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and (D,Be) complexes in silicon: The rigid rotor in a tetrahedral field
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We apply a model of a rigid rotor in a tetrahedral field to the (H,Be) and (D,Be) complexes in silicon.
The issue of ( 111) versus (100) minima is explored within this model, with the latter gaining support
for these complexes. It is then shown that parity is nearly a good quantum number for the wave func-
tions when the minima are in ( 100) directions, even though the Hamiltonian is invariant under opera-
tions of the group Td. We then calculate the stress effects on the levels within this model, refuting the
notion that [111]stress has no effect when the minima are in six ( 100) directions. The stress effects for
the small basis-set tetrahedral tunneling model are recalculated, and it is found that conclusions that had
been drawn must be reevaluated. Also, we present formulas for stress effects in the small basis-set octa-
hedral tunneling model. Finally, a coupling scheme is developed by using symmetry arguments, and os-
cillator strengths are calculated for transitions in both the infrared (hole transition plus rotational side-
bands) and far-infrared (coupled rotational transitions).

I. INTRODUCTION

There have been two experiments to date on the (H,Be)
and (D,Be) single acceptor complexes in silicon, both of
which indicate that these two complexes are hindered ro-
tors, or in a more extreme limit, tunneling systems.
Muro and Sievers explored the temperature dependence
of the infrared (IR) spectra and the low-temperature far-
infrared (FIR) spectra of these two complexes in silicon. '

They found that at 1.7 K these complexes have, in addi-
tion to normal single acceptor IR absorption lines ("p3/2
series, " and labeled in their paper by I) a blueshifted re-
plica (labeled I*)of each line positioned at 38.7 and 16.2
cm ' higher in energy relative to the main band for the
hydrogen and deuterium isotope, respectively. ' As they
increased the temperature, additional redshifted replicas
(labeled by II, III, etc. ) appeared in the IR absorption, in-
dicating a complex manifold of levels in the ground state
more closely spaced than the blue shifted replicas.
Directed transitions between these levels were also seen
by Muro and Sievers using FIR techniques. '

Peale, Muro, and Sievers also saw a normal single ac-
ceptor absorption line (labeled by I) at higher energy cor-
responding to the strongest transition of the so-called
p &&z series, also with blueshifted replicas (labeled I*)at a
slightly more accurate 38.8 cm ' for the hydrogen iso-
tope and again at 16.2 cm ' for the deuterium isotope.
As they raised the temperature, redshifted peaks again
became apparent, agreeing with Muro and Sievers. Addi-
tional information was obtained by monitoring the efFect
of uniaxial stress on the transitions. The largest shift of
the transitions themselves at 1.7 K was seen for [111]
stress, with a smaller shift for [110]stress, and the small-
est shift for [001] stress, for both isotopes. At the elevat-
ed temperature of 6 K, evidence for a stress-split ground
level was seen, indicating that the ground level trans-
forms as I 8, since this is the only irreducible representa-

tion in Td that can split, due to a reduction in symmetry
by uniaxial stress. This is the same symmetry as the
ground level of an ordinary single acceptor.

The following conceptual view is used to frame the ex-
perimental results. When doped into silicon, Be occupies
a substitutional site and is a double acceptor. When hy-
drogen or deuterium is introduced, a complex with Be is
formed partially passivating the double acceptor. The
composite system is then a single acceptor with the possi-
bility of an additional degree of freedom of hindered rota-
tional motion (also vibrational) or possibly, if the poten-
tial wells are su%ciently deep, rotational tunneling.

Initially, a model developed by Hailer, Joos, and Fal-
icov for a difI'erent defect was used to model these corn-
plexes. For the rotational tunneling motion, a simple
four-dimensional Hilbert space is assumed, spanned by
identical functions oriented along four (111) directions
(either bonding or antibonding directions). This
tetrahedral tunneling model predicts two tunneling levels,
3, and T2, separated by 4t in energy, where —t is the
tunneling matrix element. For the ground state of the
single acceptor, which has an s-like envelope wave func-
tion, coupling between the rotational tunneling nuclei
and the single acceptor hole may be significant, so Hailer,
Joos, and Falicov developed a two parameter coupling
scheme, which predicts five levels in the ground-state
manifold. Hence, the blueshifted replicas were inter-
preted within this tetrahedral tunneling model as a tran-
sition from the common ground state to the excited single
acceptor state with T2 nuclear tunneling character, and
the redshifted replicas were interpreted as a result of the
five coupled levels. ' The model was applied, seemingly
satisfactorily, by both sets of experimentalists to these
complexes. However, several serious difhculties exist,
one of which is fatal. As first pointed out by Peale,
Muro, and Sievers, the energy values of the blueshifted
replicas relative to the main band are larger than the free
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rotor limit for these complexes. Free rotation should be
the upper limit, since any interaction with the surround-
ing crystalline environment will only "drag" the rotor,
and hence will decrease the spacing between the levels.
As we will see, there are also problems in applying this
tetrahedral tunneling model to the experimental stress re-
sults.

Artacho and Falicov introduced a similar model, ex-
cept that they assumed a six-dimensional Hilbert space
for the rotational tunneling nuclei corresponding to six
identical (100) oriented functions (C sites). This model
predicts three nuclear tunneling levels, 3, , T,„,and E,
in which the separation between the A and T levels is
twice that of the separation of the T and E levels. Again,
a two-parameter coupling scheme was developed, intro-
ducing eight levels in the ground-state manifold. It was
assumed in this octahedral tunneling model that the sys-
tem is invariant under operations of the group 0&, so that
parity is exactly a good quantum number. This is ap-
parently inconsistent with the assumption that the com-
plexes are at a substitutional site, since the point symme-
try there should be Td, but Artacho and Falicov argued
that parity in the total wave function may be nearly a
good quantum number in the actual system if crystal-field
corrections arising from neighboring Si atoms are neglect-
ed, since the hole states are described by the product of a
smooth envelope of s- or p-like character and linear com-
binations of the six spinors from the top of the valence
band. If this is the case, then the blueshifted replicas seen
in the experiments are a result of a transition from the
common ground state with predominantly 3

&
tunneling

character to the excited acceptor state with E tunneling
character, since a sideband transition of this nature (from
s- to p-like acceptor states) will probe the like parity of
the tunneling states. If parity were exactly a good quan-
tum number, as it is in Artacho and Falicov's octahedral
tunneling model, then a sideband transition to the inter-
mediate T,„ tunneling state would be identically zero.
This model would eliminate the problem encountered in
the tetrahedral tunneling model, because in the free rotor
limit, the Eg level would originate from the L, =2 free ro-
tor level, which has a larger energy spacing relative to the
L =0 free rotor level than the blueshifted replicas seen
experimentally. The absence of several absorption lines
seen in the FIR spectra could also be explained by noting
that a transition within the ground-state manifold (within
the s-like acceptor states) probes the opposite parity-
characteristics of the tunneling states, so that only four of
the possible seven transitions predicted by this octahedral
tunneling model are allowed.

There is some theoretical support for (100) minima.
The pseudopotential-density-functional calculations of
Denteneer, Van de Walle, and Pantelides, calculations of
Chia, Goh, and Ong, and the ab initio pseudopotential
total-energy method calculations of Lee, Cheong, and
Chang all indicated global minima at or near the six
( 100) directions (C site).

However, there are issues concerning the octahedral
tunneling model that will have to be addressed. One is-
sue is that no attempt has been made to reconcile this

model with the observed stress results of Peale, Muro,
and Sievers. In fact, it is intuitive that [001] stress
should have the "largest" effect, with [111] stress the
least, apparently contradictory to the experimental result.
A second major issue concerning this model is that of
parity. The complexes must have Td symmetry if located
at a substitutional site. Finally, both the tetrahedral and
octahedral tunneling models are small basis models,
which if a potential-energy surface were assigned, would
have to have deep minima in the direction of interest so
that the wave functions could be written as assumed.
Hence, the term "tunneling" has been used to describe
these models. However, the possibility of "hindered rota-
tion" exists, especially in the case of (100) minima. A
larger basis set would be required to treat accurately hin-
dered rotation.

Our initial calculations treating these complexes as a
rigid rotor in a tetrahedral field indicated that any model
with (111)minima must be eliminated. The suggestion
by Artacho and Falicov of (100) minima has opened
possibilities within our rotor model. This model is more
general than the two other models and includes them as
limiting cases in the deep-well limit of our parameters.
Indeed, this model allows the investigation of intermedi-
ate cases, and it also allows a detailed investigation of as-
sumptions inherent in the other two models. We have
found, using the rigid rotor in a tetrahedral field model,
that definite statements in regard to parity and uniaxial
stress issues can be made. Also, as of the present, only
qualitative discussions of the strengths of transitions have
been made. We will present quantitative results on the
oscillator strengths of the various transitions.

II. THEORETICAL CONSIDERATIONS

A. General formalism

The Hamiltonian for the (H,Be) and (D,Be) complexes
in silicon is written as

&=Sf,(r)+&~(R)+ V(r, R),
where &,(r) describes the dynamics of a normal single
acceptor, &&(R) describes the dynamics of the rotational
tunneling nuclei, and V(r, R) couples the two motions. r
is the coordinate of the hole, and R is the coordinate of
the rotating nuclei (R can be defined as the relative coor-
dinate of the beryllium and hydrogen or deuterium). All
terms will be assumed to be invariant under the opera-
tions of the group Td.

We will have nothing new to add to &,(r). It is as-
sumed that the typical approach has been applied to
&,(r), notably the spherical model with cubic correc-
tions by Baldereschi and Lipari for the envelope states. '

We assume that we have the energy spectrum of the sin-
gle acceptor problem, including the corrections for the s-
like envelope ground state, with spin-orbit interactions
included.

For the other two terms in the Hamiltonian, a detailed
model will be developed. We first start with the nuclear
rotational part, &&(R). && will be treated as a rigid ro-
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tor in a tetrahedral field, in analogy with Devonshire's
treatment of the octahedral field. "

We write for &z,

The above expressions can be rewritten in terms of an-
gles,

L 2

&~(R)=B + V(8, $) . ,$2
(2)

Y3"= —15 cos(8)sin (8)sin(2$),
7

Y4" = —
—,'[3—30cos (8)+35 cos (8)

L2 + V(8, $) g= WQ, (3)

where B =A /2I, the rotational constant (I is the mo-
ment of inertia pR ). Notice that V is dimensionless.
The corresponding Schrodinger equation is then given by

+5 sin (8)cos(4$)],
Y6" =

—,', I
—5+105cos (8)—315 cos (8)+231 cos (8)
—21[—1+11cos (8)]sin (8)cos(4$)J

or finally in Cartesian form

(6)

V(8 $)=K( Y'" +CY"'+C Y'") (4)

where E is the strength of the potential, and C4 and C6
measure the shape of the potential. This is the most gen-
eral potential allowed by Td symmetry, except for the
truncation of terms with L &6. This is not a point ion
expansion, although that connection can be made so that
specific values of C4 and C6 may be determined. ' An
L =0 term should also be present, but since it is a trivial
constant, it is subtracted out. We did not previously in-
clude the L =6 term in our calculations. ' The Y'"'s are
linear combinations of spherical harmonics, which trans-
form as A

&
in Td, and are given as

Y3"= &40~/7—i [ Y3z —Y3 z ],tt 3

where a dimensionless energy eigenvalue is defined as
W =E/B, so that everything is scaled according to B. If
V were zero, the problem is that of the free rigid rotor,
with eigenvalues (L)(L+1) and the eigenvectors would
be the spherical harmonics Yl~.

The symmetry of the problem must be carefully dis-
cussed. The complex is at a substitutional site, in which
the rotation is about some axis, not necessarily around
the Be atom Or the center of mass. The four-nearest
neighbors are tetrahedrally arranged around the rotor,
hence constraining the form of V(8, t)t) to be invariant
under Td symmetry. It is important to note that the
second-nearest neighbors are in 12 (110) directions,
which imposes 0& symmetry. Hence, if a contribution
from the second-nearest neighbors is included in V, parity
must be a good quantum number for that part of the ex-
pansion since the inversion operator is included in 0&.

We choose to expand the potential in spherical har-
monics. We then write for V,

Ytet 30
~3 xyz

3 7 37'

Ytct 1 (x4+y4+z4) —3
5
r4 (7)

Y6"= [7(x +y +z )
—5(x +y +z )

27

+210x y z I

B. Parity considerations for the nuclear Hamiltonian

We choose as basis functions the spherical harmonics,
and in all that follows up to and including L =15 (256 by
256) are included in the expansion. The eigenvalue spec-
trum of Eq. (3) with C6=0 has been published else-
where, and evaluated in more detail (with C6 other
than zero). ' To make phrases somewhat clearer that
have been used and wi11 be used throughout this paper
and the literature, for a given C4 and C6, the phrases
"free rotor, " "hindered rotor, " "rotational tunneling, "
and "libration" mean, from our perspective, increasing K
from zero to very large. The specific values of K that
separate the various regions of motion are not rigid, but
the general use of these phrases should be understood.
The potential as written, and indeed in the general Td
case, predicts three possible sets of minima; the four
bonding (111) directions, the four antibonding (111)
directions, and the six (100) directions. ' We will be
interested only in the case when the minima, shallow or
not, are in the six (100) directions. This severely re-
stricts the parameter space which we will need to investi-
gate. In particular, K will be positive.

Y4" = —&4~/9[ Y40+ —,'Q —", ( Y44+ Y4 4)],
Y6"=+4~/13) Y6o V' —',( Y64+ Y6—4)]

(5)

The size of each of these terms can be gauged by squaring
(complex conjugate) and integrating over all space, and
finally taking the square root of the result. For the L =3,
4, and 6 terms, we find that the values are approximately
2.568, 1.547, and 2.781, respectively. The normalizations
of the Y""s are essentially arbitrary, although the L =4
term is chosen so that it is identical to Devonshire s po-
tential. "

As pointed out in the Introduction, if parity were a
good quantum number, or at least nearly so, then it
would be possible to explain the blueshifted replicas ex-
perimentally seen since a sideband transition to the third
nuclear hindered rotational level would be responsible for
the absorption. We wish now to devise a method for
determining to what degree the eigenfunctions of the hin-
dered rotational levels in our rigid-rotor model are even
or odd.

Clearly, there are two limits of the potential of Eq. (4),
which will generate eigenfunctions that are exactly even
or odd. The trivial limit K =0 increases the symmetry of
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the Hamiltonian to the full rotation group, so that the
eigenfunctions are simply s, p, d, etc. states, which are
even or odd. The other limit occurs when C4 ~ ~
and/or C6~~ as K~O, so that KC4 and/or KC6
remains finite. This essentially amounts to dropping the
L =3 term in the potential. Since the L =4 and 6 terms
have even parity, the eigenfunctions must be even or odd.
As discussed before, these two terms in the potential are
invariant under 0& symmetry, which has even and odd
representations. However, we are more interested in
whether parity is nearly a good quantum number for
reasonable values of the parameters, meaning that C4 and
C6 are relatively small, so that the L =3 term in the po-
tential has a significant contribution.

We proceed to define a function E as

ODD &.00

0.80—

0.60—

0.40—

0.20—

-20.0

EVEN o.oo

-10.0
I

0.0
K

T (L=1)

I
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where g is an arbitrary function. Clearly, F is the odd
part of g. If we multiply F by its complex conjugate and
integrate over all space, the result is

J ~F~ dr= ,' 1 Re —fg—(r)P(—r)dr . ,

FIG. 1. Parity, as given by Eq. (11), of the first four levels
when C4=2.0 and C6 =0.30 in the rigid rotor in a tetrahedral
field model. A value of "1"means that the function is exactly
odd {containing only L =odd terms in the expansion), while a
value "0" means that the function is exactly even {containing
only L =0 and even terms). The first three levels have parity as
nearly a good quantum number for positive E. The parity of
the fourth level [T2(L =2)] and all four levels for negative X
indicate that the Hamiltonian has Td symmetry.

where "Re"means take the real part. We define the right
side of Eq. (9) to be the measure of parity. All the eigen-
functions in the rigid-rotor model must be of the form

tt=Xal, MINIM
LM

(10)

where the Ys are the spherical harmonics and the a's are
the expansion coefficients. The measure of parity [Eq.
(9)] then becomes

The ( —1) fact comes from the inversion property of
spherical harmonics. Clearly, if the function is exactly
odd Eq. (11) gives 1 and if it is exactly even, 0. If both
the even and odd parts of g have the same integrated
strength, Eq. (11) will return a value of 0.5. This measure
of parity is simple to calculate.

A typical case is shown in Fig. 1. For the values of the
parameters given (C&=2.0, C6=0.30) the six (100)
directions are the global and only minima for positive X,
while for negative K the four ( 111) directions (bonding
directions, by our chosen convention) are the global mini-
ma. The first four levels are shown, which include the
A

&
derived from the free rotor s state (L =0), the T2 de-

rived from the free rotor p states (L =1) and the E and
T2 derived from the free rotor d states (L =2).

Clearly in Fig. 1, for all positive E, the three levels
(which are lowest in energy) A „T2(L =1),E, have pari-
ty as nearly a good quantum number. The fourth level,
however, is approaching the value of 0.5 for large, posi-
tive K, indicating an equal mixing of even and odd spher-
ical harmonics. This fourth level and all four levels for
negative K indicate clearly that the symmetry of our

Hamiltonian is not Oz but is Td. We had expected parity
in all the eigenfunctions for large values of C4 and C6,
but we are seeing parity, at least in the first three levels,
even with reasonable values of the parameters. C4=2.0
makes the L =4 term in the potential about the same size
as the L =3 term (using the integrated strength of each
term to measure the size of the term), while C6 =0.3
makes the L =3 term about three times as large as the
I =6 term.

Artacho and Falicov in their octahedral tunneling
model had to justify the 0& symmetry they assumed for
the Hamiltonian by neglecting the nearest-neighbor con-
tributions. They argued that the second-nearest neigh-
bors may play an important role. The reason for doing
this is to get the third nuclear rotational level involved in
a transition, while a transition to the second level is for-
bidden. Their arguments seemed unphysical to us. It has
now been shown that parity can be a good quantum num-
ber, at least for the first three levels, even with a Hamil
tonian that is clearly invariant under Td, not Ol„and not
necessarily within a deep-well limit. Artacho and
Falicov's suggestion of parity as being a good quantum
number was highly intuitive. We have been able to justi-
fy it with a general expansion in Td symmetry.

It is interesting to note that, for silicon, the single ac-
ceptor (&, ) Hamiltonian has a strong cubic term. ' The
model of Baldereschi and Lipari, for shallow acceptor
states, indicates that silicon is an anomalous host, as far
as the semiconductors go, since the cubic term is large
and cannot be treated well by their approach. This
means that the total wave function of our problem (at
least ignoring the couphng term) is also nearly even or
odd, even though the point symmetry must be Td.

We have explored many different values of the parame-



16 520 KEVIN R. MARTIN AND W. BEALL FOWLER 52

III. STRESS EFFECTS ON ROTATIONAL LEVELS

A. Tetrahedral tunneling model

We start our analysis with the tetrahedral tunneling
model introduced by Hailer, Joos, and Falicov, where
two nuclear tunneling levels ( A i and Tz) are predicted.
Under [111]and [001] stress, the T2 level is split into a
twofold degenerate level and a nondegenerate level, while
for [110] stress all degeneracies are removed, in princi-
ple. ' Peale, Muro, and Sievers have attempted to calcu-
late the stress dependence in this limit. However, an er-
ror was made, which weakens their argument in support
of a (111&model.

It is assumed that the strain is small so that, to first or-
der, the strain Hamiltonian is written as

&=+V; e;
17J

(12)

where e;. is the strain tensor. We can put this equation
into a more convenient form, as Ham did, ' as

l7 J

ters and can draw some definite conclusions from our
analysis. It is apparent that in order to get parity to be
nearly a good quantum number, the minima must be well
resolved in the (100& directions, although not necessarily
deep. The "bumps" in the potential, other than in the
(100& directions, can still be important (maintaining T&

symmetry) unlike in the octahedral tunneling model. We
have witnessed cases when the (100& directions were the
global minima (although not the only minima) in which
parity was not a good quantum number for any of the lev-
els. ' This again restricts the parameter space. We have
also witnessed cases when parity is nearly a good quan-
tum number in which certain levels were quite linear as a
function of K, except when approaching very closely to
one another. A classic "avoided crossing" was seen,
again indicating that parity is not exactly a good quan-
tum number.

Thus, at least qualitatively, parity considerations allow
a strong sideband transition to the third rotational level,
with only a weakly allowed transition to the intermediate
T2 level when coupling is introduced. We will quantita-
tively calculate oscillator strengths in Sec. IV, where cou-
pling is included.

It has been shown, to this point, that the (H,Be) and
(D,Be) complexes in silicon can be modeled using a rigid
rotor in a tetrahedral field when the minima are in ( 100 &

directions. Indeed, using a C4 and C6 that give minima
in the (100& direction with parity being nearly a good
quantum number, K is determined by forcing the
difference in dimensionless energy between the first and
third rotational states to agree with experiment.

One problem remains, however. How are the stress re-
sults of Peale, Muro, and Sievers explained? The fact
that the largest effect is seen for [111]stress presumably
points to (111&minima.

where 0& and O„are nuclear strain-coupling coeKcients,
the P's are the four oriented (111& functions, and n, .is
the ith component of the unit vector along the I direc-
tion. This form is completely analogous to that used for
shallow donors in the effective-mass approximation,
where the conduction-band minima are in four ( 111&

directions for the host germanium and six ( 100 & direc-
tions for silicon.

In Eq. (13), if i and j both range over x, y, and z, mean-
ing that both @ay and E'yz appear in the sum, we find that
the expressions for the energy eigenvalues given by Peale,
Muro, and Sievers for [111] stress are correct, but for
[110]they are incorrect. Since the strain tensor is a sym-
metric tensor and interchanging a and p does not affect
the product n n&, having both e and e appear in the
sum amounts to introducing a multiplicative factor of
two. Some authors prefer to restrict the sum over (a,p),
so that only the upper triangle of the strain tensor ap-
pears in the sum. This amounts to redefining the defor-
mation constants by a factor of two. A factor of two is
missing for [110] stress. Ham's calculations support our
assertion. ' The correct formula is presented here. Com-
mon constants (diagonal nuclear tunneling and the linear
hydrostatic shift, due to uniaxial stress) have been sub-
tracted for all levels and all stresses. For [111]stress, we
find

E ( A", "
) =f t +2+t '+—ft +f',

E(E)= f +t, —

and for [110]stress,

E( 3""
) = t++4t'+—( 'f)'-

(14)

E(8, )=t+ ,'f, —

E(8, )=t ,'f, ——

and for [001], there is no eff'ect (other than the common
hydrostatic shift). In these equations, f =(—,')S„s~P, a
stress parameter where P is the stress, negative for
compression. Also, the notation is the usual for the
groups C3„and Cz, for [111]and [110]stress, respective-
ly. Figure 2 displays the correct stress dependence,
where the eigenvalues have been normalized to t, the tun-
neling matrix element.

There are several important points to make. Peale,
Muro, and Sievers used the incorrect theoretical uniaxial
stress results to justify a (111& tunneling model for the
(H, Be) and (D,Be) complexes in silicon, even though a
(111& model must be eliminated, because the values of
the blueshifted replicas are larger than the free rotor lim-
it, as discussed previously. Their reasoning is based on
the fact that [111]stress has the "largest" eff'ect, both ex-
perimentally and in their theoretical calculation. Hence,
the correct energy spectrum as given in the above equa-
tions and displayed in Fig. 2 weakens their argument,
since the effects of [110] stress are larger than what was
thought. Also, and this is an important point, one must
be careful of the use of the word "largest. " Since this
theoretical calculation involves only the nuclear rotation-
al levels and not the entire problem including coupling, in
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10.0—
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for all the experimental principal stresses with the same
constant. Since this is, in fact, the experimental case, it
will be difBcult to Qt any nuclear tunneling model con-
clusively, or indeed all models, to the stress data. Larger
stress values and higher resolution could solve this prob-
lem. Hence, the experimental stress data do not support
a ( 111)model for these complexes.

00— B. Octahedral tunneling model
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FIG. 2. The correct e6'ects of uniaxial stress in the
tetrahedral tunneling model, as given in Eqs. (14) and (15). The
levels marked with "+" are for [110] stress, while the un-
marked solid levels are for [11 1] stress. There is no effect, other
than the hydrostatic shift, for [001] stress

order to attempt a fit to experiment the difference be-
tween the experimental energy of the blueshifted replica
(I*)and the main band (I) must be taken, since the com-
mon hydrostatic shift and the stress effects on the cou-
pled ground state are eliminated by this process. This
difference in transition energies should, therefore, reAect
only the character of the nuclear tunneling states in the
excited p-like envelope acceptor states, where the cou-
pling of the two degrees of freedom will be insignificant.
Hence, the stress effects on the nuclear rotational tunnel-
ing levels should be isolated.

In fact, this is in essence what Peale, Muro, and Sievers
did to extract one of the deformation potentials. The
difference in energy between the blueshifted replica and
the mainband decreases slightly as the stress is increased,
for all three stress directions. The phrase "largest
effect" should therefore mean, in application to the ex-
periment, the largest decrease in separation of the calcu-
lated effects of uniaxial stress as shown in Fig. 2, not the
largest curvature. Clearly then, [110]stress has the larg-
est ffet, eact least for positive fIt.

To push this point a bit further, Peale, Muro, and Siev-
ers show that for the largest stress allowed by their equip-
ment for [111] stress, the quantity f in Eq. (14) has a
maximum value of about 2 cm '. The difFerence between
the two approaching levels (E and A i" ) for positive f is
about 0.91 of the difference between the unstressed levels,
assuming t =4.05 cm ' as they did for the D isotope.
Roughly speaking, then, the difference between the blue-
shifted replica and the mainband is nearly constant for all
values of experimental stress. With experimental error
considered, especially the error introduced due to the
broadening of the I* line, this indeed is a fair statement

We will indicate the effects of stress within the octahe-
dral tunneling model of Artacho and Falicov, since the
results have not yet been published. We will find that
what Peale, Muro, and Sievers argued intuitively is
indeed correct. That is, [001] stress produces the largest
curvature with [110] stress being intermediate, while
[111]stress has no effect other than the common hydro-
static shift.

The calculation is formally identical to the tetrahedral
tunneling model, except now we have six ( 100) oriented
functions. One finds linear combinations of these six
functions that will block diagonalize the Hamiltonian. '

For [001] stress, with the hydrostatic linear shift and di-
agonal nuclear energy subtracted, we find

I

E(A I,'")= r —++—,'(f' 2t)2+6f—'r,—
2

E(E„)=f',
E( A2„)= 2f', —

E(8,g)=2t+f' .

We find for [110]stress the energy levels are given by
2 j/2

(16)

gl glE(A"")=' t+ 9 —' +t 3f'r—
E(8i„)=f',

E(8~„)=E(8i„)=—
(17)

E(8 )=2t-]g

where f'=( —,
' )(si2 —sii )O„P for both sets, and P is nega-

tive for compression. The group theoretical notation is
standard for the groups D4i, and D2i, for [001] and [110)
stress, respectively. There is no effect for [111]stress, be-
sides the hydrostatic shift.

For convenience in plotting we divide the above equa-
tions by t, the tunneling matrix element, and plot the lev-
els as a function off'It in Fig. 3. Notice that the substi-
tution f'~ —f'I2 converts all levels for [100] stress to
[110]stress.

A fit could be attempted with this model also, since the
difference in energy between the blueshifted replica and
mainband is nearly constant, decreasing only very slight-
ly for the three principal stresses. From Fig. 3, for [001]
stress this convergence could be fit, for positive f'It, by a
transition between the two A

&g levels, while for negative
f'It a transition from the ground A, g to the excited ac-
ceptor state with B& funneling symmetry would fit.
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stress in some direction is applied to the system, the sym-
metry is reduced so that different terms, with lower I.
values, will appear in our expansion of spherical harmon-
ics. The specific terms can be determined easily by group
theory, since they must transform as A, in the reduced
group, but we must apply physical arguments in order to
determine which terms must be kept to be correct to first
order. Also, the number of parameters can be reduced by
utilizing physical arguments.

We write the Hamiltonian as

-8.00— &=%~(K,C4, C6 ) +&', (18)
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FIG. 3. The calculated uniaxia1 stress effects in the octahe-
dral tunneling model, as given in Eqs. (16) and (17). The upper
plot is for [110] stress and the lower plot is for [001] stress.
There is no effect, other than the hydrostatic shift, for [ill]
stress.

C. Rigid rotor in a tetrahedral field with ( 100) minima

We wish to develop a model that fits conveniently
within the development of our rigid-rotor model. ' ' As

Simultaneously, a fit to [110]stress would be possible for
an As to Bi transition for positive f'It, and As to As
for negative f '/t. Notice that for positive f '/t, this mod-
el would predict that for [001] stress the levels will initial-
ly converge, but will start to diverge for a value of f'/t
equal to —', , and for [110] stress the difference in energy
between the blueshifted replica and the mainband would
decrease asymptotically to —', of the unstressed difference.
For negative f'It, [110] stress will decrease the energy
difFerence until f '/t reaches a value of —~, then the en-

ergy difference will increase indefinitely as the stress is in-
creased, while for [001] stress the energy difference will
decrease to —, of its initial value. This octahedral tunnel-

ing model predicts that the difference between the blue-
shifted replica and the mainband for [111]stress will stay
constant, since there is no effect, other than the hydro-
static shift, in this model. However, the very slight con-
vergence seen experimentally for [111]stress could be ar-
gued to originate from a small dependence of the stress
behavior on the excited single acceptor state. %($11 $12 )P

3Y20(0=0')
(20)

Here, a is a proportionality constant relating the change
in energy of a ( 100) well to the strain, P is the external
stress (positive for compression), s» and s, 2 are two of

where the first term reminds the reader that the rigid ro-
tor in a tetrahedral field (expanded in spherical harmon-
ics) depends upon three parameters, and &' takes into ac-
count the stress. &' is also expanded in spherical har-
monics and will be diagonalized within a subset of the set
of eigenstates of &&. Since the stress reduces the symme-
try from Td, spherical harmonics with less than L, =3
will appear. By group theory, we can easily find the new
terms. For [001], [110], and [111] stresses the sets

I Yoo Y2o . . ] I Yoo, Yio, Y2o i(K~2 —Y2 2), . . . J, and

I Yoo, [(i —1)Yi, +(i+1)Y, , +&2Y,0], [(i —1)Y2,
+(i +1)Y2, +i (

—Y22+ Y2 2)], . . . ] are allowed in
the expansion, respectively. However, we are interested
only in calculating the effects of stress to first order, since
any experimental stress is small. Also, we do not wish to
introduce a plethora of parameters. Both these con-
siderations can be solved by using physical arguments.

The physical arguments we employ were motivated by
an idea used by Watkins and Corbett for a different de-
fect. ' The central idea is that the change in energy of a
particular well, specifically in the ( 100) directions, is re-
lated to the strains along the lines connecting the four sil-
icon nearest neighbors to each other. For example, con-
sider the well in the [001] direction. This well straddles
two silicon atoms. We are assuming that the change in
energy of the [001] well, due to an imposed stress, is pro-
portional to the fractional strain of these two silicon
atoms along the line connecting them. These calculations
have been done in great detail elsewhere. ' We find that
the stress Hamiltonians for the three principal stresses to
first order assuming ( 100) minima are given by

~(ooi]= ~Y20(~~4')

S
~(110] [ 10(~ 0)+1 Y20(~ 0) ]

(19)
&(111)= — I(i —1)Y11(8,$)+(i +1)Y, , (8,$)

3 2P

+~2 Yio(~ 4) ]

where S is the single stress parameter introduced, given
by
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the elastic compliance coefficients, and the Y is a spheri-
cal harmonic. P in Eq. (19) is a constant for a given host
crystal, and is given by

2Y,o(8=0 ) s, i
—s,~

3Y2O(8=0') s44
(21)

We find that for silicon, using known values of s», s,z,
and s 44 for the perfect crystal, ' P= +0.40.

In the octahedral tunneling model, it was seen that
[111] stress had no effect, other than a constant shift.
One can see this physically by picturing the six (100)
wells, and noting that [111]stress should affect each well
the same way, so that only a shift in the energy levels
should occur. However, notice that one is assuming 0&
symmetry for the Hamiltonian. However, the present
rigid-rotor calculation and stress analysis within this
model are based upon Td symmetry for the Hamiltonian,
which is producing (100) minima. Visualizing the de-
fect at a substitutional site with the four silicon nearest
neighbors, one can clearly see that all six minima are not
affected the same by the movement of the silicon atoms.
Hence, the stress Hamiltonian as given in Eq. (19) for
[111]stress is nonzero.

The appearance of L =1 terms in the Hamiltonians
can be interpreted as a result of an induced electric field,
due to the movement of the atoms. The point symmetry
of a substitutional site in silicon is Td, which does not in-
clude inversion.

Since Peale, Muro, and Sievers concentrated on the
stress response of the (D,Be) complex in silicon, we need
to set X, C4, and C6 in the rigid-rotor model, so that the
energy levels correspond to this complex with (100)
minima. C4 and C6 adjust the shape so that we are en-
sured (100) minima, and EC is adjusted so that the energy
difference between the first ( A i ) and third (E) rotational
levels agrees with experiinent. For the (D,Be) complex,
the dimensionless energy difference between the first and
third levels must lie between 2.80 and 3.44 (center of
mass, and Be fixed) if the bond length is nearly equal to
the free result.

We set C4=2.0 and C6=0.3. For these values, the
(100) directions are well-resolved minima. The (110)
directions are slightly lower than the (111) (bonding)
directions, so that the best tunneling paths are through
the twelve ( 110) directions, which was suggested by oth-
er theoretical calculations. ' K is set to 8.5, which gives
an energy difference between the first and third nuclear
levels of 2.875. Figure 4 indicates the stress response of
the first three levels to [001], [110],and [111]stress, using
the above analysis. These plots were obtained by first di-
agonalizing %& in Eq. (18), using an expansion of spheri-
cal harmonics, up to and including I =15, then diagona1-
izing & as given in Eq. (19), using the first 36 eigenfunc-
tions obtained from && (using the full 256 expansion).

We will not attempt a fit to experiment, since this may
be misleading for (at least) two reasons. First, we have
not included here any coupling between the hole and the
diatomic nuclei. This will affect the ground state from
which a transition is being made. The calculations above
are the effects on the nuclear levels only. Second, a fit
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FIG. 4. The calculated effects of uniaxial stress within the
model of a rigid rotor in a tetrahedral field with parameter
values E =8.5, C4 =2.0, C6 =0.30, which are more appropriate
for the deuterium isotope. With these values of the parameters,
the global minima are in the six (100) directions, and parity is
nearly a good quantum number for the levels shown. Unlike in
the octahedral tunneling model, there are significant effects for
[111]stress.

IV. OSCILLATOR STRENGTHS
IN THE INFRARED AND FAR INFRARED

A. Coupling

In order to calculate the oscillator strengths we now
need to develop a scheme for coupling the hole motion

could be attempted by taking the difference between I
and I*, but as discussed before, the difference between
these two peaks is nearly a constant for all directions and
magnitudes of stress, making it dificult to fit conclusive-
ly. If a fit is attempted, it is implicitly assumed that the
stress effect in the excited p-like envelope states is in-
dependent of the nuclear rotational tunneling state. Our
main point in calculating the effects of stress on the rota-
tional levels is to indicate that there are effects for [111]
stress with ( 100) minima, dispelling the implicit assump-
tion mad. e that this was not the case. The stress results of
Peale, Muro, and Sievers do not eliminate a (100) mini-
ma model.
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and rotational motion of the complex, V, as written in
Eq. (I). General group theoretical arguments are used
with some physical assumptions in order to obtain an ex-
pression for V.

We are interested in coupling the rotational tunneling
nuclei only to a I 8 hole state, since it is assumed that
only the s-like envelope ground state of &, (which is I s)
can couple significantly. Since this is the case, we look at
the direct product

r,g r, =[r,+r, +r, j+[r,+2r,+r, j, (22)

l

3, —,
' ) = — (x+ir) y,

2

[2zy —(x+ir)g],1

6

[2zl+(x —i~) y],
(24)

l-', —-') = (x —iI )l,1
Z' 2

where L, P, and Z are any functions that transform as
the x, y, and z coordinates, respectively, and the arrows
correspond to spinors for a spin of —,

'
~

' Any propor-
tionality constants can be absorbed into the definitions of
V(, V3, and V5.

Using Eq. (24) as representations of the four I s ground

where the notation is standard for the cubic group.
It appears from Eq. (22) that one standard operator of

each type I &, I 2, and I 3 and two from I 4 and I 5 will be
needed. However, this can be reduced by making reason-
able assumptions. We assume V is real (only depending
on the coordinates, not the momenta). Hence, only the
antisymmetric part of the product in Eq. (22) is needed,
which is the first bracketed term on the right. The
second bracketed term on the right is the symmetric part.
Therefore, the most general way of writing the interac-
tion between the two degrees of freedom, so that the
overall symmetry of the coupling is A1 (or I, ) under
simultaneous application of symmetry operators in both
systems, is

V(r, R)= V1 T1(r)T1(R)

+ V3 [ Te(r)T&(R)+ T,(r)T,(R) j

+ V5 [ T„(r)T„(R)+T„(r)T~(R)

+ T, (r)T, (R)j,
where [T, j are I 1, IT&, T, } are I 3, and [T,T, T, j are
I

&
standard operators. ' All the T's are Hermitian

operators. The Vs are real constants. One must not con-
fuse V, in this expression with Hailer, Joos, and Falicov

3V).
The formalism is now complete. The goal is then to

find all the possible nonzero matrix elements. For
evaluating matrix elements of the hole (r) standard
operators within I 8, any convenient representation of I 8

can be used. In particular,

(ml V(r, R) l~') = C

0

a —b

a —b —c*
—c a —b

(25)

where m and I' label the four hole states, and

a = V, T, (R), b= V3Ts(R),
(26)

c'= —[iT„(R)—T~(R)], d*= V3T,(R)+i T,(R),

where the 1 s are operators which operate only on the
rotor's coordinate, and the Vs are real parameters. It is
interesting to note that from a symmetry point of view,
this problem is similar to that treated by Rodriguez,
Fisher, and Barra, where they considered the splitting of
the double-valued representations in Td under stress. '

Their Tables III and IV are analogous to Eq. (25).
Since "a" is along each diagonal element and it is diag-

onal in R space (the rotor's coordinate), it will just shift
the centroid of energy. We, therefore, ignore it when cal-
culations are made.

We wish to incorporate this additional 4 by 4 "poten-
tial" in our rigid-rotor model. To first order, we mill
again use spherical harmonics to represent the T's in Eqs.
(25) and (26). The set [T,T, T, j transforms as T2, so
that the harmonics with lowest I. that transform as this
set are the three L, =1 functions. However, the I 8 hole
states are associated with the Bloch functions at the top
of the valence band, which are predominantly of p-like
character. Since the envelope functions of these states
are s like, the overall character of the I 8 states near the
origin will be governed by the p-like character of the
Bloch functions. This means, to lowest order, that only
an even function can connect the four I 8 states. Hence,
the set [ T,T, T, j will be best represented by L =2
spherical harmonies, namely, those that transform as
[xy, xz, yz j.

There is a more intuitive and physical way to approach
this problem without resorting to symmetry arguments.
Its essence is to assume a Columbic interaction between
the hole and rotor. All sixteen products of the four I 8
representation functions as given in Eq. (24) are found,
and then used to define a matrix. The diagonal elements
of this matrix are then the probability densities of each
state. One can then use the expression

1 1 T
~X X 2L + I I, +1 LM(~1~41)+LM(~2~42) ~

]g L M P&

(27)

for integrating over the hole coordinate. One finds a final
four by four matrix identical to the one derived by sym-
metry arguments if one lets V3= —Vz/&3 in Eq. (26).
Finally, then, the four by four submatrix is given by

hole states, we project out of V the hole part. This four
by four submatrix is given by

T

a+b c* d*



52 PARITY ISSUES, STRESS RESULTS, AND OSCILLATOR. . . 16 525

& ~l V(r, R) l~' &
=

l YOO

CYANO

&2g Yz,
—&2g Y„

V 2$Yfi

9YOO+g' Yzo

—&2g Y„

0 —&2g'Y~z

n Yoo+KYzo
—i 2$Yzi g Yoo Pro

(28)

where f g, gJ are real parameters, and all the L =2 har-
monics are functions of the rotor's coordinates. This
form lends itself rather nicely to our algorithm. We first
diagonalize &~(IC, C4, C6), using as basis functions the
spherical harmonics up to and including L =15, then
"squeeze" Eq. (28) on both sides with the eigenvectors
gotten from the first diagonalization. We will use only a
subset of all the eigenvectors (typically the first 25 or 36,
resulting in a final diagonalization of 100 by 100 or 144
by 144 matrix) from &z, so that this is a perturbative
calculation (however, much better than first order) for the
coupling.

The model of Hailer, Joos, and Falicov, for coupling in
the tetrahedral tunneling model, and as later used in the
octahedral tunneling model by Artacho and Falicov, is
also a two parameter coupling scheme. However, their
two parameters are of mixed syrnrnetry. Our coupling
scheme, however, contains one parameter (g), which is
purely I, ( A, ) and another (g'), which contains contribu-
tions from both 1 3 (E) and 1 z (Tz). Since the 1 i part
only shifts the centroid of energy, the splittings can be
plotted versus one parameter, thus simplifying the
analysis.

Without the coupling term V, the total Harniltonian
( Td symmetry) is invariant under operators which
operate independently either on the hole's coordinate or
the rotor's coordinate. With the addition of V, the Ham-
iltonian is invariant under simultaneous application of a
specific operator on both coordinates. Hence, there is a
reduction of symmetry, so that the uncoupled levels will
split. All possible reductions in Td symmetry when the
coupling is to a I 8 hole state are

~,g r, r„~,e I., r„Eg r8 I 6I. 7'r, ,
(29)

T]r8 r6r72r8, TPI 8 r6I 72rs .

Both I 6 and I 7 are twofold degenerate, while I.8 is four-
fold degenerate.

The notation in Eq. (29) and in all following discus-
sions will be as follows. We use the A, E, T notation
when referring to the rotor degree of freedom, and we
will use the "gamma" notation when referring to the
hole, or the total, coupled system. Clearly, since the hole
must be labeled with the double-valued representations of
Td (I 6, I 7, I 8) and the rotor with the single-valued repre-
sentations, the total wave functions must transform as
the double-valued representations.

B. Infrared oscillator strengths

We now have all the machinery to calculate oscillator
strengths, and we will start with the infrared. It may

seem at this point that we have too many parameters to
deal with effectively. However, the range of these param-
eters is severely restricted as has been indicated
throughout this paper, for at least three of the four pa-
rameters (three from the rigid-rotor Hamiltonian and one
nontrivial one from our coupling scheme). We have been
able to find good agreement in transition energies and os-
cillator strengths for the (H, Be) isotope in both the far in-
frared and the infrared with the same set of parameters,
with some additional features. The values of the parame-
ters are IC =4.2, C&=2.5, C6=0.4, and g= —3.5. These
values give the correct spacing between the blueshifted
replicas and the mainband, assuming that the bond
length of the hindered rotor is near the free value. The
value of the mixing parameter given predicts two strong
transitions in the far infrared with the correct energy as
found by Muro and Sievers experimentally, and an addi-
tional third strong transition, at an energy which is very
sensitive to slight changes in the mixing parameter g.

The three parameters for the potential of the rigid ro-
tor are quite reasonable, meaning that the expansion dies
off quickly, justifying our neglect of terms higher than
L =6, and the roughly equal strength of the L =3 and 4
term can be supported by the fact that the second- and
third-nearest neighbors of the tumbling rotor impose 0&
symmetry. All following data, including the next section,
are calculations using the above values of the parameters.
Figure 5 shows a general energy-level diagram with some
transitions labeled indicating their expected strengths,
with the values of the above parameters in mind. There
are, of course, other additional levels in our calculation at
higher energies, but we concentrate on the first three ro-
tational levels in each acceptor state. It is possible that
infrared transitions exist higher in energy to these addi-
tional levels, but we have not calculated them.

It is assumed for the hole transitions with nuclear rota-
tional blueshifted sidebands (infrared) that the strength of
the transition is primarily controlled by rotational over-
lap. The ground state is coupled so that the various pure
rotational states are mixed in (i.e., different irreducible
representations). The excited states, however, are as-
sumed not to mix, so that the wave functions are simple
products of hole functions and pure rotational states.
Without the mixing in the ground state, only a dipole
transition to an excited hole state with A, nuclear sym-
metry would be allowed.

If the ratio of the square of the rotational overlap is
taken, then hole integrals that cannot be calculated will
cancel. We, therefore, divide by the oscillator strength of
the mainband (defined to be strength l), here taken as a
transition to the excited p-like hole level with A

&
rota-

tional character. Also, since the energy of the hole tran-
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FIG. 5. Schematic energy-level diagram in the rigid-rotor
model, with and without coupling between the rotor and hole.
The lower set of levels have s-like envelope single acceptor
states with I 8 symmetry, and the upper set of levels have single
acceptor states, which transform as I with p-like envelopes.
Both strong (solid or dashed) and weak (dotted) transitions are
shown. Transitions labeled 1, 2, 3, and 6 are infrared transi-
tions, while 4 and 5 are far-infrared transitions. The subscripts
have been written in parentheses for clarity.

sition is much larger than the energy differences between
the low-lying rotational levels, the energy-level difference
factor in the definition of the oscillator strength is not irn-

portant, so we ignore it in this case. We sum over the ex-
cited states and average over the ground level.

If parity were exactly a good quantum number as in
the octahedral tunneling model or in the rigid-rotor mod-
el with extreme choices of the parameters, the oscillator
strength to the intermediate T,„ level would be strictly
zero. Of course, in the general case within our model,
this is not the case. We, therefore, calculate the oscillator
strengths of transitions to the intermediate T2 level and
to the E level, which we believe to be responsible for the
blueshifted replicas. The strength of the T2 transition
must be small compared to the E transition.

We take into account population effects due to finite
temperatures, since both Muro and Sievers, ' and Peale,
Muro, and Sievers exhibited temperature-dependent
spectra. We use the appropriate Boltzmann factors, and
have carefully taken into account the degeneracies, and
assume Gaussian linewidths. As indicated in Fig. 5 tran-
sitions 3 and 6 should be the strongest transitions from
the initial levels indicated, since both the initial and final
levels have Tz character. We have calculated the oscilla-
tor strengths to the 3

&
and E final levels, and include

them in our calculation. However, the transitions from
the second level in the coupled manifold, which is two-
fold degenerate for g= —3.5, to these two excited states
are very small.

Figure 6 shows the infrared absorption for the temper-
atures T = 1.7, 8, and 15 K (displaced upwards each by
0.2 for clarity). The peak of the mainband is defined to
be one at an energy of zero. The peaks are labeled as in
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Fig. S. We list in Table I the stronger transitions as la-
beled in Fig. 5. By definition, the blueshifted replica
around 3.7 in dimensionless units is 38.8 cm in wave-
number units.

At T=1.7 K, there is some structure between the
mainband and the blueshifted replica, due to a transition
to the intermediate T2 nuclear character excited hole lev-
el, indicating that parity is not a perfect quantum num-
ber, and a small population is present, even at this low
temperature, in the first excited level of the ground-state
manifold. As the temperature increases, additional struc-
ture appears between the mainband and the blueshifted
replica. It must be pointed out that this structure is
mainly due to transitions to the intermediate T2 nuclear
character excited hole state, since the first few excited
levels in the ground state manifold originate from the un-
coupled Tz level. The small peak between transitions 6
and 3 results from the fourth level in the coupled mani-
fold, which originates from the E uncoupled level, to the
E nuclear character excited state. We also indicate with
an arrow in Fig. 6, some structure on the low-energy side.

C. Far-infrared oscillator strengths

We now calculate the oscillator strengths for transi-
tions within the coupled ground-state manifold for the s-
like envelope acceptor states. It is expected that strong

FIG. 6. Infrared absorption as predicted in the rigid rotor in
a tetrahedral field model for T= 1.7, 8, and 15 K, with parame-
ter values K =4.2, C~ =2.5, C6 =0.4, and g= —3.5, so that the
predicted spectrum should correspond to the (H,Be) complex in
silicon. Various peaks are labeled as in Fig. 5. The three spec-
tra for different temperatures are offset slightly for clarity. The
peak at a dimensionless energy of 0.0 has a peak absorption
defined to be 1. The lower-energy scale is in dimensionless
units, which is scaled to the rotational constant B as in Eq. (3).
The upper energy scale is in cm ', assuming that the rotational
constant is near the free value of the (H,Be) molecule. Table I
gives numeric data for this plot.
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TABLE I. Selected information for our theoretical infrared transitions. "Peak value" means the os-
cillator strength calculated without regard to population effects. The labeling of the transitions is as in
Fig. 5.

Transition No.

1 (lower)
1 (upper)

2
3
6

Transition energy
(dimensionless)

=0
3.6851
1.6927
1.2995
0.3823

Transition energy
(cm ')

0
38.8
17.8
13.7
4.0

Peak value

=—1.0
0.1234
0.0334
0.5912
1.1205

transitions occur between opposite parity nuclear states,
since these transitions are within the same hole state.

For the far-infrared transitions, we will proceed with
more detail to expose clearly our assumptions. The wave
function for a state in the coupled manifold, which trans-
forms as the irreducible representation I, , is written as

PP, =&II .s, m &g gcr'J', mar, . F, ,
m j

(30)

where the first term is the dimensionless energy difference
between the two states. We will eventually take a ratio,
so that any proportionality constant will cancel. Since
the Y&o term in the dipole matrix element only depends
on the rotor's coordinate and the hole wave functions are
orthogonal, the dipole matrix element becomes

I=X X g «ZM, m)'&ZM, ~EMI'tO&Z, MdR
m LM i.'M'

(33)
which is quite calculable within our algorithm. Finally,
once the dipole matrix element is calculated using Eq.

where the kets are the hole Bloch functions from the top
of the valence band (I s), the P's are nuclear rotational
functions, which transform as irreducible representations
of Td, and F, is the s-like envelope function. a is the de-
generacy label. The sum over I is over irreducible repre-
sentations and the sum j is over partners of I . We ulti-
mately express the P's in terms of spherical harmonics, so
that Eq. (30) becomes

4r,.
= + II s m & X aLM, FIM(k) F. (31)

m L,M

where the expansion coe%cients "a" are given by our al-
gorithm, and R is the coordinate of the rotor. We wish
to calculate the oscillator strength of a transition from
the ground state (which in our calculation is always I s)
to any of the coupled states I;. It is assumed that for the
dipole operator, the coordinate of the rotor (R) is ap-
propriate and that the light is polarized in the z direction.
If R is written in terms of its "spherical coordinates, " the
oscillator strengths become

(32)

(33), it is squared, then summed properly over the degen-
eracies of the levels involved.

We have elsewhere thoroughly checked our algorithm
against the analytical expressions for the oscillator
strengths that can be derived in the octahedral tunneling
limit, with no disagreement found. ' Figure 7 shows the
theoretical far-infrared absorption spectra at T=O K
(the experiment is at 1.2 K), using the rigid-rotor model
where we have assumed Gaussian linewidths, and have
used normalized energy units. "1" in these units is
defined to be the difference in energy between the first
and third nuclear levels (uncoupled), which we have set
to a value appropriate for the (H,Be) isotope. Table II in-
dicates the energies and peak values of all seven transi-
tions.

We indicate in Fig. 7 the three transitions to levels
originating from the uncoupled level of E nuclear symme-
try. As stated previously, in the octahedral tunneling
model, these three transitions would be zero. They are
weak here, especially the highest in energy, but are

0.40
0.0

Energy (cm ~ )
19.4 38.8

I I I
I

[

58.2

0.35—
O

0.30—
30

0.25—

0.20—

0.15—

0.10—
lO

0.05—

0.00 I
I

I
I

I

0.0 0.5 1.0 1.5
Normalized Energy (dimensionless)

FIG. 7. Far-infrared spectrum predicted in our model with
parameter values K =4.2, C4=2. 5, C6=0.4, and g= —3.5.
The energy scaling is such that 1 dimensionless unit =38.8
cm ', shown in the lower and upper axes, respectively. The ro-
tational constant B is assumed near the value of free rotation of
the (H,Be) molecule. We indicate the peaks to the levels origi-
nating from the E uncoupled hindered rotor levels. Also, tran-
sition 4 as shown in Fig. 5 is indicated here. The box in normal-
ized energy between about 0.2 and 0.8, indicates the published
window of Muro and Sievers (Ref. 1}.
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TABLE II. Information on theoretical far-infrared transitions. The transition energies in cm are
calculated by assuming that the rotational constant B is nearly equal to the free value for (H,Be)

Transition
number

Transition
energy

(dimensionless)

0.1067
0.3556
0.6645
0.7694
1.1042
1.3154
1.5625

Transition
energy
(cm ')

4.1

13.8
25.8
29.9
42.8
51.0
60.6

Degeneracy and
nuclear

character of
upper level

2 (T2)
4 (T', )

2 (T2)
2 (E)
4 (T2)
4 (E)
2 (E)

Peak
value

0.0647
0.3275
0.1509
0.0385
0.2535
0.0508
0.0014

nonzero. The box indicates roughly the range of ener-
gies, which Muro and Sievers experimentally explored. '

The fit is excellent within this window. We have two
large absorption peaks in this window at the correct ener-
gies, and a third nearly hidden by the second smaller
peak, all of which are relatively insensitive to small
changes in the value of g. It is interesting to note that
this nearly hidden peak is a transition to a level originat-
ing from the E rotational manifold. This at least qualita-
tively explains why the third peak seen by Muro and Si-
evers for the hydrogen isotope was too weak for them to
identify precisely. '

We also predict a transition at a lower energy (in ener-
gy units, at about 4 cm '), and a rather strong transition
to a I s level at a higher energy (around 43 cm '). The
specific value of the energy of transition for this strong,
higher-energy transition is very sensitive to small changes
in the value of the mixing parameter g. As g becomes
more negative, the energy 43 crn ' increases rapidly.
This may be significant because, after completing these
calculations, we learned of recent experiments' over a
broader energy range in which such a higher-energy tran-
sition was not observed. Thus, the optimal values of the
parameters, particularly g, will be somewhat difFerent
from those given above.

V. CONCLUSION

We conclude that any model, which has the ( 111)
directions (either bonding or antibonding) as minima or
tunneling sites, is inadequate to model the (H,Be) and
(D,Be) complexes in silicon. The major contradiction for
this model is the fact that the energy values of the blue-
shifted replicas relative to the mainband seen in the in-
frared transitions are larger than the free rotor limit for
the molecules. As has been shown, any potential must
decrease the energy separation of the first two levels of
the free rotor. However, the stress results seemed to ini-
tially support a ( 111) model, even with the above prob-
lem known. We believe, however, that if the stress results
are looked at more carefully, the evidence is not con-
clusive. The central problem is that the difFerence in en-
ergy between the transition to the blueshifted replica and
the transition to the mainband is nearly constant, only

slightly decreasing with applied stress. This makes it
difficult to fit to any model conclusively. Better resolu-
tion and higher stress values could shed more light as to
the nature of these problems.

Beyond the factual information that a ( 111) tunneling
model must be eliminated, are the conceptual problems if
such a model is incorporated. It is hard to imagine a sys-
tem tunneling between bonding directions with a high-
frequency rate when the breaking of bonds and large re-
laxations of the cage must most likely be occurring. The
physics of semiconductors simply makes it difficult for
such a system to exist, and is probably the main reason
that it has only been recently that such systems have been
actively searched for.

However, in Td symmetry the six ( 100) directions are
also possible minima sites. In fact, this is the only other
possibility in Td other than the two sets of ( 111) direc-
tions, as we have shown in the model of a rigid rotor in a
tetrahedral field. We believe this paper has shown that
the (H, Be) and (D,Be) complexes in silicon are most likely
(100) rotationally tunneling defects. The contradiction
in the ( 111)model in regard to the blueshifted replicas is
completely eliminated when the minima are in (100)
directions. The reason for this is that the third nuclear
rotational level is responsible for the sidebands. Since the
third level originates from the L =2 free rotor level,
there is no contradiction. As we have indicated, as long
as the potential of the rigid rotor has global minima in
the (100) directions (determined by the parameters C„
and C6), there must be a value of K, such that the separa-
tion between the first and third levels agrees with experi-
ment, and parity is nearly a good quantum number in our
rigid-rotor model without assuming 0& symmetry for the
Hamiltonian as Artacho and Falicov had to, within their
small basis set octahedral tunneling model.

The major objection raised to a (100) model had been
the experimental stress results. It was assumed that Il 1 1]
stress with (100) minima would not produce any efFect.
However, as shown herein, this is not the case in our
rigid-rotor model. The reasoning for deducing that [111]
stress has no efFect, other than the hydrostatic shift, when
the system is tunneling between six (100) directions, is
based on the assumption that the Hamiltonian describing
the system is invariant under OI, symmetry. Such is the



52 PARITY ISSUES, STRESS RESULTS, AND OSCILLATOR. . . 16 529

case in the octahedral tunneling model proposed by Arta-
cho and Falicov. However, we showed that if one as-
sumes Td symmetry for the Hamiltonian, which is in-
herent in our model, then [111]stress does have an eft'ect

when the minima are ( 100) directions, even though pari-
ty is nearly a good quantum number in the first three lev-
els. Hence, the objection to a (100) minima model be-
cause of the experimental stress results is eliminated.
Also, as indicated above, we believe the experimental
stress results are not adequate to confirm a specific nu-
clear model.

Finally, our calculations of the oscillator strengths of
transitions in both the infrared and far infrared assuming
a consistent set of values of parameters in our rigid-rotor
model, which are reasonable and give (100) minima,
reproduce fairly well the known experimental absorption.
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