’s turns out to be quenched in both limits of
weak and strong disorder; in the last case, an asymmetry
of the RRS profile with a blueshift is predicted.

Other interesting information can be derived from the
analysis of dependence of RRS on the broadening v of
the excitonic states, due to all mechanisms except scat-
tering by defects. In Fig. 4, we report the calculated
RRS spectra for different values of the ratio v'/T'g, while
I'; = 1 in all cases. In the limit 4’ <« T'y, the RRS pro-
file is asymmetric and blueshifted with respect to the
excitonic transition fAwg. Increasing 7', the RRS effi-
ciency is quenched, the blueshift disappears and its line
shape becomes broader and symmetric. Obviously, two of
the most relevant mechanisms producing v’ are exciton-
phonon and the exciton-exciton interaction; therefore,
the trend shown in Fig. 4 may be related to the tem-
perature and/or power dependence of RRS via PEE’s.

B. Bulk semiconductor

The RRS efficiency by PEE’s in bulk semiconductor
can be obtained in a similar way. Formally, the result is
the same as for a single QW, where one has to substitute
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€, wop, ¥ by corresponding bulk quantities:

I (wp) ~ 8w — wS)|Gwo(”l)|2|Gwo(K6)|2ndU2
2T ytot \ P2

-1
xRe\/fuul — hwo + ’L"}’tot/z] , (18)

where n4 is now the bulk concentration of defects and v =
ve + vp is the strength of scattering potential ve(s)(r) =
Ve(n)0(r — ro). The factor in the square brackets can be
written as 1 — (va/Ytot), similar to the case of a single
QW.

C. Multiple quantum-well structure

We proceed to analyze the Rayleigh scattering from
multiple QW structure, assuming the intermediate states
as propagating in the plane of individual QW excitons.
The ground exciton energy of individual QW’s is allowed
to fluctuate according to the Gaussian distribution. Such
model corresponds to the large-scale disorder in the form
of growth islands. The interface roughness, along with
impurities, may also cause elastic scattering of the inter-

|

I™ (wy) ~

> X

9z1599zn ki1, .skin—1 | ™
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mediate electronic states [see diagram in Fig. 1(b)]. We
introduce, here, the scattering by point defects similar to
the case of bulk semiconductor. After the proper average
over impurity position, the in-plane component of wave
vectors conserves in all vertices of interaction. A more
sophisticated treatment should be taken over the wave
vector component perpendicular to the growth direction.
Although we deal in this section with a multiple QW
structure, the electronic states are assumed to be local-
ized in individual QW’s. The conservation of the wave
vector component along growth direction would appear
as a result of the coherent sum of contributions to the
RRS amplitude from all individual QW’s. However, this
happens only in a perfect multiple QW structure with a
large enough number of periods. Since we consider here
the structure with fluctuations in the well width, and
corresponding fluctuations in the size-quantized energy
of individual QW’s, two types of contributions to the
RRS efficiency appear: the one conserving the wave vec-
tor component along the growth direction and the other
without such constraint. The second contribution is due
to the inhomogeneous broadening.

According to Fig. 1(b), the nth order contribution to
the RRS efficiency before averaging over the resonance
energy distribution can be written as

2

Z M (wom) exp [i(Ki; — Ksz — Qzn)md]| §(w) — w,), (19)

where Q,, = Zi:{ @21, M(wom) is a contribution of mth QW to the total scattering amplitude, and d is the SL
period. Averaging over the resonance energy and taking the sum over all individual QW’s, we find

I (wr) ~

> X

9:z15--9zn ki1, kin-1

{N [(IM@)]?), - (M), 7]

+ N2 (M (w)),, 170Q.n 1. —n.x } 0 (w1 — wi), (20)

where (), was defined in Eq. (7) and N is the total number of QW’s, assumed to be large enough for the condition

> m exp (tk,md) ~ N§_ o to be satisfied.
Summing all diagrams in Fig. 1(b) we find

I (wi) ~ Uz”d% [<|Gw('€u)|2|Gw('€u)|2 [1 -

- <<Gw("il_s_)G::’ (k1L)Go (ks L )GLi (K1) [1 -

3Mv?ny -1
“omsp 1 (“’"")] >

3Mv3ng , -t
Wf(waw )] ,

+NY > [T a0, 0w ..

n=1qz:1,.--,9zn i=1

x <<Gw(RU_)G:,,(nu)Gw(nsJ_)G:,,(,‘QLL) (%ﬂw,w')) ) >> ] , (21)

where b is the well width, ({)) corresponds to the average
over w and w' in the sense of Eq. (7) and f(w,w’) is given
by Eq. (13).

The factor §(w; —w,) has been omitted in Eq. (21). We
used also the relation

)

[

2

sin (g,b/2) 4 1

a:b/2 4 — (q.b/)?

2b
2 _
> @) = 52
qz 9z

(22)
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which is valid for a QW with infinitely high barriers.

All three contributions in Eq. (21) are of the same or-
der in N, because of the § symbol of Kronecker in the
last term. The algebraic sum of the two first terms is
not zero, only because of the inhomogeneous broaden-
ing. The last (third) contribution is not zero even in the
limit of negligible energy fluctuations. The relationship
between the first two and the last contribution of Eq. (21)
is determined by the relationship between homogeneous
and inhomogeneous broadenings.

Note that the first two terms of Eq. (21) result from the
inhomogeneous broadening in the sense of spatial fluctu-
ations in the size-quantized energy whereas the last one
is an effect of disorder in the sense of Ref. 13 on the light
scattering tensor (not on the propagator of electronic ex-
citation) evaluated for scattering via PEE’s.

V. EXPERIMENTAL EXAMPLES

We conclude by giving two experimental examples of
RRS from a single QW and bulk semiconductor, respec-
tively. Details of the experimental setup can be found
elsewhere.l® The single QW investigated is a MBE grown
heterostructure consisting of a 90 A GaAs layer sand-
wiched by thick Alg.3Gag 7As barriers. The RRS profile
at =8 K is reported in Fig. 5, together with the pho-
toluminescence (PL) and photoluminescence excitation
(PLE) spectra. The good optical quality of the sam-
ple is indicated by the 1.6 meV full width at half max-
imum (FWHM) of the PL spectrum. The most striking
fact arising from the comparison of these spectra is the
Stokes shift (SS) of the RRS, with respect to the PLE
spectrum; a similar shift is also found for the PL band.
We remark that the SS seems to be a general feature of
the RRS in QW heterostructures: analogous results for
RRS have been indeed reported in QW'’s of both higher!®
and lower! intrinsic quality. It is well known that the PL

S

90 A QW

Intensity (arb. units)

1.563 1.564 1.565 1.566 1.567 1.568 1.569 1.57
Energy (eV)
FIG. 5. Comparison of the RRS (solid line), PL (dotted

line), and PLE (dashed line) spectra for a 90 A QW at T=8
K.
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Stokes shift originates from the equilibrium distribution
(trapping!” or thermalization'®) of the photogenerated
excitons. Obviously, a different explanation must be in-
voked for RRS provided that the elastic scattering of light
does not derive from the real exciton population. In fact,
the physical origin of the SS in the RRS profile from a
QW/’s has not yet been clarified and such a discussion is
outside the aims of this paper. We refer to Ref. 16 for an
analysis of the different possible explanations. Neverthe-
less, the presence of the SS implies that RRS from QW
heterostructures essentially probe the excitonic states ly-
ing at the low energy side of the inhomogeneous absorp-
tion band and there is a general agreement on the local-
ized character of these states.!»'%16 Note also that our
calculations for the RRS efficiency via propagating ex-
citonic states eventually predict a blueshift of the RRS,
with respect to the fundamental transition (in contrast
to the SS observed in a QW).

The second example concerns the results of RRS from
intrinsic bulk GaAs. The RRS profile at T=8 K is re-
ported in Fig. 6 and compared with the PL and PLE
spectra. The PL spectrum consists of three overlapping
bands very well known in the literature; they correspond
to the fundamental exciton (X, E=1.5153 eV), the exci-
ton bound to neutral donor (D°X, E=1.5141 eV), and
the free hole-neutral donor transitions (D°h, E=1.536
eV), respectively. Note the good quality of the sample,
as inferred from the FWHM of 0.4 meV for the X line.
Only the X transition is observed in the PLE spectrum,
as expected since it essentially reflects the absorption,
while both the X and D°X contributions are found in
the RRS profile. The presence of extrinsic transitions in
the RRS spectrum, which are not usually detected in ab-
sorption, has been reported in QW structures'® and in
thin layers of ZnSeS,? as well, and is a clear indication
to the fact that RRS tends to enhance the contribution
from localized states. We see two possible reasons for the
lack of D°h in the RRS spectrum: (i) small population

T

GaAs bulk ]

Intensity (arb. units)

SR - P Y S S S S S S

1.512 1.514 1.516 1.518

Energy (eV)

FIG. 6. Comparison of the RRS (solid line), PL (dotted
line), and PLE (dashed line), spectra for bulk GaAs at T=8
K.
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of the ionized donors at Jow temperature and (ii) non-
resonant character of this process (the integral over the
wave vector of a free hole state leads to a smooth be-
havior of the scattering efficiency in the vicinity of D°h
transition). However, at least to our purpose, the most
interesting feature is the presence of the RRS from the
fundamental exciton transition. In fact, this resonance is
usually referred to as the free exciton in connection with
its supposed propagating character. Our data, therefore,
suggest that in bulk samples, the RRS may occur via
PEE’s. It should also be noted that from the undoped
GaAs buffer layer on which the 90 A QW investigated
has been grown we find a RRS profile very similar to
the one presented in Fig. 6, with an absolute intensity
of the same order of magnitude as the RRS from the
QW, even if the scattering volume in a bulk sample is
roughly two orders of magnitude larger than in a QW.
The much larger efficiency of the QW in producing RRS
again suggests that the elastic light scattering occurs via
different mechanisms in the two cases, that is, LEE in
QW'’s and propagating exciton states in bulk semicon-
ductors. Nevertheless, we would like to note that the
disorder associated with impurity contamination can be
effective to produce localization of the bulk exciton?® and
this is specially true for states with small wave vectors,
such as the ones probed by RRS. We are unable to estab-
lish the propagating or localized character of the funda-
mental exciton in our bulk samples. However, we can def-
initely conclude that bulk samples are, when compared
to the QW systems, better candidates for investigating
the RRS via propagating excitonic states, very likely as
a consequence of the absence of interface roughness, that
is, the main origin of localization in QW'’s.

VI. CONCLUSIONS

To summarize, the relative role of propagating and lo-
calized electronic excitations, being intermediate states
in the processes of resonant Rayleigh scattering, has been
studied. It has been shown that only totally localized in-
termediate states lead to the elastic light scattering via
the lowest-order processes. The effects of spatial and
energy disorder have been analyzed. The scattering ef-
ficiency of an ordered and disordered arrays of local-
ized states shows strongly different behavior as a func-
tion of inhomogeneous broadening. This dependence is
monotonous for disordered array and it goes through a
maximum for a lattice.

We have shown that the propagating electronic exci-
tations only contribute to the elastic light scattering via
higher-order processes. The scattering efficiency of the
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propagating excitons has been calculated for a single QW
and for bulk semiconductor. The results show strong
differences between the case when the exciton dephas-
ing is determined by the same scattering mechanism as
that responsible for light scattering, and the case when
the broadening of excitonic states is due to some other
stronger interaction. The scattering efficiency of a multi-
ple quantum-well structure for scattering via propagating
states of the exciton consists of two qualitatively different
contributions. One of them results from the inhomoge-
neous broadening in the form of growth islands, whereas
the other one is due to the elastic scattering of excitons
by some defects or impurities in an otherwise perfect mul-
tiple quantum-well structure.

Finally, we have reported experimental results for a
single QW and bulk GaAs. In the case of a QW, the
presence of a SS of the RRS profile, with respect to the
fundamental excitonic transition, denotes the prevailing
of the elastic light scattering via localized states. It fol-
lows that in QW structures this experimental method is
complementary to other coherent techniques, such as four
wave mixing or hole burning. In the bulk case, instead,
the RRS occurs exactly at the exciton transition, suggest-
ing the possibility of a different scattering mechanism.
Therefore, bulk materials seem to be better candidates,
if compared to the more widely investigated QW sys-
tems, for studying RRS via propagating excitonic states.
At the same time, RRS can be alternative to the above
mentioned nonlinear techniques for studying dephasing
processes in bulk semiconductor.

Note added in proof. Equation (8) can be simplified to

I(w)) ~ 8(w; — w,) (%_e;w>

« ©+T
(Wi = Q0)? + (6 +T)?/4°
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